
Interface on Interaction with 3D Medical Data
Lukáš Tencer*

Faculty of Mathematics Physics and Informatics
Commenius University
Bratislava / Slovakia

* lukas.tencer@gmail.com

Abstract
The 3D data, processed in radiology, requires

interaction metaphors different from common user’s
needs. In cooperation with medical institutions we have
designed a Graphic User Interface (GUI) and Human
Input Device (HID), that both address the special
requirements of the users. For the GUI we designed new
elements to enhances customizability. As a HID we
developed an alternative approach for the commonly
used mouse, employing a web camera.
Keywords: Graphical User Interface, Human Input
Device, Motion capture

1 Introduction
In the beginning of our work we did research in medical
institutions. We were consulting radiologists and
laboratorians to gather their requirements. They are
working with 2D slices and 3D reconstructions. Most of
the time they need to inspect and qualify data using exact
tools as sedimentation measurement, distance
measurement and others [6]. Our work is aimed at 3D
reconstructions, so for our purposes we will use classic
3D models represented as meshes as testing data.
Resulting from the discussion we came up with two main
requirements: faster access to tools and better orientation
in views. To achieve faster access to tools we designed
the myMenu and myCollection widgets and to enhance
orientation in the views the Viewbar was designed.
We also created a concept for an alternative input device.
A web cam and painted glove are used to simulate mouse
movement and events. The concept was assessed as good
by the target group.
The paper is organized as follows. In Section 2, we
describe existing solutions and standard concepts we use
and closely specify functionality and design of the
implemented widgets. In Section 3, we present our GUI
concept, as well as some improvements of commonly
used concepts. In Section 4 our HID solution is
introduced. In Section 5, we show the obtained results
and state the opinions on software gathered from the
target group. Finally, in Section 6 we present ideas
suitable for further expansions of existing work.

2 Background
Presently, many solutions like Osirix [10] are used for
similar purposes, mainly delivered with special
hardware. We discuss existing solutions and try to
improve them according to the requirements from the
users. We present three new major widgets and some
improvements of existing ones.
Existing solutions use several monitors to extend the
workspace, and the ideal number of monitors according
to the opinion of some developers is 3. One is used for
the agenda second one for slices and the third one for
reconstructions. But usually two monitors are used in
practice with agenda and slices being handled on one
monitor. We propose a solution with only one monitor,
because our program is focused on 3D reconstructions of
the data.
We designed the GUI according to the guidelines which
can be found in [2] or [4]. In [11] a HID similar to our
solution is presented, which is used for face tracking.
However, the authors do not propose the use of a higher
level library.
For our purposes we use OpenGL as we do not care
about rendering or visibility. Also we use OpenGL for
handling window events and controlling inputs from
keyboard and mouse. DirectX or Open Inventor, could be
also used, but OpenGL fits for our purposes best.
The standard concept we build on is WIMP [7]
(Windows, Icons, Menus, Pointing device), which is the
dominating GUI form as of today. WIMP concept means
that a program is placed in a standard window with
events as resizing or moving in a workspace. Access to
tools and dialogs is given by icons and/or menus.
Everything can be controlled using a pointing device,
optionally in combination with other devices. Widgets
and their functionality and design, are described in more
detail in Section 3.
For the HID, we will use OpenCV [12], a higher level
library, which implements many algorithms for computer
vision and image processing. Many solutions similar to
ours exist [11], but they mostly concentrate on moving of
the mouse pointer not on handling the events.
We use the algorithms from OpenCV library to identify a
hand in a picture and to track the motion of the hand in a
sequence of frames. CamShift, the widely used
algorithm, is suitable also for our purposes, the only
problem is with fast hand motions. We can remove this

problem using repeatable search after a loss of the
tracked component in the picture.
The problem can be divided into two parts. First we need
to recognize and track hand motions and then we process
events and recognize the gesture. The whole concept is
closer described in Section 4.

