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Abstract

This paper describes a method and implementation for

eliminating repetitive 2D patterns in images by interac-

tively editing their Fourier spectra. It includes a brief dis-

cussion of the basic mathematical prerequisites, in partic-

ular, the 2D Discrete Fourier Transform and its relevant

properties. Based on this concept, “InSpectral” is an in-

teractive software application that provides intuitive and

easy-to-use image editing functionality in the spectral do-

main with immediate visual feedback in the spatial do-

main. Emphasis is placed on special features, such as real-

time visualization of the edited images and the design of

the corresponding tools. The efficiency and quality of the

results are demonstrated on several examples.

Keywords: Discrete Fourier Transform, Repetitive Pat-

tern Removal, Denoising, Frequency Domain Editing, Im-

age Retouching, Java, ImageJ.

1 Introduction

Pictures have gained major relevance in our daily lives.

They do not just capture important moments but also trans-

port feelings and emotions. In former times, people used

their analog cameras only for special occasions but, es-

pecially since the introduction of digital cameras, images

made their way into everyday life and have became a so-

cial commodity. Nowadays, almost everyone owns a cam-

era and tries to take a picture at every occasion. Of course,

images of these special moments should be of high quality.

Therefore people make an effort to improve them by edit-

ing with applications like Adobe Photoshop Lightroom1 or

Apple Aperture.2 These applications provide various tools

(e.g., noise removal, red eye correction, sharping, etc.) to

help users improve the quality of their pictures.

Unfortunately, there is no easy to use solution for ev-

ery problem available. For example, it is very difficult to

remove the printing raster of a newspaper scan, as shown

in Figure 1. This paper deals with an intuitive approach to
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Figure 1: Scanned newspaper image with apparent print-

ing raster (taken from [2, Chapter 14]).

correct exactly such repetitive patterns from images, based

on their distinct effects in the frequency domain.

1.1 Approach

To cope with the appearance of such periodic interfer-

ences, it is useful to know that repetitive image com-

ponents correspond to local energy peaks in the image’s

Fourier spectrum. These energy peaks show up as bright

spots in the corresponding power spectrum, as shown in

Figure 2.

The calculation of such a power spectrum is possi-

ble through the use of the Fourier Transform. The two-

dimensional power spectrum of an image is calculated

with Discrete Fourier Transform (DFT) or the Fast Fourier

Transform [2, Chapter 14]. Afterwards it is necessary to

suppress the energy peaks caused by the periodic noise

pattern to eliminate them in the original picture. When

all essential modifications in the power spectrum are done,

the inverse Fourier Transform is applied to obtain the cor-



Figure 2: Logarithmic power spectrum of the image in

Figure 1 (from [2, Chapter 14]). The repetitive print raster

shows up as bright spots located symmetrically around the

origin of the spectrum at the center.

rected version of the input image.

2 Mathematical Background

To fully understand this process some mathematics is re-

quired. This section briefly describes the Discrete Fourier

Transform, the power spectrum and its relevant character-

istics (symmetry, periodicity), and the application of filters

in the spectral domain. Further information on this topic

can be found in [1, 2, 3, 4].

2.1 The Discrete Fourier Transform (DFT)

The goal of the continuous Fourier Transform

G(ω) =
1√
2π

∫ ∞

−∞
g(x) · e−iωx dx (1)

is to calculate all existing frequencies of a given signal

or function g(x). It transforms a function into another

complex-valued function which is usually called Fourier

spectrum G(ω). Both the signal g(x) and its Fourier spec-

trum G(ω) are complex-valued in general. It is possible

to recompute the input signal or function g(ω) from the

Fourier spectrum G(ω) by applying the inverse Fourier

Transform,

g(x) =
1√
2π

∫ ∞

−∞
G(ω) · eiωx dω. (2)

