
An approach to visualization of large data sets from LIDAR

Boštjan Kovač∗

Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova 17, SI-2000 Maribor
Slovenia

Abstract

Rapid development of laser scanning technology in past
decades has resulted in a wide area of its applications. LI-
DAR is a system that uses this technology to gather in-
formation about distant targets. Gathered data are stored
into large data sets that are further processed, visualized
and analyzed. Fast and accurate visualization is the key
factor when working with LIDAR point clouds. The main
problem that arises is that vast amount of data can easily
exceed memory and processing capacities of modern day
computers.

In this paper we present an approach to visualization of
large LIDAR point clouds in real time entirely on graph-
ical processing unit using a point-based rendering tech-
nique. Our method is based on dynamic data loading
and efficient two-pass rendering utilizing approximation
of elliptical weighted average splatting with rotated splats.
Expensive rendering tasks are delegated to programmable
graphics unit to save CPU resources. The proposed sys-
tem offers realistic visualization of LIDAR point clouds in
real time that is visually and performance wise comparable
to other solutions, while not requiring any comprehensive
preprocessing such as TIN generation beforehand.

Keywords: LIDAR, terrain visualization, point-based
rendering

1 Introduction

Light Detection and Ranging (LIDAR) is a remote sens-
ing technology that detects range and other properties of
distant objects. Three main components of a LIDAR sys-
tem are laser scanner, inertial navigation system (INS) and
global positioning system (GPS). The entire system is usu-
ally mounted on an aircraft that flies in multiple overlap-
ping patches over the terrain. The laser scanner emits in-
frared laser beams at high frequency toward the ground.
Properties of the returned scattered beam are measured and
recorded along with data from positioning (GPS) and ori-
entation (INS) subsystems. Gathered data is processed af-
ter the flight and every measured point is referenced with
its geospatial position [9]. Processed point clouds are then

∗bostjan.kovac@gmail.com

written into output files of different formats, with the pre-
ferred format being the open LAS file format [11]. These
files usually contain millions of points which amount to a
few gigabytes of data.

LIDAR systems are known to achieve 15 cm verti-
cal and 30 cm horizontal accuracy [9], which along with
their low cost makes them a technology of choice in var-
ious fields. These include forestry, geology, meteorology,
coastal engineering, urban planning, etc. Fast and repre-
sentative visualization of gathered data is necessary for
further analysis and verification of results. Objective of
this paper is to present an approach to visualization of LI-
DAR data sets of arbitrary sizes in a true interactive 3D
environment in real time. To achieve this, we need to over-
come the obstacle of limited computer resources that are
at our disposal. Computer systems have been advancing
rapidly, but their memory and processing capacities are
still not enough to handle virtually unlimited size of LI-
DAR data in real time.

3D scenes usually consist of 3D meshes which in turn
contain millions of triangles [5]. This is possible because
of the evolution of graphical processors in past decade and
revolution that programmable shaders have brought to the
field of computer graphics. But as the capabilities of GPUs
are constantly increasing, display resolution has been lag-
ging behind. This exposes an interesting phenomenon,
where a single projected triangle covers just a few pixels,
but nonetheless brings the whole cost of a triangle mesh
with it. In case of LIDAR data, cost of a triangle mesh
is mapped to triangulation of the whole point cloud. This
is inefficient, since points are by default independent enti-
ties. A much more intuitive way to visualize LIDAR data
is therefore to treat each point as an independent primitive
and render it as such. Additional benefit of point-based
geometry is that hierarchical encoding schemes provide
compact storage and efficient transmission of these data
sets.

The main problem that point-based rendering tech-
niques encounter is that sampled points do not have infinite
resolution, resulting in subsequent gaps between them [5].
These gaps can be avoided by applying filters, increasing
sampling density or by surface splatting. The latter tech-
nique associates each point with a normal vector and a ra-
dius. Every point is thus represented as a small disc in 3D

space which can span over many pixels when projected on
the screen. Use of points as rendering primitives has first
been proposed by Levoy and Whitted [14], who were fol-
lowed by Grossman and Dally [12]. Hardware graphical
accelerators and introduction of programmable graphical
pipeline resulted in renewed interest and subsequent ad-
vances in point-based rendering methods. Rusinkiewicz
and Levoy were the first to use hardware acceleration in
QSplat [16] in order to render large datasets of the Dig-
ital Michelangelo Project. They used a tree of bounding
spheres to determine visibility, to control levels of de-
tail and for rendering. They also proposed two render-
ing passes to properly blend overlapping splats. It was the
first system designed to interactively render large data sets
gathered by modern scanning devices.

