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Abstract

The analysis of high-dimensional data means a big chal-
lenge, as most common visualization techniques do not
scale well for displaying a large number of attributes at one
time. Therefore, the initial questions arising when analyz-
ing a new dataset typically concern the dimensions them-
selves in order to assess the relevance of various attributes
and to identify clusters of similar (i.e., highly correlated)
attributes. After considering this first step, entry-related
tasks like detecting outliers or clusters of similar entries
can be dealt with more efficiently in a second step. In
this paper, we describe an approach which guides the user
through a high-dimensional dataset by ranking dimensions
and pairs of dimensions according to a large number of
statistical summaries. The option to restrict the computa-
tions to subsets of the data (e.g., interactively defined by
brushing a linked view) and to statistically compare vari-
ous subsets makes this approach even more powerful and
widely applicable, as illustrated by means of a biological
dataset.

Keywords: Visual Analytics, Ranking, High Dimension-
ality, Linking+Brushing

1 Introduction

The steadily rising acquisition, processing, and storage ca-
pabilities of current information and communication tech-
nologies lead to a growing amount of collected and gener-
ated data. For many application domains, this data bears
an enormous potential for gaining knowledge and support-
ing decision-making. Technologies like statistics, data-
mining and information visualization (InfoVis) address the
highly non-trivial issue of extracting useful information
from potentially huge datasets in an efficient way.

Statistics have been used for centuries to describe data
characteristics in a numerical, easily comparable way. Ba-
sic statistical moments like mean, variance or linear cor-
relation are widely used and well-understood and can be
calculated in near real-time even for millions of values on
today’s computers. However, statistics as such is a quite
static approach, which hardly involves the user and even-
tually yields a result without explanation and thus lends
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itself more to investigating well-defined aspects than ex-
ploring new data.

InfoVis on the other hand intends to combine appropri-
ate visual representations of a dataset with means of in-
teraction and thus follows a user-centric approach, which
is particularly suitable for exploratory analysis. While be-
ing powerful for detecting patterns that could not easily be
found by purely mathematical means, visualization alone
does not support the user in extracting precise values, as
ultimately required in many applications to characterize
certain facts and features. Furthermore, most visualiza-
tion techniques are either inherently limited with respect
to the number of simultaneously shown dimensions (like
scatterplots), or do not scale well to a large number of di-
mensions (like parallel coordinates). Therefore analyzing
high-dimensional datasets is a big challenge, as users typ-
ically do not know, where to look at first and may easily
lose the overview.

Comparing the pros and cons of statistics and Info-
Vis, it turns out that both approaches complement each
other very well, which suggests combining both methods
in one approach. Especially for the task of analyzing high-
dimensional datasets, a reasonable workflow is to base an
initial assessment of dimensions and pairs of dimensions
on statistical measures, which may eventually guide a sub-
sequent visual and interactive analysis, as described by
Seo and Shneiderman by means of their rank-by-feature
framework [10, 11].

This paper is structured as follows: After outlining
the state-of-the-art in high-dimensional data analysis and
briefly introducing the system where this work has been
integrated, section 3 describes the extended rank-by-
feature framework. In addition to characterizing the whole
dataset by means of statistics, this framework explicitly
supports multiple subsets (i.e., brushes defined in another
view), which may also be subject to frequent changes, and
allows for efficient comparisons between them. Section 4
illustrates the usefulness of this technique by analyzing a
biological dataset.

2 Related Work

This section summarizes selected approaches for effi-
ciently handling multidimensional data. An emphasis is



put on techniques integrating statistics and visualization.

2.1 Multidimensional Data Analysis

A common way of visually analyzing multi- and high-
dimensional datasets is to reduce the amount of dimen-
sions to a level where traditional visualization techniques
like scatterplots are applicable. Integrating the user in the
reduction process increases the confidence in the result and
improves the quality of the visualization compared to fully
automatic approaches.