Since images are discrete functions, we need to use

the Discrete Fourier Transform (DFT), defined for one-

dimensional signals as

G(m) =
1√
M

M−1

∑
u=0

g(u) · e−i2π mu
M , (3)

for 0 ≤ m < M, where M denotes the length of the dis-

crete signal vector g(u) ∈ C. The corresponding inverse

transformation is defined as

g(u) =
1√
M

M−1

∑
m=0

G(m) · ei2π mu
M , (4)

for 0 ≤ u < M. All described transformations so far are

applicable to one-dimensional input signals only. To pro-

cess two-dimensional functions like images it is necessary

to compute the discrete Fourier Transform in both dimen-

sions. Fortunately, the 2D DFT is separable along the two

dimensions, i.e., it can be calculated line by line and then

row by row (or in reverse order) as

G(m,n) =
1√
MN

M−1

∑
u=0

N−1

∑
v=0

g(u,v) · e−i2π( mu
M + nv

N ) (5)

and, analogously, the inverse transform as

g(u,v) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

G(m,n) · ei2π( um
M + vn

N )
. (6)

2.2 Fast Fourier Transform (FFT)

Despite the fact that the processing power of today’s com-

puters accelerates the computation of the discrete Fourier

Transform to a great extent, its calculation for long input

signals is still expensive. Therefore, many efficient algo-

rithms have been implemented—they are usually referred

to as “fast” Fourier Transforms [1] or FFT for short. With

the FFT it is possible to reduce the time complexity of the

computation with an input signal of length N from O(N2)
to only O(N · log2 N). As shown in Table 1, the FFT is at

least 10× faster than the discrete transform even for small

images. Furthermore, the table shows the increasing gain

for longer input signals. Further information on the fast

Fourier Transform is available in [3].

image size signal length DFT/FFT acceleration

100 × 100 max. 100/128 ∼10×
320 × 240 max. 320/512 ∼20×
640 × 480 max. 640/1024 ∼40×

1024 × 768 max. 1024/1024 ∼100×

Table 1: Acceleration by using the fast Fourier Transform

algorithm.

2.3 Padding

To reach such an increase of calculation speed as men-

tioned in Section 2.2 the FFT algorithms are optimized



(a)

(b)

Figure 3: Two possible methods to upscale an image. The

content of the image is enlarged to the next power of two

(a). This can lead to poor results due to the required peri-

odicity of the input signal (see Section 2.6 for detailed in-

formation). Only the image is enlarged, the content keeps

its original size (b).

on input signal lengths of 2k, for k ∈ N. Therefore, pic-

tures whose width or height are not powers of two must

be enlarged appropriately. Figure 3 shows two different

ways to accomplish this. Method (a) enlarges the whole

picture including it’s content to the next power of two,

but because of the necessary periodicity of the input sig-

nal/image there may appear large intensity differences at

the image borders. A solution would be to use a window-

ing function but therefore image information would be lost

at the boundaries. A good solution to upscale an image is

described in Figure 3 (b). Yet there is still a problem with

this approach. Because there is a noticeable difference in

intensity at the opposite image borders, a wide-band en-

ergy distribution will appear in the Fourier spectrum along

the main axes. Thus, several important signal components

of the spectrum can be shadowed and are thus lost. To

solve this problem, it is common practice to combine the

image content borders with one half of a Hanning window-

ing function (Figure 4), defined as

f (x) = cos2
( xπ

2D

)

, (7)

where D is the width of the window function. Thereby

the transition from image content to image background is

smoothed (Figure 5). This method is called “padding” in

general and works as following:

1. The input image size is increased to 2k×2l with k, l ∈

1

0

0 D

x

Figure 4: Plot of one half of the Hanning windowing func-

tion.

Figure 5: Image after padding.

N. The content of the picture stays unchanged in the

center of the enlarged image.

2. Every pixel of the picture content is extended to the

image borders so that no pixel is undefined any more.

3. A weight image W is calculated from one half of the

windowing function as

Wx(u,v) = cos2
( dxπ

2Dx

)

, (8)

Wy(u,v) = cos2
( dyπ

2Dy

)

, (9)

with dx = |u− Iw −Dx| and dy = |v− Ih −Dy|. The

computation of this weighting image is illustrated in

Figure 6.