3 The GUI concept
When designing the GUI we have to keep in mind the
two main requirements, which were obtained from the
target group. The first one is to improve the accessibility
of the used tools and the second one to improve
orientation in views on 3D object.
We use a standard window concept as we know it from
common operating systems [5]. The layout of widgets is
typical, with the exception of a side panel on the left side,
as you can see on Figure 1. It was placed here in order to
be quickly accessible everywhere from the workspace.

Figure 1: Window layout

The whole GUI is based on a layer system. A range of
levels X = (0…n) is given to the program. Every widget
is associated with subset of these levels Xi = (xi…yi) and
also a concrete level x = c is given to each part of a
widget. When the GUI is drawn, first the widgets and
their parts are sorted depending on the given level and
after that they are displayed from the lowest to the
highest level. This principle is illustrated in Figure 2.
Also the GUI is designed to be fully externally skinable,
which means that for changing the look no interaction
with the code is needed.

Figure 2: Layer principle

Two common widgets are used: the Main Menu on the
top side and the Toolbar placed under the Main Menu as
proposed in [3]. The only change done is on the Toolbar
(see Figure 3). It is designed to have more layers to
include more tools. Between layers you can navigate
using the arrows in the center or you can view all levels
by clicking on the arrow at bottom right of toolbar. You
can use a tool by left clicking on it in the Main Menu or

the Toolbar. By right clicking on tool you can add it to a
specialized widget.

Figure 3: Toolbar

First widget is myMenu, which is connected to the Main
Menu. Items could be added to myMenu by right
clicking on them in the Main Menu, you can also remove
items from myMenu by right clicking on them in
myMenu. Items can be sorted alphabetically or in order
of addition. The whole myMenu is shown after clicking
on myMenu button in the Main Menu, as you can see in
Figure 4. It also replaces a classic context menu, that
means it is shown after a right click somewhere in
workspace. It is used to gain faster access to frequently
used tools.

Figure 4: myMenu

The second widget is called myCollection. Its
functionality is the same as in the case of myMenu, but
here the Toolbar replaces the Main Menu. There is one
major difference; the myCollection is called by the
middle mouse click. Also look is changed, for
myCollection a circle menu is used (see Figure 5). Basic
purpose of myCollection is to get easier access to the
tools from the Toolbar.

Figure 5: myCollection

Another requirement was to design a tool to improve
orientation in views and allow quick change between
views. For this we use the panel on the left side of the
window called Viewbar (see Figure 6). Here an actual
state of scene including camera, object or clipping plane
position can be placed. By a simple click on the button in
the top left corner a view is added to the Viewbar and it
could be restored by a left click on it or removed by a

right click. It is an easy way to store interesting and
important views. The viewbar can also be hidden to
enlarge workspace.

Figure 6: Viewbar

We have experimented with the orientation in 3D and
designed some concepts. The first one is an orientation
tool in the bottom left part of the window, where the
position of camera (eye) is shown relatively to the object
we are looking at (see Figure 7). The second one is
handling objects, when the transformation is first done on
a pivot (cube) representing the object, and after that the
object itself is transformed (See Figure 8a). The last one
is placing a clipping plane, which is implemented as
moving plane on a surface of a ball (see Figure 8b).
Using this concept we can achieve the placement of the
clipping plane in any place and any direction.

Figure 7: Orientation widget

Figure 8: a) Moving object b) Placing clipping plane

4 The HID concept
We designed a device to control mouse movement, as
well as events (right click, left click). We use two main
components: a painted glove and a web camera. We use
gestures to control events and track the glove to control
movement.
The glove is painted with two colours. We tested nine
bright colours under different light conditions (artificial
light, natural light) and in different places (interiors,
exteriors). We have achieved the best recognition results
with bright pink and bright green. Pink was selected for
the larger region on the hand and green for the thumb
region, which will serve for recognizing the mouse