Friedman’s and Tukey’s Projection Pursuit [6] reduces
data dimensionality by linearly combining attributes. The
user controls the projection process by choosing between
several intermediate results in order to get a meaningful
final visualization. However, the outcome may be hard to
interpret due to the linear combination of probably unre-
lated attributes. The Grand Tour [2], tries to improve this
by presenting a set of low-dimensional projections as an
animated travel through the dataset, but still requires prior
knowledge of the data-characteristics.

In the approach presented Dy and Brodley [5] the sys-
tem presents different possible dimension subsets based
on a user-defined criterion, of which the user selects one
considered most useful.

Ankerst et al. [1] introduce a similarity measure, that
is used to place dimensions with alike behavior close
to each other on the screen. They also provide an ap-
proach to solve the arrangement problem for sequential
and two-dimensional attribute organization, which uses an
ant-system algorithm [4].

Friendly [7] describes a technique for reordering cor-
relation matrices based on a measure that uses the eigen-
vectors of the matrix and provides a linear arrangement.
Furthermore he introduces “corrgrams” for visualizing the
results, which is a matrix that is able to reflect the degree
of correlation between two dimensions as well as its sign
and groups similar attributes.

Yang et al. [16] use hierarchical clustering of similar at-
tributes in order to reduce complexity. After automatically
generating the hierarchy, the user can modify it manually
in order to improve the resulting visualization.

Guo [8] integrates dimension reduction and sorting as
well as data clustering into one framework, the GeoVISTA
studio. Moreover it allows for user interaction consis-
tently throughout the preprocessing and the visualization
process, by letting the user influence the dimension selec-
tion and browse the resulting visualization using linking
and brushing as well as customizable coloring.

Seo and Shneiderman [11] introduce the rank-by-
feature framework, which builds on the Graphics, Ranking
and Interaction for Discovery (GRID) principles:

• study 1D, study 2D, then find features
• ranking guides insight, statistics confirm.

Histograms and box plots are employed to visualize the
distribution of single attributes and 2D scatterplots display

all possible pairs of dimensions. Concerning numerical
summaries, users may choose between several statistical
moments, which are used to rank individual dimensions
(1D) or pairs of dimensions (2D). A table displays the re-
sulting ranking along with the exact values of the selected
moment. Moreover, a score overview is color-coded and
visualizes the 1D case as a list and the 2D case as a trian-
gular scatterplot matrix (SPLOM). This system helps the
user finding possibly interesting features in the dataset and
improves overview in a high-dimensional dataset.

Graph scagnostics as proposed by Wilkinson et al. [14]
are an alternative to statistical moments. Initially de-
veloped by John and Paul Tukey [13], they characterize
two-dimensional point distributions. Dimensionality is re-
duced by using the results of these calculations and build-
ing a feature SPLOM from them. Outliers in this special
SPLOM mark unusual 2D scatterplots in the dataset.

Yang et al. [15] introduce a Value and Relation display
which represents individual dimensions with pixel-based
glyphs in order to reveal patterns in the data. These glyphs
are positioned in 2D space in a way that relationships be-
tween dimensions (such as correlation) are conveyed. The
positioning is determined using Multi-dimensional Scal-
ing [9] and places closely related dimensions adjacently to
each other. Furthermore a set of interaction tools provides
functionality for navigating through the visualization and
selecting individual dimensions.

3 Extended Ranking

Although the basic idea for this approach of this paper
is inspired by Seo’s and Shneiderman’s rank-by-feature
framework [11], it augments the concept significantly in
order to meet the following key requirements:

Query Support – While the original rank-by-feature
framework always operates on the whole dataset and is
therefore only suited for calculating and presenting global
features, the extended approach allows the user to re-
strict the computation of moments and the resulting rank-
ing to subsets of entries. Our approach has been inte-
grated into a system, where such non-disjunctive subsets
are kept in three so-called “data layers”, which behave dif-
ferently concerning their frequency of changes. The “All
Entries”-layer represents all data items that are loaded into
the system and is not expected to change as long as the
underlying dataset does not change. On the other hand,
the “Current Selection”-layer consists of entries match-
ing the current query. The user may define and modify
such queries via brushing, which typically involves fre-
quent changes. Additional queries are represented by the
“Context”-layer which only changes, when whole queries
are added, removed or replaced. Keeping the view respon-
sive during potentially time-consuming computations and
rapid changes of the considered subset means a significant
challenge for the implementation. Moreover, the user is
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Figure 1: The elements of the extended 1D rank-by-feature framework. (a) The score overview showing the value of the
current ranking criterion for each dimension in color-coded form along with mini-histograms. (b) The ordered list with a
user-defined set of statistical moments. (c) The detail sheet which provides a histogram, a whisker plot and exact values
of the statistical moments of the currently selected dimension separately for each layer (data courtesy of Asuncion and
Newman [3]).

