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Abstract 
This paper describes a new approach in modeling of sand 
surface. The terrain model is based on a triangulated 
irregular network while existing solutions have been 
based on a regular grid. Memory consumption is 
significantly reduced without a regular grid at the 
expense of more complicated algorithms. Our solution 
allows deforming terrain by a set of virtual tools and 
erosion simulation. All these simulations run in real time. 
We want to use haptic devices with our application in the 
future. 
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1 Introduction 
Our project has the following goals. We would like to 
induce the same visual and touch feeling as if the user 
directly touches the sand in real world with the respect of 
the sand humidity and the thrust.  

At present, we have started to work on the haptic part 
of this project (together with the Masaryk University in 
Brno, Czech Republic), however, this paper contains 
only the geometric, physical simulation and visualization 
part of our solution.  

Our method aims to handle computer modeling of a 
terrain formed by some granular material such as sand, 
salt, etc. Our goal was to propose a terrain model in 
which it will be possible to make direct deformations 
using virtual tools. The terrain model responds on these 
and other changes by a material movement – it fills up 
holes and pits. Let us present a concept of our solution.  

The whole terrain surface is represented by a 
triangulated irregular network (TIN), a triangulation. 
Triangle vertices describe the terrain height in the given 
position. The enforcement of terrain changes is done by 
setting vertex height or adding new vertices to the TIN. 
We also need to enforce some shape to the TIN because 
of virtual tools. It is done by constraining edges to the 
TIN. A tool stroke is simulated by continual enforcement 
of virtual tool samples. 

Erosion modeling is based on a particle system 
principle. Material moves over the edges from one vertex 

to another to imitate the behavior of real sand. 
Depending on the characteristics of the modeled material 
(e.g. humidity of sand), the material is moving from the 
above-lying position into the low-lying positions. This 
causes continuous terrain smoothing. 

Model based on an irregular network allows setting 
any necessary level of detail. The places where the 
terrain is flat can be described using a few triangles. By 
contrast it is not necessary to set a fixed level of detail 
for complex shapes. This approach has significantly 
reduced the consumption of memory needed for the 
terrain model. The disadvantage is that more complicated 
algorithms are needed than for a regular grid. The main 
novelty of our approach is the use of TIN instead of 
regular grid. Preliminary version of the algorithm has 
been published in [10]. 

2 Related work 
In the area of terrain computer modeling many papers 
have been published. The following work deals with the 
modeling of granular materials, too. The existing work 
can be divided into two main streams – the first one 
focuses primarily on physical correctness. The second 
stream concerns interactive applications operating in real 
time.  

In the publication [14] the terrain surface is 
represented as a regular grid. Grid cells represent the 
terrain height in each point. Working with this data 
structure is relatively simple and very fast. A major 
disadvantage, as described in [14], is the size of this data 
structure. The number of elements in the matrix must 
correspond to the smallest detail which we want to 
display. Memory consumption is rapidly growing with 
the resolution. This method does not work in real time 
and focuses more on creating the best possible model 
visualization. 

Other publication dealing with the modeling of sand 
is [8]. It is an interactive application which simulates 
terrain erosion and interactive manipulation with virtual 
tools. The terrain is represented as a regular grid. The 
application contains a particle system allowing to 
simulate sand pouring. 

By contrast, the paper [2] focused more on the use of 
haptical devices. These devices have force feedback and 



induce a feeling that the user directly touches the 
material in the real world. Simulated feedback contains 
two forces: the first is the penetration resistance of the 
material to the tool and the second is the friction that is 
caused by tool movement. 

3 The proposed method 
In this section we describe in detail the proposed method 
– the manipulation of sand on a TIN terrain model. The 
described solution has been created within the bachelor 
thesis of V. Purchart [9], J. Kadlec [7] and master thesis 
of J. Sedmihradský [11]. The method is further improved 
by the author of this paper.  