4. Finally, the modified input and the weight image get

combined by a point-wise multiplication to the result-

ing image (Figure 5), i.e.,

Wxy(u,v) = Wx(u,v) ·Wy(u,v). (10)

2.4 Power Spectrum

Since the Fourier spectrum is complex-valued it is hard to

visualize it as a two dimensional image. One possibility

would be to illustrate the three-dimensional plots of the

real and imaginary parts of the spectrum. This method

of displaying the result is not very suitable in this case,

because it would hardly be possible to work with them in

an intuitive way.
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Figure 6: Schematic illustration of the weight image com-

putation W (u,v).
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Figure 7: Illustration of the real and imaginary part of a

Fourier spectrum G(m,n) and how they relate to the power

spectrum.

To cope with this issue, the power spectrum (i.e., the ab-

solute values of the Fourier spectrum) is commonly used.

Here we use the logarithmic power spectrum, defined as

P(m,n) = log
[

|G(m,n)|
]

(11)

= log
[

√

G2
Re(m,n)+G2

Im(m,n)
]

(12)

(see Figure 7). As the name tells, the power spectrum

represents the power (energy) which the single frequency

components of the Fourier spectrum contribute to the input

signal. Two important characteristics of the power spec-

trum are its symmetry around the origin – just like the

Fourier spectrum – and that it is a periodic function. This

means that the origin is located at all four corners of the

spectrum. It is common practice to exchange the quad-

rants in pairs so that the origin is in the center of the power

spectrum.

2.5 Symmetry

One of the most important properties of the DFT is the

symmetry of the resulting spectrum. Hence it is possible

(a)

(b)

Figure 8: Symmetry of the power spectrum.

to mirror refinement steps with respect to the spectrum’s

origin as shown in Figure 8 and thereby to reduce the re-

quired time and effort needed to edit the power spectrum.

2.6 Periodicity

To process a Fourier Transform or the resulting Fourier

spectrum numerically with a computer a discrete and peri-

odic input signal is needed. Only such an input generates a

discrete and periodic spectrum. In addition to this fact the

discrete and the fast Fourier Transform require the input

signal to be discrete and periodic in both dimensions.

Considering such a periodic input image like Figure 9

enormous intensity differences are noticeable at the adja-

cent image borders. As already mentioned in Section 2.3,

these intensity changes can result in wide-banded energy

contributions which distort the signal components along

the main axis. A practical solution to this problem is the

use of windowing functions, which is described precisely

in [2, 3].

2.7 Linear filtering in the frequency domain

One of the main application areas of the Fourier transform,

especially of the fast Fourier Transform, in the field of im-

age processing is the implementation of linear filters. The

main advantage of using the Fourier transform at filtering

images is the computational efficiency of applying filters

of larger sizes.

The reason is the convolution property of the Fourier

transform. This means that a linear convolution in the spa-

tial domain, g∗h, corresponds to a point-wise multiplica-



Figure 9: Input image with horizontal and vertical period-

icity. The bright field at the bottom and the dark sky on

the top create a major intensity difference which causes

troublesome leaps in the input signal.

tion of the corresponding spectra in the frequency domain,

G ·H. Considering the fact that a convolution of an image

of size M×M with a filter matrix of size N ×N has a time

complexity of O(M2N2) but only O(M log2 M) when us-

ing a fast Fourier Transform we can say that it is almost a

requisite to use a FFT for filtering images because of this

enormous time saving. This process can be illustrated in

the following way:

g(u,v) ∗ h(u,v) = g′(u,v)
↓ ↓ ↑

DFT DFT DFT−1

↓ ↓ ↑
G(m,n) · H(m,n) → G′(m,n)

(13)

At first the input image g(u,v) and the filter matrix h(u,v)
get transformed into the frequency domain by the Fourier

transform DFT. Now it is possible to combine the spec-

trum of the image G(m,n) with a point-wise multiplication

with the spectrum of the filter matrix H(m,n),

G′(m) = G(m) ·H(m) (14)

= (GRe(m)+ i ·GIm(m)) · (HRe(m)+ i ·HIm(m)),

where i =
√
−1 is the imaginary unit. The resulting spec-

trum G′(m,n) can be transformed to the spacial domain by

applying an inverse Fourier transform DFT−1. The out-

come of this transformation is the filtered version of the

input image g′(u,v). Figure 10 shows this process for a

one-dimensional signal.

