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Abstract

Training classifiers for object detection requires large sets
of positive and negative samples and usually a large
amount of computational time. Obtaining negative sam-
ples is not so difficult; it can be almost any pictures not
containing the object of interest. Creating the positive
training dataset is more challenging. Those pictures must
contain the object we want to detect with corresponding
annotation (information, where the object actually is). Es-
pecially creating the annotation is very time consuming.

This paper describes several ways of extending train-
ing dataset used for training face detectors. Several ex-
periments were concluded to evaluate the improvement of
resulting classifier trained on datasets extended with the
proposed methods.

Web gallery Flickr provides many images suitable for
our purposes, we tried to use such images with automatic
annotation for training. We also focused on the possi-
bility of using datasets from controlled environment. Fi-
nally, random transformations were applied on the anno-
tated data to extend total samples count. We also explore
the possibility of reducing training time by sampling the
training set with Unique Importance Sampling.

Keywords: Detection, Face Detection, Local Binary
Patterns, Viola and Jones, WaldBoost

1 Introduction

Detection of objects in images is an important task of com-
puter vision which has many practical applications in ev-
eryday life. Examples of the applications are face detec-
tion for human-computer interfaces and for surveillance
system and licence plate detection for traffic monitoring
systems. Other applications are in robotics, military and
machine vision.

Approaches based on scanning images with classifiers
proved to be very effective in detecting various classes of
objects including faces, cars and pedestrians. The most
successful classifiers for real-time classification are vari-
ations of cascades of boosted classifiers. Such classifier
structure was first proposed for face detection by Viola and
Jones [12] in their frontal face detector. Viola and Jones
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combined simple and extremely fast image features called
Haar-like features with AdaBoost algorithm and with cas-
cade structure of the detector. This detector achieved pre-
cision of detection which can be used in practical applica-
tion in real-time.

Although the cascades of boosted classifiers are efficient
in detecting objects, they have still limitations. Probably
the most significant limitations are the long training time
and the need large well annotated training datasets. The re-
quirement for large training datasets increases cost of de-
tectors and the long training time reduces the possibility
of tuning parameters of the training process. In this work,
we focus on both of these issues. We propose and evalu-
ate several methods to decrease the size of hand-annotated
training data and we use unique importance sampling of
the training dataset to reduce the training time for large
datasets.

In our experiments, we use WaldBoost algorithm [10] to
build ensemble classifiers based on Local Binary Pattern
[7, 8, 14] image features. In this framework, we evaluate
the individual proposed methods.

The document is structured as follows. First, WaldBoost
algorithm is introduced in Section 2 and the Local Binary
Patterns are presented in Section 3. Then, unique impor-
tance sampling is presented in Section 4 and the methods
for extending training datasets are proposed in Section 5,
in Section 6 and in Section 7. Experiments are described
in Section 8 and their results are presented in Section 9.
Finally, the paper is concluded in Section 10.

2 WaldBoost

In the original frontal face detector by Viola and Jones
[12], a cascade of ensemble classifiers is used. The en-
semble classifiers are created by AdaBoost algorithm [2]
and their operating point are set to achieve very low false
negative rate and moderate false positive rate (background
class is negative). All samples classified as negative are
classified negative by the whole detector, thus achieving
very low overall false positive rate and also low average
computational time. However, all information between
the individual stages is lost and the lengths and operating
points are not set optimally with respect to the speed of the
classifier.

Inspired by the Wald’s sequential probability ratio test,



Input: (x1,y1), . . . ,(xn,yn) where xi ∈ X ,yi ∈ Y = {−1,+1},
desired false negative rate α and false positive rate β .
Initialize weights distribution D1(i) = 1

n
Set A = (1−β )

α
and B = β

(1−α)
For t = 1, . . . ,T :

• Choose ht which minimizes
∑

n
i=1 Dt(i)exp(−yih(xi))

• Estimate the likelihood ratio Rt('

• Find thresholds Θ
(t)
A and Θ

(t)
B

• Throw away samples from the training set for which
Ht ≥Θ

(t)
B or Ht ≤ΘBA(t)

• Sample new data into the training set:

Output: strong classifier HT and thresholds Θ
(t)
A and Θ

(t)
B

Figure 1: The WaldBoost algorithm. This particular mod-
ification is used in the experiments.

which minimizes the number of measurements needed to
make an accurate enough decision, Šochman and Matas
developed WaldBoost algorithm [10]. This algorithm per-
forms a test after each weak hypothesis which terminates
the decision process if the class of the sample is classified
with enough confidence.