able to apply layer-based ranking to the color-coded score
overview, which helps visually identifying groups of di-
mensions with similar behavior for the considered subset
of the data.

Multiple Feature Calculation and Presentation – In or-
der to be able to check, whether certain dimensions exhibit
similar behavior for more than one statistical moment, this
approach supports calculating and displaying several nu-
merical summaries simultaneously.

Dimension Selection – Unlike the original rank-by-
feature framework, it is possible to assign only a subset
of dimensions to the view, in order to be able to handle
datasets with several hundred dimensions effectively.

Missing Data Handling – Entries that are known to be
missing or invalid must neither influence the outcome of
the moment calculations, nor the visualizations.

Large Datasets – The view has to be designed and im-
plemented in a way that it is able to handle large datasets
(i.e., up to one million rows and more), which are common
in the system it has been implemented for.

3.1 Extended 1D Rank-by-Feature View

According to the additional requirements, the original
rank-by-feature framework has been augmented and mod-
ified. Figure 1 provides an overview of the organization of
its parts.

3.1.1 Multiple Features and Augmented Ranking

A separate control panel allows the user to select, which
statistical moments to calculate per dimension and how to
arrange them in the ordered list (figure 1 (b)). All offered
statistical moments meet the criterion of being computable
in a reasonable amount of time even for large datasets.
Currently, the available moments are:

• Minimum and maximum.
• Mean and median.
• First and third quartile as well as standard deviation.
• Trimmed mean and trimmed standard deviation: For

N entries, the bN ∗0.1c smallest and bN ∗0.1c largest
values are omitted.

• Skewness, kurtosis and normality: Describe and
quantify the deviation from a normal distribution.

• Number of potential outliers: Entries outside
median± q0.975 ∗MAD (median of absolute devia-
tions) in a set of values that are assumed to follow
a standardized normal distribution.

• Entropy: Rises with increasing uniformity of the data
distribution.

• Number of unique values.
• Value of the biggest gap.

Finding relationships between different moments of in-
dividual dimensions is visually supported. The ordered list
applies a transfer function to all numerical summaries that
do not depend on an attribute’s scale but only rely on the
distribution of the data. These color-coded list entries can
be easily compared against each other. Furthermore, every
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Figure 2: The elements of the extended two dimensional rank-by-feature framework. (a) The score overview with a
scatterplot matrix that is color-coded using the transfer function and optionally arranged according to the values of the
current ranking criterion. (b) The ordered list, which enumerates all attribute pairs and their corresponding statistical
moments. (c) The detail sheet, which provides moment values of the currently selected dimension for each layer (data
courtesy of Asuncion and Newman [3]).

column of the ordered list can be used as ranking crite-
rion, there is no discrimination between supplementary in-
formation and ranking data as in Seo’s and Shneiderman’s
approach.

Whenever a ranking criterion is set, which also has a
transfer function applied, the dimension representations in
the adjacent score overview (figure 1 (a)) are also colored
accordingly. Moreover, this list contains a mini-histogram
and a box-plot for each attribute in order to provide a
quick overview concerning the data distribution. In order
to group dimensions with similar scores, it is possible to let
the system automatically update the ranking of the dimen-
sions based on the current ordering. Another important
aspect concerning the score overview is the display of the
missing data percentage for each attribute, which allows
for roughly assessing the completeness of the underlying
dataset.

