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Abstract

In computer graphics, information about a material’s re-
flectance properties is needed to visualize it correctly in a
virtual scene. A common representation of these proper-
ties is the BTF (Bidirectional Texture Function). Ideally,
the BTFs should be available in a spectral form (more than
10 non-overlapping wavelength bands) to allow for correct
color calculations. Currently, however, all BTF measure-
ment methods rely on RGB cameras or similar tristimulus-
based devices. Reasons for this are the large amounts of
data generated by spectral measurements, which would
have been too much to handle just a few years ago, the
long measurement times and the enormous cost of spe-
cialized hardware needed for a spectral acquisition. Since
RGB values are not sufficient for the correct reproduction
of a material’s visual appearance under arbitrary lighting
conditions, we now present a measurement setup for the
acquisition of spectral BTFs.
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1 Introduction

The correct visualization of materials in virtual environ-
ments is needed in many parts of the industry. It is used,
amongst other things, to make decisions during product
design or to generate images for advertisements. The vi-
sualization requires exact information about the material’s
reflectance properties. These properties depend on a mul-
titude of parameters: Incoming and outgoing direction of
the light waves, the points on the surface where they enter
and leave the material (subsurface scattering), the points
in time when they enter and leave (phosphorescence), the
wavelength of the incoming and outgoing light (fluores-
cence and other wavelength dependent effects) and its po-
larization. These parameters are visualized in figure 3. To-
gether, they lead to a reflectance function dependent on
fourteen variables:

ρ(xi,xr,θi,φi,θr,φr, ti, tr,λi,λr, pi, pr) (1)

In this function, xi and xr represent the surface points
of incoming and outgoing light, (θi,φi) and (θr,φr) zenith
and azimuth angle of the incoming and outgoing light, ti
and tr the points in time when the light enters and leaves
the material, λi and λr the wavelengths of incoming and

∗lyssi@cs.uni-bonn.de

Figure 3: Visualization of the parameters describing the
reflectance properties of a material

outgoing light and, finally, pi and pr the polarization of
the incoming and outgoing waves.

While it is possible to measure a selection of these pa-
rameters, it is nearly impossible to densely sample the
whole fourteen dimensional function. Instead, one uses
material representations that disregard some of these de-
pendencies, usually those that are only needed for a few
special effects, like the time dependency for phosphores-
cence, the wavelength dependency for fluorescence and
the polarization. If one also discards the information
where the radiation leaves the material, and thus informa-
tion about subsurface scattering, one gets a material rep-
resentation called BTF (Bidirectional Texture Function).
Introduced by Dana et al. [1], this is a function over the
surface points x, the incoming (θi,φi) and the outgoing
(θr,φr) light direction:

ρBT F(x,θi,φi,θr,φr) (2)

One should note, however, that while the dependencies
mentioned above are not parameterized, their visual ef-
fects, such as subsurface scattering or fluorescence, are
still present in the BTF data, as well as effects resulting
from the material’s spatial properties such as interreflec-
tion and self-shadowing. Another simplification made is
the discretization of all wavelength information to tristim-
ulus values, usually representing the colors red, green and
blue. This decision was not made without reason, since
it corresponds to the way the human eye reacts to visible
light, which is electromagnetic radiation with wavelengths
between about 380 nm and 800 nm. In the eye, the spec-
trum of the incoming light is discretized to three values by
the cones, one of two kinds of receptor cells on the retina.
Thus, three values are enough to represent all color im-
pressions a human observer can perceive. This behavior
is recreated by convoluting the spectral information, given



Figure 1: Two different spectral power distributions discretized to the same RGB values by convolution with the CIE 1931
RGB color matching functions

as a spectral power distribution I(λ ), with color matching
functions, e.g. the CIE 1931 RGB color matching func-
tions r, g and b:

R =
∫

λ

I(λ )r(λ )dλ

G =
∫

λ

I(λ )g(λ )dλ (3)

