
Ray tracing implicit surfaces on the GPU 
 

Gábor Liktor
*
 

 

Department of Control Engineering and Information Technology 

Budapest University of Technology and Economics 

Budapest / Hungary 

 

                                                           
* magitor@gmail.com 

Abstract 

In this paper we examine the methods of rendering 

implicit surfaces with a per-pixel approach. Ray tracing 

the implicit model directly has several benefits as 

opposed to processing tessellated meshes, but also 

invokes new kinds of problems. The main challenge is 

efficiently finding the first ray-surface intersection point 

where the surface is not given in an explicit form. Our 

implementation uses the sphere tracing algorithm to 

attack this problem and runs on the GPU to achieve high 

frame rates. We also discuss secondary issues like 

shading and texturing implicit models.  

 

Keywords: Sphere Tracing, Implicit Surface, Distance 
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1 Introduction 

The ability to give a flexible definition for volumetric 

models makes the implicit surfaces very suitable for 

modeling natural phenomena and scientific visualization. 

Unlike most common methods of geometric modeling 

which define surfaces – polygonal surfaces, parametric 

surfaces – implicit modeling is a pure volumetric 

approach. 

 

This section gives a short summary on the popular 

methods, and describes why we have chosen the ray 

tracing for further research.  Section 2 presents the 

sphere tracing algorithm used to safely find the first ray-

surface intersection. Section 3 improves performance by 

introducing a preprocessing stage, section 4 covers 

shading and texturing, because texturing an implicit 

surface is not trivial. Finally section 5 describes our 

implementation. 

 

An implicit surface is defined by a three dimensional 

scalar function f(x,y,z), which can be evaluated at each 

point in space. The surface is the set of points where 

f(x,y,z)=C 

To define the inside of the body, usually the f(x,y,z) < C 

region is selected. In practice, the C constant is usually 

zero. 

 

The main advantage of implicit surfaces is their power to 

describe organic objects. The geometric details of such 

models can be represented using less implicit primitives 

than required by other methods. But visualizing an 

implicit surface is a non-trivial task. During rendering we 

look for the point which can be seen through a pixel. 

While one can quickly determine if a given point is on 

the surface, the ray intersection point generally cannot be 

given in a simple form. 

 

For this reason it can be useful to approximate the 

implicit surface with a triangle mesh before image 

synthesis (tessellation). We can mention the widely used 

marching cubes algorithm as an example, which 

evaluates the function at sample grid points, then 

produces a polygonal surface as a result. By using 

adaptive tessellation we can improve the accuracy of the 

resulting mesh where the curvature of the surface is too 

high, as described by Bloomenthal in [1]. 

 

The advantage of the tessellation is that it converts the 

implicit model according to the requirements of the 

conventional rendering pipeline. Nevertheless, it gives 

only an approximation of the original surface. To get 

correct results, the modeling function must be evaluated 

in huge number of sample points. This is especially a 

crucial problem when the body changes dynamically 

over time, where the tessellation must be repeated for 

each frame. 

 

During design time, particle based visualization can be a 

good compromise [1]. In this case only the geometric 

shape is shown, but rendering speed must be at least 

interactive. Here the modeling system shows the surface 

by scattering particles on it. These particles can start for 

example on the bounding sphere of the object, and can 

follow the gradient field until the surface is hit. 

 

The other main method of rendering implicit surfaces is 

ray tracing. In this case tessellation is needless; 

algorithms locate the intersection of rays from the 

camera (through pixels) and the surface. Besides 

reducing the overhead it has another advantage: it 

automatically provides smooth level of detail. Objects 

nearer to the camera occupy more pixels than farther 



ones, so they receive more rays. Polygonal methods can 

achieve smooth LOD only by changing the mesh 

resolution depending on the distance. This property can 

be ideal for terrains and many similar applications where 

dynamic LOD is needed. 

 

And at last but not least, ray tracing is a highly parallel 

procedure. It can be done for every pixel independently, 

so we could implement it on the pixel shader to achieve 

high rendering speed. 