The WaldBoost algorithm is shown in Figure 1. It takes
as an input a set of labeled samples (x1,y1), . . . ,(xn,yn),
where xi are the samples and yi ∈ Y = {−1,+1} are the
corresponding labels. Another input is the desired false
negative rate α and the desired false positive rate β .

WaldBoost calls a given weak learner in a series of
rounds t = 1, . . . ,T . In each iteration, the weak learner
creates a weak hypothesis ht :→ R minimizing

n

∑
i=1

Dt(i)exp(−yiht(xi)) (1)

where Dt(i) is a distribution over the training samples.
Dt(i) can be interpreted as weights which expresses im-
portance of each sample. The fact that the weak learner
minimizes error (eq. 1) implies that it focuses more on
samples with higher weight. The selected weak hypothe-
sis ht is then added to the strong classifier

Ht(x) =
t

∑
l=1

(hl(x)) (2)

Next, two early termination thresholds Θ
(t)
A and Θ

(t)
B are

chosen on a likelihood ratio

Rt(x) =
p(Ht(x) | y =−1)
p(Ht(x) | y = +1)

(3)

such that

Θ
(t)
A = argmax

j
(Rt( j)≥ A) Θ

(t)
B = argmax

j
(Rt( j)≤ B) ,

(4)

Given: ht ,Θ
(t)
A ,Θ

(t)
B (all for t = 1, . . . ,T ).

Input: a classified object x.
For t = 1, . . . ,T :

• If Ht(x)≥Θ
(t)
B classify x to the class +1 and terminate

• If Ht(x)≤Θ
(t)
A classify x to the class -1 and terminate

end
If HT > 0, classify x +1. Classify x as -1 otherwise.

Figure 2: The WaldBoost classification algorithm.

where A and B are

A =
1−β

α
, B =

β

1−α
(5)

The selected thresholds Θ
(t)
A and Θ

(t)
B are then used to

throw away samples which are classified with enough con-
fidence to minimize average computational complexity of
the classifier while maintaining the required false rates
specified by α and β . Samples for which Ht(xi) ≥ Θ

(t)
B

or Ht(xi)≤Θ
(t)
a are thrown away.

In the later iterations of the WaldBoost algorithm, large
fraction of the training samples can be already thrown
away and only few samples may remain. Such situation
would lead to poor estimates of the optimal weak hypothe-
ses and also of the likelihood ratios Rt . In similar sit-
uation, bootstrapping is commonly used to sample more
samples in areas where the probability densities have to
be estimated very accurately. The same approach is used
in WaldBoost. After the weak samples are thrown away,
new samples, which pass all the previous thresholds, are
sampled to maintain constant size of the training set.

When detecting object in images, the weak learner cre-
ates weak hypotheses each based on a single feature (e.g.
LBP operator at certain position and scale). Classification
of a single image patch then proceeds as shown in Figure
2. The classification algorithm gets as an input the ordered
set of weak hypotheses ht and the ordered sets of thresh-
olds Θ

(t)
A and Θ

(t)
B . The classification proceeds in a series

of steps t = 1, . . . ,T . In each of the steps, ht is evaluated
and Ht is updated. Then, if Ht(x) ≥ Θ

(t)
B , the sample is

classified as class +1. If Ht(x) ≤ Θ
(t)
A , the sample is clas-

sified as class−1. In both of the previous cases, the classi-
fication process is terminated, otherwise the classification
continues with the next step t +1.

3 Local Binary Patterns

The Local Binary Pattern (LBP) texture operator was first
introduced as a complementary measure to the local im-
age contrast to be used in texture recognition. The first
incarnation of the operator [7] worked with the eight-
neighbours of a pixel, using the value of the center pixel as



Figure 3: Illustration of Local Binary Patterns. A 3x3 lo-
cal neighbourhood is thresholded by the middle value and
resulting circular binary code is outputted. Taken from [5]

a threshold. An LBP code for a neighbourhood was pro-
duced by linearizing the thresholded values (Fig. 1). The
LBP operator is invariant to monotonic changes in grey-
scale and possibly to rotations. The invariance to rotations
can be achieved by merging appropriate code values. Ro-
tation invariance can be further improved by distinguish-
ing only uniform patterns [8] – patterns with at most two
transitions between 0 and 1 in the corresponding binary
code. The LBP operator was used in many practical appli-
cations mostly tightly connected to static texture analysis.