B =
∫

λ

I(λ )b(λ )dλ

Tristimulus values are, however, not enough to simu-
late the interaction of light with a material. This is due
to the fact that the reflection happens on a spectral level,
i.e. the reflectance properties are wavelength-dependent.
Unfortunately, there is no 1-to-1 relation between spectra
and RGB values. Multiple (theoretically infinite) spectra
can be represented by the same RGB-triple. This effect
is called metamerism. Figure 1 shows an example of two
different spectra with the same corresponding RGB val-
ues. The reflectance properties of a material can be given
as a spectrum, where the values at each wavelength repre-
sent the fraction of reflected light at that wavelength. Such
a sprectrum is needed for all possible incoming and outgo-
ing light directions and surface points.

Now suppose one has a spectrum representing a light
source and two spectra representing the color of two dif-
ferent materials. A problem arises if the spectra of the
materials are discretized to the same RGB values. No
matter what illumination one might choose, the resulting
color impression will always be the same for both materi-
als. This is not an accurate representation of reality, where
the differing spectra might result in different color impres-
sions depending on the illumination. For an example, see
figure 2. The first row shows the spectra and correspond-
ing identical color impression of two different materials,
the second row the spectrum of a light source. The last
row shows the result of illuminating the materials with the
lightsource, in the first two columns by convolution of the

spectra and subsequent convolution with the color match-
ing functions, and in the third column by multiplication
of the RGB values. The results are three different color
impressions.

This is the reason why a tristumulus based material rep-
resentation and thus the measurement of reflectance prop-
erties with devices like RGB cameras is insufficient in ar-
eas where a correct reproduction of a material’s appear-
ance, especially under varying illuminations, is necessary.
Instead, a dense sampling of the spectrum is needed. This
should be acquired with spectral band filters that have
minimal overlap, so that the multiplication of the spectral
bands of two materials can be understood as the multipli-
cation of the two spectra.

The measurement of spectral BRDFs (Bidirectional Re-
flectance Functions) using a gonioreflectometer setup with
spectrometers is already commonplace in some parts of
the industry. The BRDF, however, is an even more sim-
plified material representation, with the only parameters
left being the incoming and outgoing light direction. The
spatial parameter present in the BTF is being neglected.
This means that, in contrast to the BTF, the BRDF cannot
faithfully reproduce the reflectance behavior of spatially
varying materials.

In this paper we therefore present a measurement setup
for the acquisition of spectral BTFs, which is a modifica-
tion of the setup described by Sattler et al. [7].

The rest of the paper is structured as follows: in chapter
2 we will examine previous work on the subject of BTF
measurement and spectral rendering. Following that, we
present our measurement setup in chapter 3, the calibra-
tion procedure we had to employ in chapter 4 and further
information about our implementation and the measure-
ment process in chapter 5. Some results we have achieved
so far are show in chapter 6. Finally, we give a conclusion
of our work in chapter 7.



Figure 2: An example for the error produced by the usage of RGB values. Two materials with different spectra but
the same corresponding RGB values are illuminated by a light source. The last row shows the resulting, differing color
impressions.

2 Related Work

The previous work can be divided into the two areas of
BTF measurement and spectral rendering.

2.1 BTF measurement

Bidirectional Texture Functions were introduced by Dana
et al. [1]. These are six dimensional functions depending
on a surface point as well as the incoming and outgoing
light directions:

ρBT F(x,θi,φi,θr,φr) (4)

This can be interpreted as a collection of 2D images,
one for each possible view/light direction. They also in-
troduced a first measurement setup, consisting of a robot
holding a planar material sample, a lightsource and a
videocamera. To take pictures from a multitude of view
and lighting directions, the orientation of the material to-
wards the lightsource was changed from picture to picture
by movements of the robot and the positioning of the cam-

era on a limited number of different locations, leading to a
whole of 205 different view/light directions. The position
of the lightsource remained fixed. Using this technique,
they measured 61 material samples and released the results
in the form of the CUReT Database.