The model is based on a triangulated irregular 
network, a triangulation which represents the terrain 
surface. It is formed by a list of vertices coordinates, a 
list of triangle vertices and a list of pointers to the 
triangle neighbors. Each vertex X has real coordinates x, 
y, z, where x and y is the location in the terrain model and 
z is the height in the given location. It follows that the 
terrain shape must be a function of two 
variables ),( yxfz = . The model does not allow 
modeling of overlapping and tunnels. For sandy terrain 
this model is sufficient. 

3.1    Geometric part 

At first, we define how the model is represented exactly. 
Then we describe the basic operations such as 
adding / removing the vertex, constraining the edge, 
getting and setting a height in any location and finding a 
position of the triangle in the TIN. 

A triangulation T(P)  of a set P of N points in the 
Euclidean plane is a maximum set of edges E such that: 
• no two edges in E intersect at a point not in P, 
• the edges in E divide the convex hull of P into 

triangles. 
The edges of each triangle in the TIN are required to 

be similarly long. Triangles should be as much as 
possible close to equiangular triangles. Delaunay 
triangulation provides such triangles. Material movement 
looks more realistic on such a triangulation.  

The Delaunay triangulation in 
2ℜ of the set of 

vertices P is a triangulation DT(P) in which each triangle 
defined by the vertices PCBA ∈,,  meets The Delaunay 
empty circle criterion for each vertex D, where 

},,{ CBADPD ∉∧∈  (Equation 1). Vertex D is not in 
the circle defined by the triangle ABC, when d < 0 (the 
criterion is met). 

 
There are many Delaunay triangulation algorithms. 

Our choice is the incremental insertion algorithm because 
we need to modify the completed TIN (a more detailed 

description see in [3]). When we add a new vertex to the 
TIN, the triangle which includes the new vertex must be 
found. We divide this triangle into new ones. We adjust 
the rest of the TIN by edge flipping to meet the 
triangulation criterion.  

For further application it is necessary that the TIN 
allows direct enforcement of some edges. For edge 
constraining we use the Constrained Delaunay 
triangulation (CDT). This triangulation method is based 
on the basic Delaunay triangulation, but, moreover, there 
are “constrained edges”. These edges are required in the 
TIN even if they do not meet the criterion of Delaunay 
empty circle (Equation 1). This allows enforcing direct 
changes into the model (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
Figure 1: CDT in action. On the left we can see the 
proposed edges which should be constrained. On the 
right is the same TIN with constrained edges included. 

 
Algorithms for the constraining of the set of edges are 

described in [1], [4] and [12]. Our algorithm is based on 
[12]. At first we construct the basic DT and than we 
constrain the required set of edges. Continuously we flip 
existing edges which intersect with the constrained edge. 
Finally we can insert the constrained edge to the TIN 
without an intersection with any existing edge. 

Removal of vertices 

Removal of vertices is necessary due to erosion, some 
parts of the terrain model may become flat and 
unnecessary vertices in such places are not needed any 
more (see Figure 2). They do not bring a substantial 
shape information but slow down the computation. 
Vertices removal is based on the algorithm [5]. At first, 
the vertex is removed from the TIN and then the 
resulting hole is retriangulated. So it will become again 
the Delaunay triangulation. After vertex removal we get 
a star-shape polygon in the worst case. By cutting ears of 
this polygon we eliminate the hole. 

Unnecessary vertices can be relatively easy to detect. 
If the vertex is, due to its neighbor vertices, 
(approximately) in the plane, we do not loose any detail 
from the model by removing the vertex. At first we get 
the maximum angle between each join from the removed 
(center) vertex to each of its neighbor vertex (i.e. vertices 
which are connected by the edge) and to the horizontal 
line defined by the analyzed vertex. If the maximum 
angle is close to zero, the center vertex is redundant and 
can be removed from the TIN. It is impossible to check 
all vertices in the TIN for the criterion above, because 
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there can be a huge amount of vertices and the time 
needed for it would be prohibitive. We use a queue, 
which accumulates vertices that could be redundant, such 
as the vertices which have changed the height in the last 
iteration somehow. If the above criterion is met, the 
vertex is marked as redundant and before the completion 
of iteration it is removed from the TIN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The automated simplification of the TIN. The 
top-left image shows the original TIN. The bottom-right 
image shows the simplified TIN which is more flat than 
the original due to erosion. 