Zwicker et al. [18] have mathematically formulated
elliptically weighted average filtering (EWA) for point-
based rendering by introducing fuzzy splats. Ren et
al. [15] have reformulated EWA approximation for imple-
mentation entirely on GPUs, since exact implementation is
not possible due to technical limitations of graphical hard-
ware. This drastically improved visual quality of the out-
put, so others [5, 6, 8, 10, 4, 19] followed with their meth-
ods on improving visual quality and speed of rendering.

We have implemented TerraForm application to display,
process and analyze LIDAR data. In this paper we discuss
problems that we have encountered while rendering large
LIDAR data sets and how we overcame them to produce an
interactive 3D environment that is able to output the results
of our calculations in real time. In the following section we
go into the preprocessing stage of our algorithm, where we
create our data structure. In the next section we discuss
how dynamic data management and visibility are handled.
At last, we explain the rendering algorithm. Finally, we
discuss results.

2 Data structure

One of our primary objectives was achieving real time vi-
sualization of amounts of data that can considerably sur-
pass modern computer’s system and graphics memory. We
have chosen a quadtree of bounding rectangles as a data
structure because it allows simple access, management and
visibility culling of smaller subsets of data. Terrain is sam-
pled from aircraft in multiple flyovers and the points are
saved into LAS file sequentially in order they were sam-
pled. This means that adjacency in the file does not neces-
sarily correspond to adjacency in the real world. In order
to load these points on demand we therefore need to index
them.

In the following subsections initialization of our data
structure and point indexation are described.

2.1 Initialization

LAS file format contains a lot of meta information besides
raw point data. This data is used during the initialization
phase to construct the quadtree and determine the bound-
ing boxes of nodes. Tree construction begins at the root
node, which covers the whole area. Terrain is then equally
divided among its children down the tree until the mini-
mum predetermined number of points per bounding box
is reached. 5.000 points per node turns out to be a good
tradeoff between size of the entire quadtree structure and
the speed of algorithms that are used to load and render
data. Much smaller values can result in considerably larger
memory requirements when working with very large or
dense data sets. Each node contains average colour, av-
erage normal vector of the points it encapsulates and four
pointers to its children. Leafs on the other hand contain
much more data, which are mainly required for dynamic
data management described in the next section. Data con-
tained in the leaf structure are presented in Table 1.

Field Size (bytes)
Leaf state 1
Number of designated points 4
Id of array in GPU memory 4
Point lists Depends on number

of loaded points
Meta info about point lists 8*number of point

lists
First point index 4
Number of points 2
List index 2

Bounding box 16

Table 1: Leaf structure

2.2 Indexing

Initialization phase divided 3D space into a grid of rect-
angles that can be referenced through leafs. In this step
points are referenced with their designated leafs by filling
leaf’s meta information about contained point list arrays.

Indexing starts by sequentially going through the input
file and sending read points down the tree. No points are
actually stored in this step, only information about them is
gathered and used to index their position in the file. Suc-
cessive points in the file usually belong to the same scan
line that sampled them from the terrain. This means that
a subset of consecutive points that belong to the same leaf
probably exists in this array. All we need to store in the
leaf node is therefore the index of the first point of that
subset and the number of consecutive points, which we
find by traversing the input array of points with a constant
step and retracting with bisection when we encounter the
first point outside the bounding box. Bisection is repeated
until the last point contained in the leaf is found.

3 Dynamic data management

Our data structure is created during the initialization and
indexing phase, but points are not inserted into it. Amount
of data we can store in our data structure is limited by
available system RAM and video memory. Since we have
already established that quantity of LIDAR points can
surpass system’s memory limit, we store only interesting
points, i.e. visible and nearly visible points. Visibility
is determined by user’s interaction with the 3D world, so
the interesting set of points is constantly changing, mak-
ing point management a dynamic and continuous process.
Therefore we implemented it asynchronously in a separate
thread not to interfere with other important tasks, such as
rendering and interaction. The point loading thread con-
tains a queue of requests that works on FIFO principle.