A modified version of this setup was also used by Sat-
tler et al. at the University of Bonn [7]. One adjustment
was made by mounting the camera on a rail, which made it
easier to automatically collect images from a high number
of directions compared to manual positioning of the cam-
era needed in Dana’s setup. Measurements taken with this
setup can be found in the BTF Database Bonn1

Koudelka et al. [8] described another variation on this
setup. In their case, the light source, a white LED, is
mounted on a robot arm and moved while the camera re-
maines fixed. Moving the robot arm provides for the dif-
ferent lighting directions, while moving the sample (which
is mounted on a pan/tilt head) provides for the different
viewing directions. Using this setup, 90× 120 = 10800
images were taken. While the use of a video camera leads

1http://btf.cs.uni-bonn.de/



to relatively fast measurement time of under 10 hours, the
resolution of the resulting images (480× 360 pixels) is
rather low. Additionally, some of the image cannot be used
due to the robot arm obstructing the view.

Apart from these there are a few measurement setups
which vary greatly from the original setup. Han and Perlin
[6] were inspired by a kaleidoscope for their setup. They
positioned a number of mirrors around the material. When
looking down onto the material, this generates a hall-of-
mirrors effect that can be used to measure a number of dif-
ferent viewing directions with only one photograph. While
this allows for a fast measurement and also has the advan-
tage that the hardware setup is relatively small and eas-
ily portable, it has the disadvantage that the spatial resolu-
tion of the images is rather low and gets worse the higher
the angular resolution (depending on the slope of the mir-
rors) gets. Also, interreflections between the mirrors pose
a problem.

Another measurement setup was described by Müller et
al. in their STAR on the acquisition, synthesis and ren-
dering of BTFs [10]. There, an array of 151 cameras was
mounted on a hemispherical gantry surrounding the mate-
rial sample. This allowed for a parallel acquisition of the
images for 151 view directions. The flashes of the cam-
eras were used as the light source, making for 151 light
directions and resulting in 1512 = 22801 images taken all
together. Due to the parallel acquisition the whole mea-
surement process could be completed in under one hour.
The disadvantage of this method is the high cost because
of the large amount of cameras. This is especially true if
specialized cameras are needed (as in our case, see section
3).

2.2 Spectral rendering

Despite all the work on RGB-BTF acquisition, there has
been no previous work on the acquisition of spectral Bidi-
rectional Texture Functions. There has, however, been sig-
nificant work on the subject of spectral rendering, some of
which is mentioned in the following.

Early research was done by Hall and Greenberg [5].
They developed an image synthesis software based on a
raytracer which can perform all color calculations on an ar-
bitrary spectral resolution. Transformation to displayable
tristimulus values is done as the last step, after the spectral
information for each image point has been calculated.

Another spectrally based rendering framework was de-
veloped by Sun et al. [14]. A compact representation of
spectra is introduced, which is based on the decomposition
of the spectrum into a smooth component and a number of
peaks. They also give an overview over natural phenom-
ena like interference, diffraction and fluorescence which
can only be correctly simulated in a spectral rendering en-
vironment, and describe how they can be realized in their
framework. Addtionially, an error metric is introduced
which can be used to compare images generated with a
varying density of spectral sampling.

Many reflectance models have been proposed that focus
on the simulation of a particular set of the aforementioned
phenomena. Gondek et al. [4] synthesized wavelength
based BRDFs based on an optics model which incorpo-
rates the light’s phase. This allowed for the simulation of
interference effects, which, for example, can be observed
on thin film surfaces like soap bubbles or the feathers of
peafowls. Wilkie et al. [15] presented an analytical BRDF
modell for diffuse fluorescent surfaces based on a layered
multifacet model. Stam [12] and Sun et al. [13] introduced
reflectance models that simulate diffraction effects, which
can be observed on compact discs. Finally, an overview of
the reasons for spectral rendering and the work done in this
area can be found in the STAR on tone reproduction and
physically based spectral rendering by Devlin et al. [3].

While the necessity of spectral rendering and spectral
material representations is reiterated in all of these works,
they do not elaborate on how the material representations,
especially in the form of BTFs, could be measured.