Point location 

The most used geometric operation is a location of the 
triangle in which the given (target) point lies. Because of 
this the location of the triangle has to be effective. The 
TIN is permanently changing. Due to permanent 
changes, the use of complex search structures is not too 
efficient and is memory demanding. We used the 
algorithm of rectangular walk [13] which is suboptimal, 
but it does not need any special data structure, only 
information about neighboring triangles of each triangle. 

3.2    Erosion modeling 

In real life there are many types of erosion – such as 
water erosion, erosion caused by material temperature 
changes and others. The result of these processes is that 
the material is moved from higher-lying places to 
lower-lying places. The amount of the moved material 
depends on the height difference. We simulate this kind 
of erosion. The accurate physical models require more 
computation time. Therefore the simulation is not based 
on an accurate physical model because of interactivity of 
the whole process. 

The set of vertices P of the triangulation CDT(P) and 
the set of edges E define a graph. The erosion simulation 
works iteratively. For each vertex PPk ∈  we find all 
vertices Pj, where the edge EEi ∈ from Pk exists. For 

each pair Pk, Pj we compute the angle. This angle is 
formed by a horizontal line going through Pk with an 
edge between Pk, Pj. If this angle is lower than the 
“critical angle” of the simulated material then the 
material transfer is realized from the vertex Pk to each 
neighbor vertex Pj, which lies lower than Pk (see 
Figure 3). For a dusty sand the critical angle is about 30°, 
see [11]. 
 
 
 
 
 
 
 
Figure 3: The material movement is stopped if an angle α 
is less than the critical angle αm. 
 

Browsing and eroding of all vertices in the TIN 
would be infeasible. Only the changed vertices are 
eroded where a material moving is possible. These 
vertices are saved to a special list Le. A vertex must be 
added to the Le if its height has been changed in the last 
iteration. The vertex height can be changed by a virtual 
tool or the erosion algorithm. The vertex can be removed 
from the Le if its height had not been altered by erosion 
in a few last iterations. 

Erosion methods 

In the second phase of the algorithm we change the 
height of vertices (details in [11]). The height of the 
vertex is reduced and the height of some of its neighbors 
is increased. From the physical point of view, the 
essential erosion characteristic is the volume of the 
terrain. After the material movement the volume of the 
terrain should be the same as before. TIN has no 
“volume”, but we can imagine a solid object which will 
be created by a terrain surface and some bottom plane.  

3.3    VR deformations 

Terrain deformations are done using a set of virtual tools 
[9]. These tools allow both simple contour constraining 
and pulling. VR tools are based on the CDT principles. 
We achieve a real sand deformation sensation by a 
managed constraining set of edges. Tool pulling is done 
as a periodical stamping of tool contour at fixed time 
intervals. 

The basic VR tool consists of two parts – the set of 
outer edges (O) and the set of inner edges (I). The inner 
and outer edges cannot be at the same (x, y) position as 
we cannot represent vertical edges in our model. 
Therefore, the inner and outer edges are in a small 
mutual distance and are never completely identical in the 
projection, see Figure 4. By a proper constraining of both 
sets of edges in the TIN we achieve one tool stamping. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Stamping of a VR tool. On the left we can see 
the wire-frame model (red lines are constrained edges). 
On the right we can se the textured model. Both are 
without erosion; taken from [11]. 