Especially for the moments which measure the differ-
ence from a normal distribution (e.g. skewness, kurtosis,
normality), the user might only be interested in the abso-
lute value, not the direction of the aberration. Thus, the
possibility of ranking by absolute values is also offered.

3.1.2 Integrating the Concept of Changing Data

At any time, the user is able to switch the data layer the
calculations are based on (see top of figure 1 (b)). Fur-
thermore, the user may change the subset defined by the
layer itself - e.g., by brushing. This means, that the data
and in turns the statistical moments along with the corre-
sponding ranking are subject to change. The concept of
asynchronous background computations has been applied
in order to keep the view interactive while calculating mul-
tiple numerical summaries for potentially millions of en-
tries of a high-dimensional dataset.

The results of the calculations are presented in the visu-
alization as soon as they are available. Whenever the data
of a layer changes, the affected measures are re-evaluated
immediately and the visualization is updated accordingly,
hardly affecting user interactions in the rest of the frame-
work.

By selecting a dimension in either the ordered list or
the score overview, the data of all supported layers is vi-
sualized in a preview as seen in figure 1 (c). The his-
togram visualizes the “All Entries”-, “Context”- and “Cur-
rent Selection”-layers according to a defined drawing or-
der and coloring. Moreover, box plots provide a very con-
densed overview of the individual data distributions. In
the example the current selection (red/dark grey) is drawn
on top of the context (green/light gray) which in turn cov-
ers the “All Entries” representation (black). Both, the his-
togram and the box plots, are updated as soon as any of the
three layers changes.

The table in the lower part of figure 1 (c) allows for
comparing all enabled statistical moments for all consid-
ered layers by regarding the currently selected dimension.
Thus it complements the ordered list, which displays the
moment values of all dimensions and one selected layer.

3.2 Extended 2D Rank-by-Feature View

The extended 2D rank-by-feature view is intended for ex-
amining pair-wise relationships for all attributes. Its de-
sign closely resembles the 1D counterpart, as shown in
figure 2.

Again, a separate control panel offers the possibility to
add multiple statistical moments to the ordered list. Cur-
rently, the available moments are:

• Pearson’s correlation coefficient.
• Spearman’s rank correlation coefficient.



While the first is well-known and suited to describing
linear relationships, the latter provides more robustness
and the ability to detect non-linear dependencies at slightly
higher computation costs.

3.2.1 Augmented Score Overview

The dimensions, which have been assigned to the view can
be re-ordered in the control panel. This immediately influ-
ences the display of the score overview, which is a trian-
gular scatterplot matrix (SPLOM, see figure 2 (a)). The
mini-scatterplots are based on the data of all entries and
are scaled down to a certain minimal size, if necessary due
to screen-space restrictions. However the mini-scatterplot
beneath the mouse cursor is always zoomed to its original
extents. The zooming is performed smoothly in order to
guarantee continuity and avoid change-blindness.

Similar to the 1D case, the score overview lists the pre-
cise values of the displayed bivariate moments for all pairs
of dimensions. It can be configured to reflect the current
ranking of the ordered list (figure 2 (b)). However, map-
ping a one-dimensional ranking to a two-dimensional ar-
rangement is not straightforward as already mentioned in
section 2. Putting the highest ranking pair at the top of the
triangular SPLOM turned out to be intuitive. The remain-
ing scatterplots can be arranged according to one of three
different mapping strategies:

Maximum Ranking – Selects the dimension which pro-
duces a SPLOM-row that includes the pair with the highest
score of all remaining entries.

Best Average Ranking – Selects the dimension which
produces a SPLOM-row, of which the entries generate the
highest average ranking. This method is expected to pro-
duce a slightly smoother descend from high- to low-ranked
attributes for the whole SPLOM.

Diagonal Ranking – Selects the dimension which has
the highest ranking when combined with the previously se-
lected dimension. This produces a smooth descend from
high- to low-ranked attributes along the diagonal of the
SPLOM and tends to form more separate groups of vari-
able combinations.

3.2.2 Layer Support

Multiple, potentially changing layers are supported as for
the 1D case. In order to provide a consistent user experi-
ence, the same interaction- and processing-concepts have
been applied. Furthermore there is a similar detail sheet
(figure 2 (c)) available that shows a 2D scatterplot preview
and numerical summaries for all layers of one selected at-
tribute pair.

