
Interactive manipulation of sand on
a TIN terrain model for virtual reality

Václav Purchart*
Center of Computer Graphics and Data Visualization,

Department of Computer Science and Engineering
University of West Bohemia

Plzen / Czech Republic

* lipop@students.zcu.cz

Abstract
This paper describes a new approach in modeling of sand
surface. The terrain model is based on a triangulated
irregular network while existing solutions have been
based on a regular grid. Memory consumption is
significantly reduced without a regular grid at the
expense of more complicated algorithms. Our solution
allows deforming terrain by a set of virtual tools and
erosion simulation. All these simulations run in real time.
We want to use haptic devices with our application in the
future.

Keywords: Virtual Reality, Terrain Erosion Modeling,
VR Tool, TIN Terrain Model

1 Introduction
Our project has the following goals. We would like to
induce the same visual and touch feeling as if the user
directly touches the sand in real world with the respect of
the sand humidity and the thrust.

At present, we have started to work on the haptic part
of this project (together with the Masaryk University in
Brno, Czech Republic), however, this paper contains
only the geometric, physical simulation and visualization
part of our solution.

Our method aims to handle computer modeling of a
terrain formed by some granular material such as sand,
salt, etc. Our goal was to propose a terrain model in
which it will be possible to make direct deformations
using virtual tools. The terrain model responds on these
and other changes by a material movement – it fills up
holes and pits. Let us present a concept of our solution.

The whole terrain surface is represented by a
triangulated irregular network (TIN), a triangulation.
Triangle vertices describe the terrain height in the given
position. The enforcement of terrain changes is done by
setting vertex height or adding new vertices to the TIN.
We also need to enforce some shape to the TIN because
of virtual tools. It is done by constraining edges to the
TIN. A tool stroke is simulated by continual enforcement
of virtual tool samples.

Erosion modeling is based on a particle system
principle. Material moves over the edges from one vertex

to another to imitate the behavior of real sand.
Depending on the characteristics of the modeled material
(e.g. humidity of sand), the material is moving from the
above-lying position into the low-lying positions. This
causes continuous terrain smoothing.

Model based on an irregular network allows setting
any necessary level of detail. The places where the
terrain is flat can be described using a few triangles. By
contrast it is not necessary to set a fixed level of detail
for complex shapes. This approach has significantly
reduced the consumption of memory needed for the
terrain model. The disadvantage is that more complicated
algorithms are needed than for a regular grid. The main
novelty of our approach is the use of TIN instead of
regular grid. Preliminary version of the algorithm has
been published in [10].

2 Related work
In the area of terrain computer modeling many papers
have been published. The following work deals with the
modeling of granular materials, too. The existing work
can be divided into two main streams – the first one
focuses primarily on physical correctness. The second
stream concerns interactive applications operating in real
time.

In the publication [14] the terrain surface is
represented as a regular grid. Grid cells represent the
terrain height in each point. Working with this data
structure is relatively simple and very fast. A major
disadvantage, as described in [14], is the size of this data
structure. The number of elements in the matrix must
correspond to the smallest detail which we want to
display. Memory consumption is rapidly growing with
the resolution. This method does not work in real time
and focuses more on creating the best possible model
visualization.

Other publication dealing with the modeling of sand
is [8]. It is an interactive application which simulates
terrain erosion and interactive manipulation with virtual
tools. The terrain is represented as a regular grid. The
application contains a particle system allowing to
simulate sand pouring.

By contrast, the paper [2] focused more on the use of
haptical devices. These devices have force feedback and

induce a feeling that the user directly touches the
material in the real world. Simulated feedback contains
two forces: the first is the penetration resistance of the
material to the tool and the second is the friction that is
caused by tool movement.

3 The proposed method
In this section we describe in detail the proposed method
– the manipulation of sand on a TIN terrain model. The
described solution has been created within the bachelor
thesis of V. Purchart [9], J. Kadlec [7] and master thesis
of J. Sedmihradský [11]. The method is further improved
by the author of this paper.

The model is based on a triangulated irregular
network, a triangulation which represents the terrain
surface. It is formed by a list of vertices coordinates, a
list of triangle vertices and a list of pointers to the
triangle neighbors. Each vertex X has real coordinates x,
y, z, where x and y is the location in the terrain model and
z is the height in the given location. It follows that the
terrain shape must be a function of two
variables),(yxfz = . The model does not allow
modeling of overlapping and tunnels. For sandy terrain
this model is sufficient.

3.1 Geometric part

At first, we define how the model is represented exactly.
Then we describe the basic operations such as
adding / removing the vertex, constraining the edge,
getting and setting a height in any location and finding a
position of the triangle in the TIN.