3 Measurement setup

Figure 4: Measurement setup consisting of an HMI lamp,
a CCD camera and a robot holding the material sample

Our goal is to measure the reflectance of a material for
each surface point, incoming and outgoing light direction
and wavelength of the outgoing light:

ρspecBT F(x,ωi,ωr,λr) (5)

The spatial dimension is sampled by taking two-
dimensional photographs with a CCD camera. Incoming
and outgoing light directions are sampled by changing the
materials orientation in comparison to the lightsource and
the camera. To sample the spectrum of the outgoing light,
we install a spectral filter in front of the camera. The spec-
trum of the incoming light was not sampled, since adding
this parameter would have had a large impact on the mea-
surement time. This means that while the effects of fluo-
rescence will be present in the measured data, exact infor-
mation of the the material’s fluorescence behaviour cannot
be extracted. Also, filtering the light at the source would
have been technically complicated. The filtered light is
given off as thermal energy, and as the energy level directly
at the light source is very high, this would have produced



high temperatures which quickly would have damaged the
filter. Using a tunable laser as another way to parame-
terize the incoming spectrum is not applicable, since the
coherent light waves produced by the laser would result
in unwanted interference effects. Additionally, the small
waveband of a laser would force a very dense and thus
resource-demanding sampling.

The hardware setup used for the measurement is a modi-
fication of the setup used at University of Bonn introduced
by Sattler et al.[7] and depicted in fig. 4, which itself was
based on the original setup by Dana et al. [1]. It consists of
an Intelitek SCORBOT-ER 4u robot arm holding a mate-
rial sample of 10 x 10 cm, a combination of a camera and
a spectral filter mounted on a rail and an 575 Watt HMI
(Hydrargyrum Medium Arc Length Iodide) lamp. A lamp
with this power is needed because due to the filter, only
a very small fraction of the light will reach the camera
when measuring each wavelength band. The camera is a
Photometrics CoolSnap 4k, which has a 4-megapixels res-
olution, a 12 bit color depth and is sensitive to electromag-
netic radiation from 350 nm to 1000 nm. With it, we reach
a target resolution of about 800× 800 pixels. Since, as
mentioned above, the incoming energy level is low due to
the filter, it is important that we have chosen a cooled cam-
era. This leads to a reduction of thermal noise, and thus to
an improvement of the signal-to-noise ratio. The spectral
filter is a CRi VariSpec, which can be tuned to a wave-
length between 400 nm and 720 nm and filters all electro-
magnetic radiation outside of a 10 nm band surrounding
that wavelength. Since the filter has to be tuned multiple
times during the measurement of one light/view direction,
depending on the density of the spectral sampling, this has
to happen very fast in order keep the measurement time as
short as possible. Tuning to a new wavelength takes about
50 ms with our filter.

All hardware elements are controlled by a self written
central computer program, which employs the SDKs pro-
vided by the hardware manufacturer. Thus, the measure-
ment process is fully automatized, with the program re-
sponsible for the movement of the robot and the camera,
the tuning of the filter and the activation of the camera.
The computer we used had an Intel 2.67GHz Core2 Quad
CPU, 2 GB of RAM and was running Windows XP. Using
this setup, images from a combination of 81 view and 81
light directions and are taken.

4 Calibration and Post-Processing

Unfortunately, the raw images taken by the camera cannot
be used to generate an accurate representation of the re-
flectance properties of the material. The first problem lies
in the nonlinearity of the camera’s response to incoming
radiance, which is what we want to measure. Second, the
pictures include the influence of the spectral distribution
of the HMI lamp as well as the influence of wavelength-
dependent variations in the transmissibility of lens and fil-

ter and the sensitivity of the CCD.
During the measurement, the camera is subjected to the

exposure X, defined as the product between the irradiance
E and the exposure time ∆t:

X = E∆t (6)