Different memory chips have varying speeds and trans-
fer rates. When considering speed of visualization, it is
important to note that video memory of graphics card pro-
vides the fastest way to access data that need to be ren-
dered. Therefore all points that are currently visible or
are near the visible frustum are stored in very fast graph-
ics card memory as shown in Figure 1. Because user in-
teraction can be rapid and unpredictable, points near the
viewing band have to be uploaded to the video memory to
ensure smooth movement and interaction with the world.
Points that fall just outside of nearly visible terrain are
stored in system RAM so they can be quickly transferred
to the video memory. Points in video memory are kept in
vertex buffer objects, which provide the quickest access
during rendering. Transfer of points from system to video
memory is very fast compared to reading from disk, so no
queuing mechanism is necessary.

Memory location of points is kept in leaf’s ’leaf state’
field. Possible states are defined as:

• Unloaded - points are left in file

• Requests loading - points need to be read from LI-
DAR file/data source

• Loaded in RAM - stored in system memory

• Loaded in GPU ram - stored in video memory

Primary reasons to implement points loading thread
asynchronously are slow disk speed and the lack of nor-
mal vectors in the input file. Loading process occurs in
this order: load points from disk into memory, select ap-
propriate subset of points, insert points into leaf, calculate
normal vectors. While loading and inserting are straight-
forward operations, we will describe point selection and
normal calculation in the following two subsections.

3.1 Point selection

Selection algorithm is needed because older video cards
may not have enough memory to contain visible portion

Figure 1: Leaf visibility and states

of the terrain. In this case only a subset of all designated
points have to be inserted into leaf’s point lists.

Points on the same list are more or less equidistant, as
are the adjacent point lists. Reason lies in constant an-
gle velocity of mirror that reflects the laser beam and the
constant speed of aircraft. Also, when points are indexed,
the lists first points often fall very near the border of the
bounding box as seen in Figure 2a. Patterns are not visible
due to sufficient density of points when rendering a full set
of points. However, if we cannot afford to render all points
and choose them with an equidistant step, we get a pattern
shown in Figure 2a. Points are therefore chosen with a
random step (Figure 2b) to assure pattern-free rendering.

Figure 2: Equidistant (a) and random step (b) point indices

3.2 Normal vectors

Normal vectors for each point have to be calculated be-
cause LIDAR systems do not measure them. We need two
neighboring points besides the original one to calculate the
normal vector. The closest two points are probably the
one before and the one after it, but those points tend to be
collinear, so we can use only one of them. We search for
the closest valid third point by utilizing the data structure
of our quadtree’s leaf. Since a list of point lists is kept,
it can be assumed that one of point lists adjacent to the
list containing the original point contains the closest third
point. Because aircrafts fly over the terrain in patches this
is not always true. Points from a very distant point list

could in fact be the closest, but the margin of scanning
error and approximate nature of our normal calculation
do not encourage us to spend significant amount of time
searching for them. After the required points are found
the normal vector is calculated as a cross product of two
edges of the triangle they form.

4 Rendering algorithm

A lot of rendering methods based on points have been pro-
posed in recent years. Since LIDAR data is large and not
very dense when compared to scanned 3D models, our
rendering algorithm is based on Botsch and Kobbelts al-
gorithm [5]. It is known as very fast while providing de-
cent visual quality [17]. It was also designed to be imple-
mented entirely on graphic cards with vertex and fragment
shaders.

Visualizing LIDAR points as single pixels is not accept-
able as they are too sparsely spread around the terrain and
the resulting image would contain too many holes even
at very large viewing distances. A preferred way to vi-
sualize points is therefore by using splats, which are disk
shaped objects possibly rotated in 3D space according to
the point’s normal vector. The splat is therefore defined
by its centre’s position in 3D world, radius, normal vec-
tor and colour. Benefit of using splats is that they are not
piecewise constant but are represented with linear geom-
etry. Therefore they exhibit the same quadratic approxi-
mation order as triangle meshes [5]. Another benefit of
choosing splats over simple one-pixel points is splat fil-
tering, which removes high frequency noise that is often
produced by rendering unfiltered points.