A triangulation T(P) of a set P of N points in the
Euclidean plane is a maximum set of edges E such that:
• no two edges in E intersect at a point not in P,
• the edges in E divide the convex hull of P into

triangles.
The edges of each triangle in the TIN are required to

be similarly long. Triangles should be as much as
possible close to equiangular triangles. Delaunay
triangulation provides such triangles. Material movement
looks more realistic on such a triangulation.

The Delaunay triangulation in
2ℜ of the set of

vertices P is a triangulation DT(P) in which each triangle
defined by the vertices PCBA ∈,, meets The Delaunay
empty circle criterion for each vertex D, where

},,{ CBADPD ∉∧∈ (Equation 1). Vertex D is not in
the circle defined by the triangle ABC, when d < 0 (the
criterion is met).

There are many Delaunay triangulation algorithms.

Our choice is the incremental insertion algorithm because
we need to modify the completed TIN (a more detailed

description see in [3]). When we add a new vertex to the
TIN, the triangle which includes the new vertex must be
found. We divide this triangle into new ones. We adjust
the rest of the TIN by edge flipping to meet the
triangulation criterion.

For further application it is necessary that the TIN
allows direct enforcement of some edges. For edge
constraining we use the Constrained Delaunay
triangulation (CDT). This triangulation method is based
on the basic Delaunay triangulation, but, moreover, there
are “constrained edges”. These edges are required in the
TIN even if they do not meet the criterion of Delaunay
empty circle (Equation 1). This allows enforcing direct
changes into the model (see Figure 1).

Figure 1: CDT in action. On the left we can see the
proposed edges which should be constrained. On the
right is the same TIN with constrained edges included.

Algorithms for the constraining of the set of edges are

described in [1], [4] and [12]. Our algorithm is based on
[12]. At first we construct the basic DT and than we
constrain the required set of edges. Continuously we flip
existing edges which intersect with the constrained edge.
Finally we can insert the constrained edge to the TIN
without an intersection with any existing edge.

Removal of vertices

Removal of vertices is necessary due to erosion, some
parts of the terrain model may become flat and
unnecessary vertices in such places are not needed any
more (see Figure 2). They do not bring a substantial
shape information but slow down the computation.
Vertices removal is based on the algorithm [5]. At first,
the vertex is removed from the TIN and then the
resulting hole is retriangulated. So it will become again
the Delaunay triangulation. After vertex removal we get
a star-shape polygon in the worst case. By cutting ears of
this polygon we eliminate the hole.

Unnecessary vertices can be relatively easy to detect.
If the vertex is, due to its neighbor vertices,
(approximately) in the plane, we do not loose any detail
from the model by removing the vertex. At first we get
the maximum angle between each join from the removed
(center) vertex to each of its neighbor vertex (i.e. vertices
which are connected by the edge) and to the horizontal
line defined by the analyzed vertex. If the maximum
angle is close to zero, the center vertex is redundant and
can be removed from the TIN. It is impossible to check
all vertices in the TIN for the criterion above, because

(1)

22

22

22

)()(

)()(

)()(

yyxxyyxx

yyxxyyxx

yyxxyyxx

DCDCDCDC

DBDBDBDB

DADADADA

d

−+−−−
−+−−−
−+−−−

=

α
m

α

there can be a huge amount of vertices and the time
needed for it would be prohibitive. We use a queue,
which accumulates vertices that could be redundant, such
as the vertices which have changed the height in the last
iteration somehow. If the above criterion is met, the
vertex is marked as redundant and before the completion
of iteration it is removed from the TIN.

Figure 2: The automated simplification of the TIN. The
top-left image shows the original TIN. The bottom-right
image shows the simplified TIN which is more flat than
the original due to erosion.

Point location

The most used geometric operation is a location of the
triangle in which the given (target) point lies. Because of
this the location of the triangle has to be effective. The
TIN is permanently changing. Due to permanent
changes, the use of complex search structures is not too
efficient and is memory demanding. We used the
algorithm of rectangular walk [13] which is suboptimal,
but it does not need any special data structure, only
information about neighboring triangles of each triangle.

3.2 Erosion modeling

In real life there are many types of erosion – such as
water erosion, erosion caused by material temperature
changes and others. The result of these processes is that
the material is moved from higher-lying places to
lower-lying places. The amount of the moved material
depends on the height difference. We simulate this kind
of erosion. The accurate physical models require more
computation time. Therefore the simulation is not based
on an accurate physical model because of interactivity of
the whole process.