The inner part of the VR tool 

The purpose of the inner part of the VR tool is to deform 
the terrain in a required way. Every stamping by the VR 
tool changes the height of the terrain according to the 
depth level of the virtual tool. Because of this, the inner 
part is a simple plane in most cases. Vertices located in 
this area are redundant and can be deleted from the TIN. 
Removal of these vertices can be done by an automatic 
TIN simplification which is described below. This 
requires a little bit more computational time. We walk 
through all triangles inside the area and check these 
vertices. The vertex Pi is redundant if: 
• the vertex depth is close to the tool depth level 

and 
• the removed vertex does not belong to the set  of 

border vertices 
and 

• the vertex has no neighbor, whose depth is greater 
than the tool depth level. 

The TIN can also contain edges from the previous 
stamping. Each set of edges has a unique number, which 
can determine the “generation” of each constrained edge. 
If a constrained edge is discovered during walking 
through the inner triangles, it can be deleted because it 
belongs to some old stamping. 

The outer part of the VR tool 

The outer part of the VR tool adapts to the contour of  the 
surrounding terrain. This affects how real the stamp 
looks. We interpolate the height of vertices in the outer 
set O by a simple linear interpolation of the existing 
vertices. After this we constrain all edges from the set O. 
This gets a good result in most cases.  For more realistic 
stamping it is necessary to adapt the outer part 
accurately. A good approximation is obtained by the 
subdivision of edges to smaller pieces which are again 
adapted to the height of a terrain. 

It is important, in which order we constrain the parts 
of the VR tool. At first the outer part must be constrained 
into the terrain. This part adapts to the terrain. After that 
the inner part is constrained and makes changes “by 
force” in the terrain according to tool properties. 

Extensions 

More complex tools can be derived from the above basic 
tools. For a realistic appearance it is necessary to push 
away the material. Volume of this material should be the 
same as a volume of the created hole. Details of the 
approximate solution can be found in [11]. 

4 The complete algorithm 
Let us first explain the meaning of the symbols in our 
algorithm: 

Le is the list of vertices which will be eroded. 
Lr is the list of vertices used for the detection of the 

redundant vertices. 
αflat is the value of a limit angle to what extent the 

vertices of the nearly-flat triangles are removed from the 
terrain model. If αflat is higher then more vertices are 
removed and vice versa. A proper choice of αflat is 
addressed in Section 5. 

 
The whole algorithm can be simply described as follows: 
• Computing of the Delaunay triangulation of the initial 

set of vertices. 
• For each iteration: 

1. Constraining deformations into the terrain on the 
current location of the VR tool: 
a) The height interpolation of the control points 

which are in the outer part of the VR tool. 
b) Constraining the set of edges of the outer tool 

part using CDT. 
c) Constraining the set of edges in the inner tool 

part. 
d) The height reduction in the inner VR tool part. 
e) Schedule removal of redundant vertices. 
f) Adding the changed vertices to the lists Le and 

Lr. 
2. Material erosion; for each vertex Pk in the list Le: 

a) Computation of the height difference between 
the vertex Pk and all its neighbors Pi (there is an 
edge from Pk to Pi) and choosing of the best 
erosion method. 

b) Computation of the material gain for the lower-
lying vertices. 

c) Height reduction of the vertex Pk, height 
increase for the lower-lying vertices Pi. 

d) Adding changed vertices to the lists Le and Lr, 
e) The exclusion of the vertices from Le for which 

there was no material transfer. 
3. For each vertex Pl from the list Lr: 

a) The test of the angle αi between the edge of the 
vertex Pl and each its neighbor Pi and a 
horizontal line passing through the point Pl. 
I. If αi > αflat then removal of the vertex from 

the list Lr. 
II. If αi ≤ αflat then for all vertices Pi, removal of 

the vertex Pi from the list Lr, from the list Le 
and from the TIN. 
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5 Experiments and results 
To verify the approach with a triangulated irregular 
network, we have created an application in C++. In the 
next phase it is planned to use haptical devices, so the 
application must be portable to other operating systems. 
A model visualization is done using the OpenGL library, 
the graphical user interface and system communication 
uses the multiplatform SDL library. The application is 
operated on Windows XP, Windows Vista and Linux. 
All measured data are related to a computer with 
Windows Vista, 2GB RAM, Intel Core 2 Duo 1.8 GHz, 
NVIDIA GeForce 8600M GS, 256MB. 