Rendering points as splats requires several tasks to pro-
duce a hole-free image of acceptable quality. First, we
calculate splat’s size, which depends on its distance from
the viewer. Secondly, splat’s shape has to be determined
based on its rotation and position. These two steps render
dynamically sized and shaped splats that represent surface
with good quality, but the third step is required to filter
the unwanted artifacts from the final image. Filtering is
performed by blending overlapping splats and thus elimi-
nating alias. A quick normalization step is required at last
to normalize gathered colour values. These steps are ex-
plained in the following subsections.

4.1 Splat size

Calculating splat size accurately is the key to avoiding
holes in the image. Splat’s position, radius and position
of the viewer are used to make the necessary calculations.
The procedure of OpenGL’s transformation from 3D eye
space coordinates to the final 2D image coordinates is
shown in Figure 3. The visible portion of space is bound
by a frustum defined by distances to its near (n) and far (f)
planes, while parameters t (top) and b (bottom) control its
opening angle. The frustum is projected on the unit cube

[−1,1]3, which is then projected into the [−1,1]2 with a
simple parallel projection that discards the Z-coordinate.
Translation and scaling of these 2D coordinates map them
into the window coordinates [0,w]x[0,h]. This is equiva-
lent to projecting the viewing volume on the near plane z
= -n and scaling the resulting coordinates by h/(t−b) [5].

Figure 3: OpenGL’s transformation pipeline

Splat’s size is determined by the size of its projection
in the window coordinates. Exact calculation requires the
use of splat’s position and normal vector in the process,
which can result in a quite expensive calculation. There-
fore we have used the approximation proposed by Chen
and Nguyen [7], where the splat’s bounding sphere is pro-
jected neglecting its offset from the optical axis and nor-
mal vector. Final image space splat size is therefore cal-
culated by equation 1, where zeye is splat’s distance from
the camera, r its radius and n, t,b,h projection parameters
shown in Figure 3.

sizewin = r
n

zeye

h
t−b

(1)

Adjusting splat’s size renders sizewin × sizewin large
square on the image.

4.2 Splat shape

Splat is a small disc in object space, whose projection on
screen is a rotated ellipse shown in Figure 4. Radius and
orientation of the projected ellipse depend on the splat’s
normal vector transformed to eye coordinates. Modifica-
tion of splat’s size renders square that always faces the
camera. To draw a rotated disc, we have to determine for
every pixel inside that square whether it is a projection of
a point from inside or outside the splat. A pixel lies within
the rotated ellipse if the distance between its correspond-
ing 3D point and splat’s centre is smaller than the radii of
the splat.

OpenGL’s point sprite extension is used to project a tex-
ture instead of a single point. Pixels generated in this
way receive texture coordinates in [0,1]2 space. Simple
subtraction and division transforms these coordinates to
[−1,1]2 space, where the centre point (0, 0) is the pro-
jected centre of the splat. Depth offset δ z from the splat
centre is computed for every generated pixel with coordi-
nates (x,y) ∈ [−1,1]2 by equation 2, where (nx,ny,nz)T

represents the eye space normal vector.

δ z =
nx

nz
x−

ny

nz
y (2)

Figure 4: Splat projected to screen space

δ z is then used to calculate point’s distance from the
splat’s centre and correct its depth, as shown in Fig-
ure 5. Pixel p(x,y) is inside the ellipse, if ‖(x,y,δ z)‖2 ≤ 1.
Again, this is just an approximation which neglects the
angle between the optical axis and splat’s normal vector.
This approximation can lead to very narrow ellipses, so
we bound the maximum foreshortening of the ellipses as
proposed in [2, 5, 8].

Figure 5: Depth correction

4.3 Filtering

Elliptical weighted average filtering is a method of fil-
tering that is equivalent in quality to anisotropic filtering
when dealing with polygons. It has been formulated for
point-based rendering by Zwicker et al. in [18] and its
approximations have been widely used by many authors.
EWA consists of an object space reconstruction kernel and
screen space low-pass filter. We have chosen to sacrifice
visual quality in favour of higher rendering performance
by not implementing the screen space filter. Overall visual
quality would not be significantly improved to justify the
performance hit it would cause.