The set of vertices P of the triangulation CDT(P) and
the set of edges E define a graph. The erosion simulation
works iteratively. For each vertex PPk ∈ we find all
vertices Pj, where the edge EEi ∈ from Pk exists. For

each pair Pk, Pj we compute the angle. This angle is
formed by a horizontal line going through Pk with an
edge between Pk, Pj. If this angle is lower than the
“critical angle” of the simulated material then the
material transfer is realized from the vertex Pk to each
neighbor vertex Pj, which lies lower than Pk (see
Figure 3). For a dusty sand the critical angle is about 30°,
see [11].

Figure 3: The material movement is stopped if an angle α
is less than the critical angle αm.

Browsing and eroding of all vertices in the TIN
would be infeasible. Only the changed vertices are
eroded where a material moving is possible. These
vertices are saved to a special list Le. A vertex must be
added to the Le if its height has been changed in the last
iteration. The vertex height can be changed by a virtual
tool or the erosion algorithm. The vertex can be removed
from the Le if its height had not been altered by erosion
in a few last iterations.

Erosion methods

In the second phase of the algorithm we change the
height of vertices (details in [11]). The height of the
vertex is reduced and the height of some of its neighbors
is increased. From the physical point of view, the
essential erosion characteristic is the volume of the
terrain. After the material movement the volume of the
terrain should be the same as before. TIN has no
“volume”, but we can imagine a solid object which will
be created by a terrain surface and some bottom plane.

3.3 VR deformations

Terrain deformations are done using a set of virtual tools
[9]. These tools allow both simple contour constraining
and pulling. VR tools are based on the CDT principles.
We achieve a real sand deformation sensation by a
managed constraining set of edges. Tool pulling is done
as a periodical stamping of tool contour at fixed time
intervals.

The basic VR tool consists of two parts – the set of
outer edges (O) and the set of inner edges (I). The inner
and outer edges cannot be at the same (x, y) position as
we cannot represent vertical edges in our model.
Therefore, the inner and outer edges are in a small
mutual distance and are never completely identical in the
projection, see Figure 4. By a proper constraining of both
sets of edges in the TIN we achieve one tool stamping.

Figure 4: Stamping of a VR tool. On the left we can see
the wire-frame model (red lines are constrained edges).
On the right we can se the textured model. Both are
without erosion; taken from [11].

The inner part of the VR tool

The purpose of the inner part of the VR tool is to deform
the terrain in a required way. Every stamping by the VR
tool changes the height of the terrain according to the
depth level of the virtual tool. Because of this, the inner
part is a simple plane in most cases. Vertices located in
this area are redundant and can be deleted from the TIN.
Removal of these vertices can be done by an automatic
TIN simplification which is described below. This
requires a little bit more computational time. We walk
through all triangles inside the area and check these
vertices. The vertex Pi is redundant if:
• the vertex depth is close to the tool depth level

and
• the removed vertex does not belong to the set of

border vertices
and

• the vertex has no neighbor, whose depth is greater
than the tool depth level.

The TIN can also contain edges from the previous
stamping. Each set of edges has a unique number, which
can determine the “generation” of each constrained edge.
If a constrained edge is discovered during walking
through the inner triangles, it can be deleted because it
belongs to some old stamping.

The outer part of the VR tool

The outer part of the VR tool adapts to the contour of the
surrounding terrain. This affects how real the stamp
looks. We interpolate the height of vertices in the outer
set O by a simple linear interpolation of the existing
vertices. After this we constrain all edges from the set O.
This gets a good result in most cases. For more realistic
stamping it is necessary to adapt the outer part
accurately. A good approximation is obtained by the
subdivision of edges to smaller pieces which are again
adapted to the height of a terrain.

It is important, in which order we constrain the parts
of the VR tool. At first the outer part must be constrained
into the terrain. This part adapts to the terrain. After that
the inner part is constrained and makes changes “by
force” in the terrain according to tool properties.

Extensions

More complex tools can be derived from the above basic
tools. For a realistic appearance it is necessary to push
away the material. Volume of this material should be the
same as a volume of the created hole. Details of the
approximate solution can be found in [11].

4 The complete algorithm
Let us first explain the meaning of the symbols in our
algorithm:

Le is the list of vertices which will be eroded.
Lr is the list of vertices used for the detection of the

redundant vertices.
αflat is the value of a limit angle to what extent the

vertices of the nearly-flat triangles are removed from the
terrain model. If αflat is higher then more vertices are
removed and vice versa. A proper choice of αflat is
addressed in Section 5.