This application uses the multiplication of a complex-

valued Fourier spectrum G(m,n) with a real-valued filter

matrix H(m,n)

GRe(m,n) = GRe(m,n) ·H(m,n) (15)

GIm(m,n) = GIm(m,n) ·H(m,n)

|G(m,n)| =
√

G2
Re +G2

Im

G(m) ∈ C

H(m) ∈ C

G′(m) ∈ C

m

m

m

G′(m) = G(m) ·H(m)

1

1

1

0

0

0

Figure 10: Point-wise multiplication of a one dimensional

Fourier spectrum with a one dimensional filter.
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Figure 11: Point-wise multiplication of a complex value of

the Fourier spectrum G(m,n) with a coefficient of a real-

valued filter matrix H(m,n). Note that both components

(real and imaginary part) are scaled to the same extent so

that the angle ϕ stays the same.

to apply a filter to a spectrum. Hereby the real and imag-

inary part of the spectrum are multiplied with the same

filter value so that the angle ϕ of the resulting vector is not

changed as illustrated in figure 11.

3 Implementation

The main purpose of this work was the implementation of

an image processing application which provides an intu-

itive approach of retouching images in the frequency do-

main. The application itself is a Java application and fully

developed in Eclipse.3 All the management of the image

3http://www.eclipse.org



Figure 12: Graphical user interface of “InSpectral”.

data is controlled by the use of ImageJ4 which is a free

Java image processing library from National Institutes of

Health5. The used classes and other components were

adapted to fit the requirements and further criteria such

as run time optimization. Furthermore, two available im-

plementations6 were used for computing the forward and

inverse FFT. Thereby, the classes of both algorithms were

adapted accordingly.

With InSpectral it is possible to work with gray scale

images only – color images will be converted after open-

ing.

3.1 User Interface

Figure 12 shows the graphical user interface of the realized

application InSpectral. It consists of three main parts:

• working area,

• toolbars (main menu and toolset),

• adjustments panel.

All opened images are shown in the working area. From

each of them the power spectrum is computed instantly

and shown besides. Furthermore, it is possible to edit

every power spectrum in this windows by simply paint-

ing in them with several tools. This works just like every

other image processing software like Adobe Photoshop7 or

CorelDraw.8 Both toolbars provide functional editing in-

struments that ease the way of image retouching to a large

extent (e.g., the symmetrical editing option allows the user

to suppress one energy peak and mirrors this editing step).

In addition, it is possible to adjust almost every available

tool by changing properties in the adjustment panel (e.g.

filter radius and weights).

4http://rsbweb.nih.gov/ij
5http://www.nih.gov
6http://local.wasp.uwa.edu.au/∼pbourke/other/dft/ and

http://www.imagingbook.com/fileadmin/en/java/ch14.zip
7http://www.adobe.com/photshop
8http://www.coreldraw.com

3.2 Interaction

This section deals with the basic process of an editing step

and is also shown in Figure 13. The interactive editing

process can be summarized as follows:

1. After opening the image, the Fourier spectrum of the

input image is calculated by the fast Fourier Trans-

form. The spectrum is generally complex-valued,

which means that it consists of a real and a imaginary

part.

2. Since it is difficult to display a Fourier spectrum as

a two dimensional image, both parts (real and imag-

inary) are combined into the power spectrum which

can be displayed easily. The power spectrum itself is

not used for editing; it is just a visual aid to illustrate

the structure of the Fourier spectrum. It may look like

the user is working directly on the power spectrum

but the actual editing process is done in the original

(complex-valued) Fourier spectrum.

3. A weight image is generated in the background when

a user applies one of the provided tools to the power

spectrum.

4. After each editing step (triggered by releasing the

mouse button), this weight image is combined with

the real and imaginary part of the Fourier spectrum

by a point-wise multiplication.

5. Finally, the edited input image and the updated power

spectrum are reconstructed by an inverse FFT.