To implement splat filtering, each splat is associated
with a radially decreasing Gaussian weight function, thus
forming our object space reconstruction kernel. The pro-
jection of such a splat produces an image space ellipti-
cal Gaussian that can be blended with other splats. Image
space weight α(x,y) of a pixel is calculated from the dis-

tance between pixels corresponding 3D point and splat’s
centre in object space. We already calculated this distance
in the previous step, when we calculated splats shape. Pix-
els weight is calculated by passing the distance from its
centre to the Gaussian function:

α(x,y) = Gauss[‖(x,y,δ z)‖T] (3)

Splats should only be blended if their z-distance is small
enough; otherwise the splats in front have to overwrite the
splats behind. This is done in two rendering passes. In the
first pass splats are rendered only to the depth buffer with
ε-offset that determines the maximum distance between
two blended splats. During the second pass we do not clear
the depth buffer and disable writing to it. This way only
splats within ε-distance are blended together. For this to
work correctly each of splat’s projected pixels must have
its correct depth value set. Without correcting this value,
each pixel gets its depth from the centre pixel. This is be-
cause point sprite extension renders image-plane aligned
rectangles instead of points, which means that all rectan-
gles’ pixels have the same depth. Incorrect depth values
result in blending artifacts near contours when viewing
from flat angles [5]. The required window z-coordinate
can be computed from adjusted eye space z-coordinate and
δ z by applying frustum and viewport mapping to it [5].

4.4 Normalization

Normalization step is necessary because the number of
fragments blended into the same pixel can vary signifi-
cantly throughout the image. This causes bright pixels and
can be easily avoided by dividing each pixel’s accumulated
colour by its accumulated value of α(x,y).

5 Implementation

Our TerraForm application was implemented using C#
language and .NET 2.0 environment. OpenGL 2.1 was
used for rendering tasks through the use of open source
Tao library [1]. Vertex and fragment shaders were imple-
mented in Cg language. Results were measured in Win-
dows XP running on AMD XP 3200+ processor and ATI
Radeon x800 256MB graphics card.

We implemented our own library for reading LIDAR
data with support for LAS file formats 1.0 and 1.1. Prepro-
cessing, dynamic point management and visibility culling
were implemented on CPU, while all rendering related
tasks were delegated to GPU to free processing resources.

Point data consisting of positions, normal vectors and
colours is stored in video memory’s vertex buffer objects.
They require data to be transferred from RAM to GPU
RAM only once for static geometries, so they are the opti-
mal choice for our type of data. Only a few commands
are required to display geometric data stored in vertex
buffer objects, so the overhead is also minimal. We used
OpenGL’s GL POINT SPRITE ARB extension to render

splats. This let us draw textures instead of points, thus
gaining access to all splats projected pixels in the fragment
shader. Our texture contained only alpha channel in which
a 2D Gaussian function was encoded to avoid expensive
computation.

Vertex program calculates each point’s projection and
its normal vector in eye space coordinates. It also uses
equation 1 to calculate splat size according to its distance
from the viewer. Data common to all fragments generated
from the same vertex is also calculated in vertex shader,
since computation at this stage is not so costly.

Each fragment’s depth offset is computed in fragment
program using data passed from vertex shader and frag-
ment’s distance to the centre of the splat. Fragment’s po-
sition in regard to the centre of the splat is derived from
point sprite’s texture coordinates. Equation 2 is applied to
calculate depth offset. Then depth offset is used to cal-
culate pixel’s 3D distance from the centre of the splat in
object space and test if the fragment is inside or outside of
projected ellipse. Gauss function stored in point sprite’s
texture is used to calculate the weight of contained frag-
ment and thus its contribution to the blended pixel. Frag-
ment’s depth correction has to be calculated using equation
from [5] for blending to work correctly.

We store fragment’s colour and weight contribution in
an off-screen buffer in form of a texture. This texture is
drawn after the second pass as a single rectangle spanning
over the whole screen. A simple fragment shader program
at last divides accumulated weighted RGB values by accu-
mulated weight to produce a normalized image.

6 Results

Table 2 shows that we have achieved interactive frame
rates. These results have to be taken with some consid-
eration to the point clouds they were measured on and
the varying point distance to the camera. Performance
can vary significantly due to the dynamically changing
point sizes, because larger points produce much more frag-
ments and therefore require more processing in the frag-
ment shader.