From this exposure, the pixel values of the digital image
are obtained. Unfortunately the mapping between expo-
sure and pixel value by the response function f (X) is non-
linear. To solve this problem, the camera’s response func-
tion has to be determined. We used the algorithm from De-
bevec et al.[2] to do this. Several pictures of the same static
scene with different exposure times are used as the input.
The dependency between pixel value, response function,
irradiance and exposure time is given by the film reci-
procity equation Zi j = f (Ei∆t j), with Zi j being the value
of pixel i in image j, f the response function, Ei the irradi-
ance at pixel i and ∆t j the exposure time of image j. While
the values Zi j and the exposure times ∆t j are known, the
response function f and the irradiance values Ei are un-
known. They are found by minimizing a quadratic objec-
tive function derived from the film reciprocity equation.
Debevec et al. include a Matlab implementation that does
this using the singular value decomposition method.

To eliminate the influence of the light and the proper-
ties of the camera system, the data had to be modified as if
taken with a lamp with a constant spectrum, a lens and fil-
ter with a constant transmissibility across the spectrum and
a camera with a constant sensitivity. Thus, factors had to
be calculated by which to multiply the pixel values at each
wavelength. To get these factors, we first used a spectrom-
eter (X-Rite i1) to measure the reflectance of the whitefield
on a GretagMacbeth color chart. Then a frontal picture
was taken of the whitefield using our measurement setup.
The difference between the measurement with the spec-
trometer and our measurement setup was due to the influ-
ences mentioned above, and the correction factors could
now be calculated.

This, however, revealed a different problem. For wave-
lengths shorter than 430 nm, we mainly measured thermal
noise. This was due to the extremely low transmissibility
of the filter at these wavelengths, which can also be ob-
served when looking at the correction factors (see figure
5). Thus, the results for this spectral range were useless.
We decided on the measurement of 30 wavelength bands
between 430 nm and 720 nm in 10 nm steps and disre-
garded all wavelengths out of this range. The problem may
be circumvented by using a different filter or a lamp with
a higher radiation at short wavelengths. Unfortunately this
was not possible during this work.

Another challenge were the long measurement times
(see chaper 5) compared to the lifetime of our HMI lamp.
This means we had to anticipate changes in the illumi-
nation like small drifts in the spectrum or dimming over
the course of a measurement. To cope with this, a diffuse
white border was placed on the sample holder around the



Figure 5: The spectral power distribution of our HMI lamp and the correction factors for the elimination of influences by
our illumination and by the camera system’s properties on our measurement. Notice the logarithmic scale of the y-axis in
the second graph and the high factors for wavelengths ≤ 430 nm.

sample. From the changes in its spectrum, correction fac-
tors could be calculated and applied to each image.

After the acquisition and calibration of the images, they
had to be registered and rectified. To do this each image
has to be projected on the frontal plane. This is also done
with the help of the white border. Its corners can automat-
ically be detected and mapped onto their corresponding
positions in the frontal view. The mapping is then used for
the projection of the whole image. Finally, the region of
interest, i.e. the region of the material sample, has to be
cut out and saved. These images have a spatial resolution
of about 800×800 pixels. They are the final output of the
measurement process and are ready for further use, e.g.
for rendering.

5 Implementation and Measurement

Our measurement consists of the acquisition of 6561×30
12 bit greyscale images, since we measure 6561 view/light
directions and 30 wavelength bands. Each image has a
resolution of 2048 x 2048 pixels. During our tests we used
an exposure time of 20 miliseconds per image.

After taking the photographs, the data has to be trans-
ferred to the host computer, calibrated, and finally be
saved. For the last point, we decided to use ILM’s
OpenEXR format [9], since it allows for an arbitrary
amount of channels. This means we could collect and save
all 30 images for one view/light directions in a single im-
age file. Each channel can be given a name, which we
used to also save the wavelength band each channels repre-
sents. Since a sequential approach to these subtasks would
lead to a measurement time of about 100 seconds for one
view/light direction, and about seven and a half days for
all 6561 directions, this was a problem we had to address.
To partially solve it, the process was parallelized using a
quadcore CPU. Acquisition/readout, calibration and sav-
ing the data were each given their own thread, so that three
threads were running in parallel. A visualization of this
scheme can be seen in figure 6. This resulted in a reduced
measurement time of about 45 seconds per view/light di-