3.3 Implemented Filters

To cope with all characteristics of a Fourier spectrum sev-

eral filter forms were implemented:

• quadratic filter

• circular filter

• conic filter

• cosine filter

• Hanning filter

• Hamming filter

• Gauß filter

All of these filters can be adapted to the present properties

of the current spectrum by adjusting the correspondent pa-

rameter like the radius or the strength of application. Fur-

thermore there are two different tools available to apply

one of these filters. At first there is the brush tool which

enables the user to apply a filter at an exact location or ar-

ranged along a custom brush stroke. The alternative to the

brush tool is the line tool. With this instrument the cur-

rent filter can be applied on a defined line with a specified

spacing.
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Figure 13: Process of a user interaction. A FFT is applied to the input image I(u,v) to compute the complex-valued

Fourier spectrum G(m,n) 1 . The logarithmic power spectrum log |G(m,n)| is calculated 2 . A weight image W (m,n)

is created by user interaction 3 . The Fourier spectrum and the weight image are combined by a pointwise multiplication

to the new/edited Fourier spectrum 4 . Finally the refined input picture is computed by an IFFT 5 . Furthermore the

updated power spectrum is recalculated too.

4 Results

This section provides a listing of several test images and

the corresponding results. The approach of the image en-

hancement and the quality of the results are explained on

the basis of some test images.

4.1 Print raster removal

Figure 14 (a) demonstrates a cutout of an image that shows

a car with a very rough printer raster. It is very unattrac-

tive to use such a picture for digital works (e.g. on web-

sites). The periodic printer raster manifests as multiple

energy peaks symmetrically located around the origin of

the power spectrum. To minimize the impacts caused by

this apexes a Gaussian filter was applied with double sym-

metry. Although the raster is still visible after the editing

the image is now much clearer and small details seem to

have appeared again. In addition to the refinement of the

raster, the image got smoothed too. Unfortunately not only

the important image parts got enhanced also disturbing el-

ements are pointed out (especially in the shadow of the

car). Another disadvantage is the loss of contrast in the

picture that has occured.

(a) (b)

(c) (d)

Figure 14: Picture of a car with very strong and rough

printer raster (a) and its power spectrum (b). The resulting

image after applying a Gaussian filter (c) is much finer and

clearer. The edited power spectrum is shown in (d). All

these images are just small cutouts of the original data.



(a) (b)

(c) (d)

Figure 15: Picture of a moving foot with strong “interlac-

ing” (a) and its power spectrum (b). The improved result

image (c) and the edited power spectrum (d) are shown as

well.

4.2 Fields/Interlacing

Video snapshots influenced by interlaced scanning picture

another possible use of the spectral editing. The distract-

ing scan lines displayed in figure 15 (a) show up in the

power spectrum as bright fields. After cushioning them

with a Gaussian filter and the line tool they completely

disappear in the result image. Furthermore it can be ob-

served that static, not moving image parts (e.g. books in

the background) are not affected by the spectral retouch-

ing.

4.3 Interference lines

A less common problem are interference lines in pictures,

as Figure 16 shows as horizontal lines. These lines lead to

very wide-banded signal components that appear as bright

lines along the vertical axis. By applying a Gaussian fil-

ter with the line tool and single symmetry to the power

spectrum, the horizontal interferences vanish completely;

the background seems to be smoothed. Due to the criti-

cal editing that took place, the resulting image also looses

some contrast along with a slight increase of intensity.

4.4 Performance

Table 2 gives an overview of the image resolutions and

milliseconds needed for the forward and inverse transfor-

mation. All these tests were done on a MacBook Pro

2.33 GHz Intel Core 2 Duo with 2 GB 667 MHz DDR2

SDRAM and an ATI Radeon X1600 256 MB graphic card.

(a) (b)

Figure 16: Picture taken by a confocal microscope with

horizontal interference lines (a). After applying Gaus-

sian filters to the power spectrum the lines disappear com-

pletely (b).

resolution forward FFT inverse FFT

1024 × 512 169 ms 156 ms

512 × 256 36 ms 36 ms

256 × 256 17 ms 17 ms

Table 2: Listing of image resolutions and time needed for

the computation of a forward and inverse FFT.

5 Conclusions

After the analysis of several test images and the achieved

results it is obvious that image retouching in the fre-

quency domain is very efficient at removing repetitive im-

age noise. Moreover, the needed run time is very short and

almost real time, even when working with larger input im-

ages. The “InSpectral” tool is well suited for the use in

spectral image retouching because there is no preliminary

knowledge required to use the application and good results

can be achieved in a very short amount of time.
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