Resolution
points 800x600 1280x1024
500 k 25 25
1 M 25 19.596
2 M 14.14 10.87
2.5 M 11.25 8.6

Table 2: Rendering performance in frames per second
(fps). Note: Maximum fps is limited at 25.

Points within the viewing range that are not loaded into
the video memory are loaded in the background process
and displayed when they become available. This provides

user with interactive 3D environment that is not handi-
capped by slow hard and optical disk speeds.

Much more important than speed is the visual quality of
the application, as shown in Figure 6. The image is anti-
aliased and generally of a very good quality. The number
of holes is relatively small, thanks to the dynamic splat
sizes. Point based rendering seems to be a perfect solu-
tion for terrain visualization, especially because ellipses
are very good at approximating curved surfaces. Vegeta-
tion and trees are mostly rendered as scattered points, but
this was expected because of insufficient sampling rate.
Accuracy and density of LIDAR points have to be taken
into account when evaluating visual quality. Therefore we
cannot directly compare TerraForm’s rendering quality to
similar visualizations of high quality 3D models that were
sampled with specialized scanners or generated by com-
puter software.

As can be observed in Figure 7, point based rendering
does not prove to be a very good choice when rendering
urban areas. Because they contain tall buildings, verti-
cal walls cannot be sampled densely enough by downward
pointing laser beam. Big gaps are imminent in these cases
and only triangulation would help to remove them.

Figure 6: Countryside terrain rendering by our TerraForm
application

Figure 7: Urban area rendering with TerraForm. Only
rooftops of buildings are visible, because laser beam is un-
able to properly sample vertical features.

Figure 8: Polygonal rendering of a triangulated urban area
rendered by Lasview application [2]

When compared with similar applications1, the chosen
approach appears to work best visually and performance-
wise. Reviewed applications were mostly rendered using
single pixel points, which amounted to high degrees of
alias as well as a lot of holes, especially when viewing
points from small distances. Advanced features such as
dynamic splat sizes and shapes, blending and rendering
of full resolution terrain were not implemented. Most of
them have not implemented advanced point management
system and were thus unable to display the full density
of points, even at greater zoom levels. Some applications
also feature an alternative polygon based rendering en-
gine, which provides a hole-free rendering of triangulated
points. Polygonal renderings of urban areas prove to be
of much higher quality thanks to a lot of flat surfaces they
contain, as seen in Figure 8. On the other hand, polygonal
terrain renderings produced an unnatural looking surface
with distorted vegetation and trees, as seen in Figure 9.

Figure 9: Polygonal rendering of a triangulated terrain
area rendered by VG4D application [3]

7 Conclusions

In this paper we presented an approach to visualization
of LIDAR data with a point-based rendering method. Our
approach uses dynamic data management that enables ren-
dering engine to operate with a full subset of points. Point
density has to be lowered only on really old graphics cards,
due the smaller amount of available onboard RAM. Since
all rendering computations are delegated to the GPU, the

1Compared with: LPViewer, lasview, LP360 for ArcGis, VG4D, LViz

central processing unit is available for other tasks. This
is especially important while dealing with LIDAR data,
where visualization often serves as a tool for analysis and
further data manipulation.

While the resulting visual quality is really good when
compared with similar applications, the nature of LIDAR
data has quite an impact on it. Data gathered by older
LIDAR systems can be quite sparsely sampled and there-
fore inappropriate for use with our system. Splats need
to be very large to avoid subsequent holes. In some such
cases, interpolation might be useful to fill the empty space
for rendering purposes. A hybrid polygon and point based
rendering engine, similar to the one proposed in [8], might
prove to be a good solution to holes. Urban areas seem
to be affected the most. The amount of flat surfaces they
contain makes them ill suited for use with point-based ren-
dering, which performs best on curved surfaces.

Splats are also not well suited for visualizing sharp fea-
tures, such as building’s edges and corners. Using ellip-
tical Gaussians as point representations causes them to be
soft. We could counter this by specifying one or two clip-
ping lines for each sharp splat and clip the splat against
them [13]. Another problem inherent to the LIDAR data
is its error margin. While it encourages us to use fast ap-
proximations in our algorithms without significant visual
penalties, anomalies that lower the output quality still oc-
cur. One such case is normal vector calculation, where too
infrequently sampled points sometimes cause a splat to be
rotated out of place.