We experimentally set the angle αflat to value 0.4 (on 
the basis of the experiments in [11]). This brings the best 
results. If the angle is lower, then the terrain model is too 
complex, otherwise the terrain model is close to the flat 
surface and a lot of details have been lost. 

In Figure 5 and Figure 6, we can see a comparison of 
solutions using regular grid and TIN. We tried to imitate 
the experiment and illustration from [2] to compare 
visual quality of our solution and [2].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Our method based on a TIN 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Result on regular grid; taken from [2]. 

 
From the figures we see that due to the long edges 

and probably not the optimal shading model our result in 

Figure 5 looks a little worse. One of the future challenges 
is to achieve a more realistic appearance. Possibilities are 
as follows: 
• a better shading model, 
• a subdivision of the long edges which have negative 

impact on shading, 
• a use of randomization in the sand movement 

simulation to achieve less regular appearance. 
At this moment, we are unable to compare with [2] as 

to the performance as the program obtained thanks to the 
authors of [6] do not work on our OS but we suppose to 
solve it in the near future. We at least measured the 
performance of our solution without comparison. 

In the first experiment, we measured the computation 
time of the main algorithm parts dependency on the TIN 
size or the length of tool trace. The graph in Figure 7 
shows that the vertex removal is the most 
time-consuming part of the whole algorithm. This time 
consists mainly of the Devillers vertex removal algorithm 
[5]. The rest of time is spent by the redundant vertices 
detection. The used triangle walking algorithm implies 
the measured complexity O(n0.5). It is one of the future 
work on the project to reduce this time. Calculation of 
the erosion model has complexity around O(n0.5).  

In the second experiment, we measured the total time 
consumption in dependence on the length of tool trace. 
The graph in Figure 8 shows the time consumption in 
dependence on the length of tool trace for TIN with 
10000 vertices. Complexity estimate is O(n) for the 
erosion model and O(n1/4) for the vertex removal. Time 
complexity is getting better with the size of the TIN. 

In all experiments we set the fixed TIN size or the 
length of tool trace and measure the other parameters of 
the model. The trace was created along the diagonal of 
the modeled terrain. Time data represent the accumulated 
time during the whole tool pulling. 

We also analyzed the number of vertices after the 
simulation dependency on the trace length and the 
triangle count affected by the VR tool dependency on the 
trace length (Figure 9). These dependencies are nearly 
linear. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Time consumed by each part of computation in 
dependency on the TIN size (the trace length is 0.55; the 
whole model diagonal length is 1). 
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Figure 8: Time consumed by each part of computation in 
dependency on the trace length (the TIN size is 10000 
vertices). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Number of elements in the TIN in dependency 
on the TIN size. 
 

The graph in Figure 10 shows the number of elements 
in the TIN dependency on the trace length. Also these 
dependencies are nearly linear.  

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Figure 10: Number of the elements in the TIN 
dependency on the trace length. 

6 Conclusion 
Our method based on the triangulated irregular network 
as a terrain model can be used in practical applications. 
Further work will aim at the appearance improvement of 
the model and optimization of the vertices removal. At 
present we started to collaborate with Masaryk 
University in Brno in using haptical devices with our 
application. This will allow a real touching feeling of the 
granular material. It will be possible to create a sort of 
virtual sandbox. The application will be extended with 
more accurate physical models. There is also an effort to 
map the whole TIN onto 3D objects. Other possibilities 
would be to simulate various physical processes. The 
implemented erosion algorithm can be easily replaced by 
another physical model, which will operate on the 
existing geometric model of the terrain. There is a future 
possibility that the application would be used for e.g. 
visually impaired people because of simulation of touch 
sensation. 
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