Figure 3: The ordered list, which set to rank individ-
ual attributes by normality based on the data of the “All
Entries”-layer. The according transfer function is depicted
above (data courtesy of Asuncion and Newman [3]).

Figure 4: The detail view for the “Height” attribute visu-
alizes the current selection- and context-regions and lists
according statistics (data courtesy of Asuncion and New-
man [3]).

4 Application

The process of quickly getting an overview over a dataset
and extracting first insights using the extended rank-by-
feature framework is best described by means of an ex-
ample. The dataset investigated in this section emanated
from a study of abalone populations [3]. In order to de-
termine the age of a single animal, its shell has to be cut
through the cone, stained and afterwards the rings have to
be counted under the microscope. The gathered attributes
for each of the 4,177 examined specimens are:

• Sex (male, female or infant)
• Length (mm)
• Diameter (mm)
• Height (mm)
• Whole weight (gram)
• Shucked weight (gram)
• Viscera weight (gram)



Figure 5: Outliers in the “Height” dimension are sepa-
rated from the remaining entries by brushing a logarith-
mically scaled histogram (data courtesy of Asuncion and
Newman [3]).

Figure 6: The ordered list, which ranks attribute combi-
nations by their absolute Spearman correlation coefficient
based on the data of the “All”-layer. The according trans-
fer function is depicted above (data courtesy of Asuncion
and Newman [3]).

• Shell weight (gram)

• Number of rings (+1.5 gives the age in years)

As this way of retrieving the age is very time-consuming
and tedious, the ultimate goal is to be able to predict it
from physical measurements. While the extended rank-by-
feature framework is not explicitly designed for classify-
ing data, it is still an excellent tool for acquiring important
dimension properties and relationships.

To begin with, all attributes except “Sex” (where a nu-
merical evaluation is not sensible) have been assigned to
the extended 1D rank-by-feature view, which computes
some basic moments like minimum, maximum, entropy,
normality, or biggest gap per default. As clearly visi-
ble in the ordered list depicted in figure 3, the dimension
“Height” has an outstandingly high normality (colored red
according to the transfer function) compared to the other
attributes. In addition to this, the value for the biggest gap

Figure 7: The 2D score overview, which is set to reflect
the ranking shown in figure 6 (data courtesy of Asuncion
and Newman [3]).

is high in context to the overall value range expressed by
the minimum and maximum.

These properties can also visually be verified by exam-
ining the mini-histogram of the dimension “Height” in the
corresponding entry of the score overview (figure 4 left).
The distribution is compressed to the left side, with two
low-value histogram bars standing considerably apart. Us-
ing the newly introduced layer support, the respective en-
tries can quickly be separated from the remaining data by
means of brushing in a linked view (figure 5). The two bars
that are considered to be possible outliers are assigned to
the “Context”-layer, while the others are set to be in the
“Current Selection”-layer as also seen in the histogram in
the upper right part of figure 4. The table below lists the
statistics of “Height” for all three layers and, as expected,
exposes a significantly lower normality.

Further investigation of the suspicious subset reveals
that it consists of two entries. The first one describes a
male specimen with a height of 103 millimeters and has
10 rings, while the second one refers to a female creature,
which is 226 millimeters high and has 8 rings. A quick
look at the statistics for “Rings” (figure 3) shows that the
median is 9, so that the exceptional values for height obvi-
ously do not lead to an exceptional number of rings. Thus
these two entries may be considered as outliers and are re-
moved before continuing the investigation, as they might
hamper parameterizing a possible classifier.

The reduced dataset is now analyzed with the extended
2D rank-by-feature view in order to find correlating di-
mensions and in turns identify very few relevant attributes.
Again, all attributes besides “Sex” are assigned and the
calculation of both, Pearson’s and Spearman’s correlation
are activated for all entries.