Raw LIDAR data contains only information that can be
gathered from the reflected laser beam, which does not
contain any colour information. We were therefore limited
to just a few colouring modes, such as colouring by point
classification, elevation, intensity etc. To gain real visual
appeal, we should think about associating LIDAR points
with digital aerial photos. This would greatly improve vi-
sual quality and extend the usability of the application.

References

[1] Tao framework. [online] At http://www.
taoframework.com/, 2007. (November 28,
2008).

[2] Las tools. [online] At http://www.cs.unc.
edu/˜isenburg/lastools/, August 2008.
(November 28, 2008).

[3] Vg4d viewer. [online] At http://www.
virtualgeomatics.com/solutions4.
html, November 2008. (November 28, 2008).

[4] Mario Botsch, Alexander Hornung, Matthias
Zwicker, and Leif Kobbelt. High-quality surface
splatting on today’s gpus. In Eurographics Sympo-
sium on Point-Based Graphics, pages 17–24, Stony
Brook, NY, 2005. Eurographics Association.

[5] Mario Botsch and Leif Kobbelt. High-quality point
based rendering on modern GPUs. In 11th Pa-
cific Conference on Computer Graphics and Appli-
cations, pages 335–343. Eurographics Association,
2003.

[6] Mario Botsch, Michael Spernat, and Leif Kobbelt.
Phong splatting. In Eurographics Symposium
on Point-Based Graphics, pages 25–32, Zürich,
Switzerland, 2004. Eurographics Association.

[7] Baoquan Chen and Minh Xuan Nguye. Pop: A hy-
brid point and polygon rendering system for large
data. In IEEE Visualization, pages 45–52, Los
Alamitos, CA, USA, 2001. IEEE Computer Society.

[8] Liviu Coconu and Hans-Christian Hege. Hardware-
accelerated point-based rendering of complex
scenes. In Proceedings of the 13th Eurographics
workshop on Rendering, pages 43–52. Eurographics
Association, 2002.

[9] Airborne 1 Corporation. How lidar works.
Technical report, 2006. [online] At http:
//www.airborne1.com/technology/how_
lidar_works.shtml, (November 28, 2008).

[10] Carsten Dachsbacher, Christian Vogelgsang, and
Marc Stamminger. Sequential point trees. In ACM
Transactions on Graphics, volume 22, pages 657–
662, New York, NY, USA, 2003. ACM.

[11] American Society for Photogrammetry and Remote
Sensing. [online] At http://www.lasformat.
org/, April 2008. (November 28, 2008).

[12] J. P. Grossman and William J. Dally. Point sample
rendering. In Rendering Techniques ’98, Eurograph-
ics, pages 181–192. Springer, 1998.

[13] Leif Kobbelt and Mario Botsch. A survey of point-
based techniques in computer graphics. Computers
& Graphics, 28(6):801–814, 2004.

[14] Marc Levoy and Turner Whitted. The use of points
as display primitives. Technical report, University of
North Carolina at Chapel Hill, 1985.

[15] Liu Ren, Hanspeter Pfister, and Matthias Zwicker.
Object space EWA surface splatting: A hardware ac-
celerated approach to high quality point rendering.
In Computer Graphics Forum (Eurographics 2002),
volume 21, pages 461–470, September 2002.

[16] Szymon Rusinkiewicz and Marc Levoy. QSplat:
A multiresolution point rendering system for large
meshes. In Proceedings of ACM SIGGRAPH 2000,
pages 343–352, July 2000.

[17] Miguel Sainz and Renato Pajarola. Point-based
rendering techniques. Computer & Graphics,
28(6):869–879, December 2004.

[18] Matthias Zwicker, Hanspeter Pfister, Jeroen Van
Baar, and Markus Gross. Surface splatting. In Pro-
ceedings of ACM SIGGRAPH 2001, pages 371–378,
august 2001.

[19] Matthias Zwicker, Jussi Räsänen, Mario Botsch,
Carsten Dachsbacher, and Mark Pauly. Perspective
accurate splatting. In Proceedings of Graphics In-
terface 2004, pages 247–254, School of Computer
Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. A K Peters.