The LBP was successfully used for face detection by
Zhang et al. [14], who proposed a variation of the original
3x3 LBP which they call Multi-Block LBP. They allow
resizing of the neighbourhood and use sum of pixels in
rectangular areas instead of sampling individual pixel val-
ues. This variation of LBP is used in our experiments. We
use a set of LBP with all possible sizes and positions in
the sample. The result of the LBP is directly the linearized
binary code without rotational invariance. Rotational in-
variance is not needed, it would be possibly even counter-
productive when detecting faces in image. This particular
variation of LBP has 256 possible output values.

4 Training set sampling

With the information available on the Internet, it is pos-
sible to acquire training data sets (pools) of virtually un-
limited size. However, due to computational limitations
and training complexity of the boosting algorithms, it is
very rare to process the entire dataset at once. Methods
able to process large pools effectively are thus very im-
portant. One way to reduce training time is to sample a
subset of training samples in each iteration of the boosting
algorithm. The importance of each sample is determinated
by its weight Dt(i). At the start of training, the sample’s
weights are usually equal. According to [4], three sam-
pling strategies are commonly used:

Trimming selects N samples with the highest weights.
Weights of the selected samples are then normalized,
so that their sum is equal to 1. N is set so that a pre-
defined fraction of the total weight mass is used for
training.

Unique uniform sampling (UUS) selects N unique sam-
ples with probability of selecting sample xi equal
to P(i) = 1/n (n is the total number of samples).
Weights of the selected samples are then normalized,
so that their sum is equal to 1. This method is often
used in practice for its simplicity, but the high prob-
ability of missing important samples is disadvantage
of this strategy.

Importance sampling (IS) selects N samples with re-
placement from the pool. The probability of select-
ing samples is equal to their weight Dt(i). Then,
the weighs of the selected samples are normalized to
Dt(i) = 1/N.

As shown in [4], the choice of the sampling significantly
influences performance of the resulting classifiers espe-
cially when the number of selected samples N is relatively
small. A good choice of the sampling algorithm may al-
low using only small fraction of the overall training set for
selection the weak hypothesis in iterations of the boosting
algorithm.

In the concluded experiments, we have used a variation
of importance sampling which produces only unique sam-
ples. This sampling method, which we call Unique Impor-
tance Sampling (UIS), selects the samples exactly in the
same way as IS does, but the selected samples are con-
sequently aggregated, such that the sampled set contains
only unique samples. The weights of the samples are set
to

Dt(i) =
counti

M
, (6)

where counti is the number of repetitions of sample xi in
the sampled set and M is the total size of the sampled
set. UIS is terminated when the number of unique sam-
ples reaches N.

5 Random Transformations

When detecting object by scanning images with a detec-
tion classifier, the distance between neighbouring scanned
sub-windows in position and scale is not infinitely small.
Because of that, the classifier has to be invariant to small
changes in position and scale. Also the manual annota-
tions of the objects of interest used for training are not per-
fectly aligned. These facts suggest, that it should be pos-
sible to apply small random geometrical transformations
to the annotated training data without any loss of detec-
tion performance. On the other hand, such transformations
could produce better approximation of the real probability
density of the object class.

In our approach, for each sample from the annotated
dataset, more samples are generated by applying small
changes in scale and position. The possible transforma-
tions are restricted by a requirement for minimum overlap.
To compute the relative overlap with the original annota-
tion, radius and center of circle inscribed in both of the



image sub-windows are required. The overlap o is com-
puted as [11]

o =
r
R

(
1− dc

r +R

)
, (7)

where r is the radius of the smaller circle, R of the bigger
circle and dc is the distance between the centers of the two
circles. The equation 7 is basically an approximation of
the real overlap by linearly interpolating between two ex-
treme cases. One of the extreme cases occurs, when the
circle centers are equal. Then the overlap is approximated
as r/R. The second extreme case occurs, when the circles
have only one point in common (d=r+R). The overlap is 0
in this case.

In our approach, the random transformations are gen-
erated with uniform probability density in the space of
translation and scale which is bounded by the minimum
overlap o. The minimum overlap was set to 0.95 in our
experiments.

6 Active Learning

Active learning is a semi-automatic annotation approach,
which is often used to annotate large positive training data
sets with affordable amount of human assistance. In this
approach, a classifier is created on a limited sub-set of the
all available training data. A human is then presented with
samples for which the classifier is not confident enough.
The final classifier is trained on the full dataset. However,
such an approach could still be a problem for data sets con-
taining millions of samples, which is the case of the face
detection task. Our thought was to use fully automatic an-
notation based on a classifier which is trained on manually
annotated data. Further images are then scanned across
many positions and scales, getting classifier’s response for
each scanning window. Then, using these responses, anno-
tation is created by non-maxima suppression without any
user attention. Such approach will not directly improve the
detection rates of the classifier. However, it should provide
better approximation of the face probability density which
could consequently lead to improved classifiers.