The whole algorithm can be simply described as follows:
• Computing of the Delaunay triangulation of the initial

set of vertices.
• For each iteration:

1. Constraining deformations into the terrain on the
current location of the VR tool:
a) The height interpolation of the control points

which are in the outer part of the VR tool.
b) Constraining the set of edges of the outer tool

part using CDT.
c) Constraining the set of edges in the inner tool

part.
d) The height reduction in the inner VR tool part.
e) Schedule removal of redundant vertices.
f) Adding the changed vertices to the lists Le and

Lr.
2. Material erosion; for each vertex Pk in the list Le:

a) Computation of the height difference between
the vertex Pk and all its neighbors Pi (there is an
edge from Pk to Pi) and choosing of the best
erosion method.

b) Computation of the material gain for the lower-
lying vertices.

c) Height reduction of the vertex Pk, height
increase for the lower-lying vertices Pi.

d) Adding changed vertices to the lists Le and Lr,
e) The exclusion of the vertices from Le for which

there was no material transfer.
3. For each vertex Pl from the list Lr:

a) The test of the angle αi between the edge of the
vertex Pl and each its neighbor Pi and a
horizontal line passing through the point Pl.
I. If αi > αflat then removal of the vertex from

the list Lr.
II. If αi ≤ αflat then for all vertices Pi, removal of

the vertex Pi from the list Lr, from the list Le
and from the TIN.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2000 4000 6000 8000 10000

C
om

pu
ta

tio
n

tim
e

[s
]

N

Erosion model
Vertices removal total

Devillers removal
The VR tool

5 Experiments and results
To verify the approach with a triangulated irregular
network, we have created an application in C++. In the
next phase it is planned to use haptical devices, so the
application must be portable to other operating systems.
A model visualization is done using the OpenGL library,
the graphical user interface and system communication
uses the multiplatform SDL library. The application is
operated on Windows XP, Windows Vista and Linux.
All measured data are related to a computer with
Windows Vista, 2GB RAM, Intel Core 2 Duo 1.8 GHz,
NVIDIA GeForce 8600M GS, 256MB.

We experimentally set the angle αflat to value 0.4 (on
the basis of the experiments in [11]). This brings the best
results. If the angle is lower, then the terrain model is too
complex, otherwise the terrain model is close to the flat
surface and a lot of details have been lost.

In Figure 5 and Figure 6, we can see a comparison of
solutions using regular grid and TIN. We tried to imitate
the experiment and illustration from [2] to compare
visual quality of our solution and [2].

Figure 5: Our method based on a TIN

Figure 6: Result on regular grid; taken from [2].

From the figures we see that due to the long edges

and probably not the optimal shading model our result in

Figure 5 looks a little worse. One of the future challenges
is to achieve a more realistic appearance. Possibilities are
as follows:
• a better shading model,
• a subdivision of the long edges which have negative

impact on shading,
• a use of randomization in the sand movement

simulation to achieve less regular appearance.
At this moment, we are unable to compare with [2] as

to the performance as the program obtained thanks to the
authors of [6] do not work on our OS but we suppose to
solve it in the near future. We at least measured the
performance of our solution without comparison.

In the first experiment, we measured the computation
time of the main algorithm parts dependency on the TIN
size or the length of tool trace. The graph in Figure 7
shows that the vertex removal is the most
time-consuming part of the whole algorithm. This time
consists mainly of the Devillers vertex removal algorithm
[5]. The rest of time is spent by the redundant vertices
detection. The used triangle walking algorithm implies
the measured complexity O(n0.5). It is one of the future
work on the project to reduce this time. Calculation of
the erosion model has complexity around O(n0.5).

In the second experiment, we measured the total time
consumption in dependence on the length of tool trace.
The graph in Figure 8 shows the time consumption in
dependence on the length of tool trace for TIN with
10000 vertices. Complexity estimate is O(n) for the
erosion model and O(n1/4) for the vertex removal. Time
complexity is getting better with the size of the TIN.

In all experiments we set the fixed TIN size or the
length of tool trace and measure the other parameters of
the model. The trace was created along the diagonal of
the modeled terrain. Time data represent the accumulated
time during the whole tool pulling.

We also analyzed the number of vertices after the
simulation dependency on the trace length and the
triangle count affected by the VR tool dependency on the
trace length (Figure 9). These dependencies are nearly
linear.

Figure 7: Time consumed by each part of computation in
dependency on the TIN size (the trace length is 0.55; the
whole model diagonal length is 1).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 th

e
el

em
en

ts

N

Inserted vertices
VR tool stamping count

Affected triagnles
Vertices count in the end

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
um

be
r

of
 th

e
el

em
en

ts

Pulling length of the VR tool

Inserted vertices
VR tool stamping count

Affected triagnles
Vertices count in the end

Figure 8: Time consumed by each part of computation in
dependency on the trace length (the TIN size is 10000
vertices).