rection and three and a half days for all 6561 directions,
which is more than twice the speed of the original imple-
mentation. The calibration and saving threads were the
most time consuming: acquisition and readout of the data
took about 19 seconds per 30 channels, while calibration
and saving took about 40 to 42 seconds. Additionally, af-
ter each view/light direction there is a small interruption of
a few seconds in the measurement process in order for the
camera and robot arm to move to their new position. In the
future, CPUs with more than four cores could be used to
start additional calibration and saving threads. This would
further reduce the measurement time until the acquisition
and readout become the bottleneck. Our program was de-
signed to easily enable this extension.

Figure 6: Visualization of the parallelization. After robot
arm and camera have moved to their new position n, the
acquisition of the images for this position ist started as well
as the calibration of the images gathered at position n-1
and the saving of the images from position n-2.

A very large amount of data is created during the mea-
surement. The raw data for 6561 images of the given size
and number of channels, using the 16 bit half datatype of
the OpenEXR format, has a size of about 1.65 terabyte.
Since a lossless compression is supplied by the OpenEXR
library, the saved images take up a size of about 985 giga-
bytes.

Since this is still too large an amount of data to handle,
specialized compression methods have to be employed.
Various compression methods for BTFs already exist. So
far we have modified the implementation of the Per-View
Factorization introduced by Sattler et al. [11], since it can



easily be generalized to multi-channel data. This compres-
sion method performs a PCA (principal component anal-
ysis) for each of the j viewing directions on vectors con-
taining the image data for that particular direction. Each
vector contains the image data for one particular light di-
rection. In their original form, these vectors are of the
form

Xi j = (r1,1,g1,1,b1,1, ...,rh,w,gh,w,bh,w) (7)

where i is the number of the light direction, j is the num-
ber of the view direction and h and w are height and width
of the image. The only change is that we now place the
pixel values of thirty channels instead of the three RGB
channels into the vectors:

Xi j = (c1
1,1,c

2
1,1, ...,c

30
1,1, ...,c

1
h,w,c2

h,w, ...,c30
h,w) (8)

The rest of the compression algorithm remains un-
changed. The decompression code can be altered accord-
ingly.

6 Results

To display the acquired spectral images they have to be
converted to RGB images first. This is done by convolut-
ing with the CIE 1931 color matching functions (see eq. 3)
to retrieve the R, G, and B values for each pixel. All spec-
tral images presented in the following have been converted
this way. Samples for the greyscale images acquired and
the resulting spectral image can be seen in figure 10. The
difference between color calculations on a spectral scale
and with RGB values is shown in figure 8. For these im-
ages, we simulated an illumination using the spectra of the
CIE Standard Illuminants A, D65, FL4 and FL12 as well
as a self measured spectrum of a flashlight’s LED (see fig-
ure 7). Calculations were done once on a purely spec-
tral scale and once only with RGB values. The sample
used was a self made color chart measured with our setup.
We’ve highlighted some of the fields were the difference
can most easily be seen. To show that not only these high-
lighted fields are different, we computed an RGB differ-
ence image for the FL12 illuminant which can be seen in
figure 9.

7 Conclusions

We have presented a gonioreflectometer-like setup for the
measurement of spectral BTFs and described the neces-
sary steps to acquire correctly calibrated data. These spec-
tral BTFs can be used in a spectral rendering environment
to create images with a more accurate color reproduction
compared to color calculations done with RGB values.
There are, however, several areas we plan to work on in
the future.
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Figure 7: Illumination spectra used to create the results in
figure 8.

The measurement time of more than three days still
poses a problem, especially compared to the fast measure-
ment times of just a few hours that can be achieved using
camera arrays [10]. One way to do this would be to further
exploit parallelization techniques as mention in chapter 5.
Also, we are planing to put additional work into the adap-
tion and further development of compression algorithms to
cope with the large amount of data in our spectral images.
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