As mentioned above, we used already existing classi-
fier to get responses over all scanning windows. In most
cases, several detections appear around the objects of in-
terest. To avoid multiple detections, non-maxima suppres-
sion was used to create single annotation and ignore other
near detections.

To acquire new data, web gallery Flickr.com was cho-
sen as it provides interface for image operations and the
data at the gallery is organized in thematic groups. For our
purposes, group ”Portraiture” which contains 150,000 im-
ages was downloaded. Most of the images from this group
contain single dominant face.

7 Controlled environment datasets

Currently, many annotated databases of faces are avail-
able. However, most of the face databases contain images
which were acquired under controlled conditions. The
head pose and facial expression is usually restricted and
the images are taken in a indoor environment with con-
trolled uniform lighting. Such data is very different to the
images on which are the resulting face detectors tested in
our case. However, adding this kind of data to the training
data set can still be beneficial for the detectors.

We have used three frontal face databases to extend
our manually annotated dataset. These databases are
the BioID frontal face database1, XM2VTS database2

and Productive Aging Laboratory face database3. Anno-
tated positions of eyes are available for all three of these
databases. The left-top corner of the face annotation ~c1
and the right-bottom corer ~c2 were set as

~c1 =
~le+~re

2
+

[
−1.25

0.45−1.25

]
‖~le−~re‖, (8)

c2 =
~le+~re

2
+

[
1.25

0.45+1.25

]
‖~le−~re‖, (9)

where ~le respective ~re is the coordinate of the left eye re-
spective of the right eye.

8 Experiments and Data

The original frontal face training dataset, which has been
used for training face detectors at our organization con-
tains images uploaded by user of a web-based face de-
tection demonstration application which were then hand-
annotated. This dataset is referred to as the ”Schneider-
man” data set in the following text. In all the images down-
loaded from Flickr, our classifier found more then 72 000
faces. The controlled environment databases contain to-
tal 4654 frontal faces. Negative samples were provided by
images downloaded from web. For testing our classifiers,
we used standard frontal face testing data set CMU+MIT4

and also Matej Smid dataset which contains good quality
photos of groups of people. The training data sets used in
our experiments together with testing data sets are sum-
marized in Table 1. For all our experiments, samples were
resized to 24x24 pixels.

Our experiments with new data should confirm or de-
cline, if extending training data set improves classifier’s
performance. We ran three experiments on data from
Flickr, with different ratio between original and new data.
For training, we used only new data, new data with small
percentage of original data and new data with majority
of original data. Results from these experiments were

1http://www.bioid.com/downloads/facedb/index.php
2http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
3https://pal.utdallas.edu/facedb/
4http://vasc.ri.cmu.edu/idb/html/face/frontal images



Dataset #images #objects
Flickr 150 684 72 670

Controlled environment data 4 654 4 654
Schneiderman 5 170 5 396

Matej Smid 89 1 618
CMU+MIT 113 491

Table 1: Data sets used in our experiments. Matej Smid
and CMU+MIT are testing data sets.

Experiment #positive #negative sampled
ExtendedBoth 200 000 200 000 1 500

ExtendedPositive 200 000 10 000 1 500
ExtendedNegative 10 000 200 000 1 500

Original 10 000 10 000 1 500
Sampled6000 200 000 200 000 6 000

Table 2: Summary of experiments evaluating random
transformations and Unique Importance Sampling. The
first column contains the name which is used in the text
to refer to the particular experiment. #positive respec-
tive #negative is the amount of positive respective negative
samples bootstrapped in to the training set in the Wald-
Boost algorithm. 10 000 means that random transforma-
tions were not applied. The last column contains the size
of the set sampled by Unique Importance Sampling.

matched against the original classifier on our testing data
sets. The same experiments were run with controlled en-
vironment data.

Another part of our work was dedicated to experiments
with extending positive data set by random transforma-
tions, negative data set and both of them. We also ex-
periment with the unique importance sampling. Results
from these experiments were again matched against orig-
inal classifier on our testing data sets. Informations about
these experiments are summarized in Table 2.

9 Results

We use two ways of visualizing performance of the clas-
sifiers. Receiver operating characteristic, or simply ROC
curve illustrates the relation between true positives rate (y-
axis) and false positives (x-axis). Our goal is to get the
highest possible true positive rate with as few false pos-
itives as possible. The best results are near the left-top
corner.