clicks. Gestures for left and right mouse click were
implemented. A left click is executed by the moving
thumb up and down while other fingers are closed to fist
and the hand is in a vertical position. The gesture for
right click is similar, differing only by the rotation of the
hand, which is in a horizontal position here.
We need to fulfil three tasks to successfully control the
mouse using web camera. These tasks are: finding the
hand in the picture, tracking the hand in the picture and
recognizing the gestures. To simplify these tasks we are
using the OpenCV library, which implements algorithms
suitable for our needs. The resolution of the pictures we
are working with is 320*240. This value is sufficient for
the movement tracking to be accurate, yet small enough
to allow processing almost in real time. On AMD Turion
64 X2 TL-60 2.01 GHz response time is the same as
when we use direct input device as USB mouse.
The processes for the hand and thumb region are
identical, only differing in colour range. Thus we
exemplarily illustrate the process for the hand region.
The process mainly consists of two parts. First the glove
has to be identified in the input stream. In the second
phase the glove is being tracked. The input sequence
consists of frames in RGB (Red, Green, Blue) colour
space, which is converted to HSV (Hue, Saturation,
Value) [8], where the range of a particular colour can
easily be identified and selected. In the converted stream
pixels in the range for pink are selected and used to
create a binary mask (see Figure 10). The mask is eroded
twice and dilated once to get rid of small areas and noise.
After that the largest contour in the picture is searched,
which is supposed to be the glove. Now that the largest
contour is marked (see Figure 11), we know that the hand
is visible and can be tracked.

Figure 9: Input image

Figure 10: Ranged image

Figure 11: Binary mask of largest contour

For tracking an object in series of frames we use the
CamShift object tracking algorithm [1] from the OpenCV
library. First, it finds the center of the object using the
MeanShift [13] algorithm and after that it calculates the
area and orientation of the object. As a result we can get
the number of iterations made within MeanShift.
CamShift is a modification of the MeanShift algorithm,
which is a robust method for finding probability
distributions. It tracks the center and size of a probability
distribution of an object. Its accuracy is based on
probability distribution of an object, which we get by
using the histogram and calculating the backprojection of
an image. We calculate the histogram only for the part of
the image under the binary mask from the previous step
(see Figure 12), after that we calculate the backprojection
[9] using our histogram (See Fig. 13).

Figure 12: Largest contour and its histogram

Figure 13: Backprojection

As a result of the tracking process in every step we

get object aligned bounding boxes for both, hand and
finger (see Figure 14 with inscribed ellipse to bounding
box). Based on this information we move the mouse
pointer and execute events. The mouse position is
derived only from the center of the hand. It needs to be
modified, so that the thumb is visible also when the hand
is in top position.

Figure 14: Hand found in image

Due to fact that we are using low resolution images for
detecting the object on the one hand, but a higher
resolution screen on the other hand a small change in the
detected coordinates caused by hand shaking or
CamShift abnormality, can result into large change of
absolute mouse pointer coordinates. To handle this we
calculate the coordinates as a moving average of n
successive values. We also have tested other types of
averages, but they were slower or less accurate as the
moving average. We calculate the average value of
xi...xn values and when a new value xn+1 is measured we
remove xi and add xn+1, so new sequence is xi+1...xn+1.
The average value for time step i is calculated as:

Gestures are recognized using both, hand and thumb
bounding box center and size. We are detecting four
events, which are mouse up and down for each mouse
button. First of all we compute polar coordinates of the
thumb center depending on the hand center. We detect
events only when the thumb center polar coordinates are
approximately 0 or π/2, to avoid clicking while changing
the orientation of the hand. Mouse up/down events are
recognized using the change of the coordinates of the
hand and thumb centers. When the ratio between the
change of the absolute value of the x-coordinate of the
hand respectively thumb center is greater than a
threshold a left mouse button event is triggered, where up
or down is based on the current mouse button state. The
detection is similar for the right mouse button, but we use
the y-coordinate instead. The threshold value is obtained
from the size of the bounding box, scaled to correspond
with the real events. These are all gestures which are
recognized for now.