As illustrated in figure 6, the Spearman correlation
coefficient is generally higher than Pearson’s correlation
for most pairs. Investigating the mini-scatterplots of the
SPLOM shown in figure 7 reveals the reasons for that:
Many dimension pairs seem to correlate non-linearly, a
property that the Spearman correlation coefficient is more
appropriate to detect. Thus this coefficient is used for the
next step of the analysis.
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Figure 8: The 2D score overview colored according to the transfer function and the Spearman correlation coefficient for:
(a) female, (b) male, (c) infant abalone (data courtesy of Asuncion and Newman [3]).

Figure 7 also demonstrates the mapping of the one-
dimensional ranking to the two-dimensional scatterplot
matrix. The best scoring attribute pair (“Diameter” vs.
“Length”) is placed on top followed by the attribute that
meets the “Best Average” selection criterion and so on.
This reordering makes it easy to identify strongly cor-
related dimensions, which in this case are “Diameter”,
“Length”, and the different weight measurements. As
these attributes behave similarly, it may not be necessary to
include all of them in a prediction heuristic. The SPLOM
also clearly highlights that there is no single dimension
that correlates well with the number of rings. Thus, if the
rings (and the age) can be predicted by looking at the avail-
able measures at all, it will obviously be necessary to do
so by assessing combinations of multiple attributes.

Looking at the mini-scatterplots of the score overview
containing the “Rings” attribute reveals another interesting
fact: At low ages (and therefore a low number of rings),
the point distribution seems to be narrower before spread-
ing out with rising number of rings. Consequently, a sep-
arate investigation of the properties of infant specimen is
made.

The three different values for “Sex” are brushed sequen-
tially in a separate view and the extended 2D rank-by-
feature view is set to use the “Current Selection”-Layer
for ranking. While the female and male specimen per-
form similarly weak concerning the correlation of “Rings”
vs. all other dimensions with values < 0.4, the entries
representing infant score significantly better with correla-
tion coefficients > 0.7. The different behavior is quickly
identified by visually comparing the coloring of the mini-
scatterplot backgrounds in the respective bottom rows of
the SPLOMs shown in figure 8. This leads to the conclu-
sion that it might be wise to define separate predictors for
estimating the age of infant abalone.

To summarize, by using the rank-by-feature views, out-
liers were easily identified and within a few minutes valu-
able knowledge has been gained which may significantly
speed up the main task, the definition of a prediction
heuristic.

5 Conclusions and Future Work

The presented approach is based on the tried and
tested [12] rank-by-feature approach and extends it with
query support, simultaneous calculation of multiple fea-
tures as well as design for large datasets. Furthermore
it delivers an increased amount of information by always
showing mini-histograms (mini-scatterplots) for the as-
signed dimensions (dimension pairs) and optionally re-
ordering them according to the current ranking. The main
contribution is the support for brushes which applies to the
visualizations as well as the calculated statistical moments.
The possibility of looking for certain features in data sub-
sets allows for more fine-grained investigations and may
reveal properties that would have been unnoticed other-
wise. The integration of linking makes this functionality
even more valuable, as the moments and the ranking are
updated in real-time and therefore offer immediate feed-
back while the user is brushing the dataset, searching for
interesting features. This way, the views provide a kind
of “statistical characterization” of single brushes, which
could be regarded as a way of adding semantical meaning
apart from the very definition of the brushes itself.

This elevates the extended rank-by-feature framework
to a tool, that can also be used in later stages of the in-
vestigation process. When the user has already identified
and selected interesting subsets of the data, the support for
iterative analysis allows for continuing research based on
numerical summaries.

An area that might be subject to further research are spe-
cial visualizations of statistical moments in the histogram-
and scatterplot previews like distribution curves or regres-
sion lines. However, when computing and visualizing
more than one moment, care has to be taken to prevent
cluttering the view. Furthermore the addition of more
complex statistical moments (especially in the 2D case)
or graph scagnostics [14] (see section 2) could be valuable
for users with deeper mathematical knowledge. Finally,
explicit support for categorical data, which gets no special
treatment at the moment, would make the extended rank-
by-feature framework even more useful for datasets like
poll-results or census data.
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