The second type of graphs illustrates the relation be-
tween performance of the classifier (area above ROC,
higher value means worse result) and its speed. As we
want fast classifier with high performance, the best results
are near the left-bottom corner.

According to Figure 4 and Figure 5, it appears to be
more effective extending positive training dataset then the
negative one. Furthermore, there is almost no difference
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Figure 4: The relation between area above ROC curve and
the speed of the classifier on Matej Smid data set is shown.
The area above the ROC curve is integrated over interval
[0,500] false positives. The best results are in the left-
bottom corner.
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Figure 5: The relation between area above ROC curve and
the speed of the classifier on MIT+CMU data set is shown.
The area above the ROC curve is integrated over interval
[0,500] false positives. The best results are in the left-
bottom corner.

between the original classifier and the one trained on ex-
tended negative data set. According to our experiment, it
is enough to train on negative data set containing 10 000
samples.

With the unique importance sampling, using just 1500
samples instead of 6000 decreases performance just a lit-
tle. However, the selection of weak hypothesis, the most
time consuming step in training procedure, is 4x faster.

Classifier trained on new data taken from Flickr pro-
vides nearly identical performance as our original classi-
fier. As we can see in Figure 6 and Figure 7, no matter the
ratio between original data and the new data, the little dif-
ferences can be attributed to the random evaluation error.
Acquiring new data from Flickr did not improve classi-
fier’s performance, one reason for that could be, that our
random transformations do the same job.

Training on controlled environment data exposed signif-
icant decrease of performance. As can be seen on Figure
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Figure 6: ROC curve comparing new classifiers trained on
data from Flickr with the original one on the Matej Smid
testing data set. The performance is not significantly dif-
ferent.
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Figure 7: ROC curve comparing new classifiers trained on
data from Flickr with the original one on the MIT+CMU
testing data set. The performance is not significantly dif-
ferent.
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Figure 8: ROC curve comparing new classifiers trained on
controlled environment data with the original one on the
Matej Smid testing data set. With the lower percentage of
original data, the performance is decreasing.
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Figure 9: ROC curve comparing new classifiers trained on
controlled environment data with the original one on the
MIT+CMU testing data set. With the lower percentage of
original data, the performance is decreasing.

detector / FP 6 10 21 46 50 65
Viola-Jones – 0.76 0.88 – 0.91 0.92

Schneiderman 0.90 – – 0.96 – –
Lienhart et al. – 0.82 – – 0.90 –
Brubaker et al. 0.89 0.90 0.93 0.94 0.94 0.94

Our best 0.85 0.91 0.94 0.94 0.94 0.95

Table 3: Comparison of various frontal face detectors
on the MIT+CMU dataset. For each detector, detection
rates for multiple numbers of false detections (FP) are
shown. The table contains result of Viola and Jones 2004
[13], Schneiderman 2004 [9], Lienhart et al. 2003[6] and
Brubaker et al. 2008 [1]. The results were taken from [1].

8 and Figure 9, the results are worse then original with
exception of the case with 14% of original data. In this
case, the performance is nearly the same as original. The
possible reason of this bad results is the different type of
controlled environment data and the data in testing data
sets. Another reason can be in little variability among the
new data.

Table 3 shows the detection rates of our best classifier
compared to other published results on the MIT+CMU
dataset. Our results are very close to the best published
results on this dataset. Moreover, the classifier needs less
then 5 weak hypotheses per image position which is less
than in any of the other approaches.

10 Conclusion and future work

In our work, we focused on extending training data sets for
classifier training with hope of improving its performance.
With data provided by Flickr, we achieve no improvement,
but also no decrease in performance. It means, that these
data annotated by our classifier are comparable with out
manually annotated data.

Experiments made on controlled environment data
show, that these data are not suitable for our training. Due



to minor variability among these data, the performance of
resulting classifier decreases with lowering the percentage
of original data. Another reason for this behavior can be
caused by difference between controlled environment data
and our testing data.

Basically, larger active training sets improve the results.
Furthermore, extending positive training dataset with ran-
dom transformations appears to be more effective then ex-
tending the negative set. Using just 1 500 samples instead
of 6 000 with the unique importance sampling decreases
the performance just a little with significant reduce of the
training time.

The next possible step in our work includes acquiring
training and testing data sets of different classes of ob-
jects and experiment with them to verify the results. We
could also evaluate the effect of changing the threshold for
automatic annotation with classifier’s responses. Trying
more samples with lower threshold or less samples, but
with more confidence could also improve our results.
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