Figure 9: Number of elements in the TIN in dependency
on the TIN size.

The graph in Figure 10 shows the number of elements
in the TIN dependency on the trace length. Also these
dependencies are nearly linear.

Figure 10: Number of the elements in the TIN
dependency on the trace length.

6 Conclusion
Our method based on the triangulated irregular network
as a terrain model can be used in practical applications.
Further work will aim at the appearance improvement of
the model and optimization of the vertices removal. At
present we started to collaborate with Masaryk
University in Brno in using haptical devices with our
application. This will allow a real touching feeling of the
granular material. It will be possible to create a sort of
virtual sandbox. The application will be extended with
more accurate physical models. There is also an effort to
map the whole TIN onto 3D objects. Other possibilities
would be to simulate various physical processes. The
implemented erosion algorithm can be easily replaced by
another physical model, which will operate on the
existing geometric model of the terrain. There is a future
possibility that the application would be used for e.g.
visually impaired people because of simulation of touch
sensation.

Acknowledgements
I would like to thank to Doc. Dr. Ing. Ivana Kolingerová
(University of West Bohemia, Czech Republic) for
inspiration and help with solving of this problem. Next I
would like to thank to my colleagues Jan Kadlec, who
created the geometric model used, and Jiří
Sedmihradský, who is the author of the erosion
simulation and model visualization. Both participated in
the development of the first phase of the project. My
thanks go also to Ing. Bedřich Beneš, Ph.D. (University
of Purdue, USA) for his help with visualization and
erosion modeling. I thank also to anonymous reviewers
for valuable comments which enabled to improve the
paper and brought inspiration for future work.

This work was supported by the Ministry of
Education, Youth and Sports of the Czech Republic,
project Kontakt No. ME09051.

References
[1] Anglada, M., V.: An Improved Incremental

Algorithm For Constructing Restricted Delaunay
Triangulations. Computers & Graphics, Vol. 21,
No.2, pp. 215-223, 1997.

[2] Beneš, B., Dorjgotov, E., Arns, L., Bertoline, G.:
Granular material interactive manipulation:
Touching sand with haptic feedback. In Proceedings
of the 14-th International Conference in Central
Europe on Computer Graphics, Visualization and
Computer Vision 2006, pp. 295–304, 2006.

[3] de Berg, M., van Kreveld, M., Overmans, M.,
Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications. Berlin: Springer-
Verlag, 1997.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
om

pu
ta

ta
tio

n
tim

e
[s

]

Trace length of the VR tool

Erosion model
Vertex removal

The VR tool

[4] Chew, L., P.: Constrained Delaunay triangulations.
Proceedings of the third annual symposium on
Computational geometry, pp. 215–222, 1987.

[5] Devillers, O.: On Deletion in Delaunay
Triangulation, Annual Symposium on
Computational Geometry, pp. 181-188, 1998.

[6] Enkhtuvshin, D., Beneš, B.: Stereo Sand Drawing.
The sandy terrain simulation program based on
regular grid. Received on the 10th November 2008.

[7] Kadlec, J.: Terrain deformations for virtiual reality
– geometric model part. Bachelor thesis. University
of West Bohemia, Pilsen, 2007 (in Czech).

[8] Onoue, K., Nishita, T.: Virtual Sandbox, 11th
Pacific Conference on Computer Graphics and
Applications (PG'03), pp. 252–259, 2003.

[9] Purchart, V.: Terrain deformations for virtual
reality – basic structures, control layer and model
visualization. Bachelor thesis. University of West
Bohemia, Pilsen, 2007 (in Czech).

[10] Purchart, V.: The sandy terrain modeling for virtual
reality. ACM Student Research Competition.
Prague, 2008 (in Czech).

[11] Sedmihradský, J.: Terrain erosion and deformations
modeling. Master thesis. University of West
Bohemia, Pilsen, 2007 (in Czech).

[12] Sloan, S.W.: A Fast Algorithm for Generating
Constrained Delaunay Triangulations, Computers
and Structures, Pergammon Press Ltd., Vol 47, No.
3, pp. 441–450, 1993.

[13] Soukal, R.: Application of triangle walking
algorithm in computer graphics. Master thesis.
University of West Bohemia, Pilsen, 2008 (in
Czech).

[14] Sumner, R. W., O'Brien, J. F., Hodgins, J. K.:
Animating Sand, Mud, and Snow. Proceedings of
Graphics Interface '98, Vancouver, B.C., Canada,
June 17-21, pp. 125-132, 1998.