5 Results
Both GUI and HID solutions were presented to the target
group. Both concepts were positively accepted. After a
discussion we came up with conclusion, that the widgets
used in the GUI can speed up the work and improve the
accessibility of the tools. Concretely myMenu and
myCollection were most discussed and requested to be

∑
+−=

=
i

nij

j
i n

x
x

1

implemented in future versions of actual versions of used
programs. Because there is no exact procedure to
measure the effectively of these new tools we can only
wait for user responses, while they will use it in praxis.
In the case of the HID reactions were also positive, but
here much more work needs to be done. One major
achievement was development of exact process to
identify color regions in the picture and track them.
Other success was effective and fast method to stabilize
mouse pointer while it is controlled by glove, using
moving average. Next chapter brings some suggestions
arisen from the discussion with the target group.

6 Future work
The technologies used for the GUI are satisfactory
enough, widgets as concepts are usable in any larger
context. In the GUI we also experimented with the look
of elements, but in some cases these experiments were
not successful, as in the case of highlighting for
myMenu. As we have mentioned, the GUI is skinable so
the look can easily be adjusted to fit different needs.
The technologies used for the HID could be improved.
Especially some modifications of the detection algorithm
might be useful, because after fast hand motions the
tracked object can be lost. As for now we solve this
problem by doing repeatable search for the object just as
the initial search phase.
There are several ways for the HID to be extended. First,
every finger can be painted with a different colour, but
here a pattern recognition technique for recognizing
gestures will be needed. Second, both hands can be used
for orientation, which will help to implement a 3D input.
Next, we can use a “guitar metaphor”, where one hand is
reserved for a keyboard and the other hand serves as a
device, from which we can accept events as from a
joystick. There could be 5 events detected - for each
finger one event and the events could have different
meanings based on position and orientation of the device.
In this case a positioning device could be used instead of
a web-cam.

References
[1] Gary Rost Bradski, Computer vision face tracking

as a component of a perceptual user interface. In
Workshop on Applications of Computer Vision,
pages 214–219, Princeton, NJ, Oct. 1998.

[2] Jeff Johnson, GUI Bloopers 2.0: Common User
Interface Design Don’ts and Dos. Morgan
Kaufman, Sept. 14. 2007

[3] Kiger, John L., The depth-breadth trade-off in the
design of menu-driven user interfaces. International
Journal of Man-Machine Studies, Vol. 20, 1984,
pages 201-213.

[4] Norman, Kent L., The psychology of menu
selection: designing cognitive control of the

human/computer interface. Norwood, NJ: Ablex,
1991.

[5] Cooper, Alan, Robert M. Reimann, and David
Cronin, About face3: the essentials of interaction
design. New York: Wiley, 2007.

[6] Jimman Kim, David D. Feng, Tom W. Chai, A
web based medical image data processing and
management system. ACM international Conference
Preceeding Series; Vol. 9, pages 89-91, Sydney,
Australia, 2000.

[7] Ashley George Taylor, WIMP Interfaces (winter
1997), [online: 30.1.2009],
http://www.cc.gatech.edu/classes/cs6751_97_winter
/Topics/dialog-wimp/

[8] Raphael Gonzalez, Richard E. Woods, Digital
Image Processing, 2nd ed., Prentice Hall Press,
2002

[9] Frank Natterer, The Mathematics of Computerized
Tomograph, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001

[10] The Osirix Foundation, OsiriX Imaging Software,
[online: 30.1.2009], http://www.osirix-viewer.com/

[11] Alejandro Rivero, Mouse Webcam, [online:
30.1.2009]
http://dftuz.unizar.es/~rivero/alumnos/vmouse.html

[12] Gary Rost Bradski, Adrian Kaehler , Learning
OpenCV: Computer Vision with the OpenCV
Library, O’Reilly Press, Sep. 2008.

[13] Dorin Comaniciu, Peter Meer , Mean Shift: A
robust Approach Towards Feature Space Analysis,
IEEE Transactions on Pattern analysis and Machine
inteligence, Vol. 24, May 2002