 

2 Sphere tracing 

2.1 The root finding problem 

The ray tracer shoots rays from the eye position through 

the centre of each pixel. A ray is described by the 

following equation: 
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Where 0r
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 is the eye position, d

r
is the ray direction. The 

intersection of the ray and the surface is the solution of 

the 0))(( =trf
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relation. So the ray tracing depends on 

the root finding of this equation. While ray parameter t 

generally cannot be expressed from the equation above, 

root finding is solved by some iterative method. 

 

During the so-called ray-marching we make small steps 

along the ray, starting from the eye position. Evaluating 

the function at each visited point, the intersection occurs 

when it changes sign. However, one can always find an 

“evil” function for any step size, so that this function 

changes sign two times between two steps. Such evil 

function represents a “thin” surface the ray-marching 

steps over (See figure 1). Therefore our root finding 

algorithm must also take into account some analytical 

properties of the implicit function, only evaluation is not 

enough. 

 

Figure 1:  A ray misses the first hit by stepping over the 

thin geometric details. 

Several intersection finding algorithms are discussed in 

[2] which are suitable mostly for displacement surfaces, 

but some of them can be used for general implicit 

rendering as well. The simplest one is the linear search, 

which takes fix steps along the ray until the function first 

changes sign. After that we have a reference point in the 

body, and a reference point outside the body, we can 

refine our search by a numerical root finding algorithm. 

Linear search is safe if dt is small enough. 

 

However, this method uses too small knowledge of the 

ray-traced function. If dt is too small, then the function 

must be evaluated many times, which makes it slow. If dt 

is greater, then finding the first ray hit is not guaranteed. 

Let us call dt a safe step size, if 
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so the sign of the function remains the same along the 

step. We can get a better searching algorithm if we can 

give a proper estimation for such a safe step size. With 

other words we are looking for a )(rd
r
function which 

gives at every r
r
point the largest possible dt. 

 

Sphere tracing was proposed first time by John C. Hart 

[3] as a ray tracing algorithm for implicit surfaces. In the 

following subsection we define the Lipschitz property, 

and show how to use sphere tracing for functions with 

such property. 

 

2.2  Sphere tracing algorithm 

Let us introduce some definitions first. We say that the 

real function f is Lipschitz over domain H (Lipschitz 

continuous), when there is a non-negative real L that 
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That means the steepness of a sector of two points cannot 

be larger than a bound. The value of  f(x) cannot change 

more than L in a unit distance. The smallest L is called 

the Lipschitz constant. 

 

The ℜ→ℜ3:df function is distance bound by its 

implicit surface )0(
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and the surface. This is important because if we have 

found such a distance bound function, we can estimate 

the distance to the surface, i.e. the safe step size. In [3] 

Hart proves that every function with a Lipschitz constant 

can be turned into a distance bound function. 

 

If we have found a distance bound function for the ray 

traced surface, then the safe dt step size along the ray is 

at least ))(( trf d
r

. This is the essence of the sphere 

tracing. The distance function defines “unbounding 

spheres” in the space, i.e. spheres with radius small 

enough not to intersect the surface (figure 2). 



After that the ray-marching can be performed as follows: 

 

The pseudo code of sphere tracing.  

 

The method converges only if the ray has an intersection 

with the surface so we must give a maximum D bound 

for t. Root finding is the least efficient at the contours, 

because there the rays fall almost parallel to the surface, 

so the distances will be small. 

Of course, sphere tracing can be useful only if the 

practically used analytic functions can be turned into 

distance bound functions. In his paper Hart proved it for 

many frequently used modelling functions, such as 

standard geometric primitives, soft bodies, etc. For 

details see [3]. 

 

Figure 2: Comparison of the principles of linear search 

and sphere tracing. Sphere tracing reduces step numbers 

by estimating distances from the surface. 

 

We can apply sphere tracing to CSG (Constructive Solid 

Geometry) models if we can interpret the CSG operators 

on distance functions as well. For example: 

Set operators: 

• Union:  

)}(),(min{),( xfxfBAxd BA=∪ . 

 This is logical, for the distance to the union of 

two bodies can be at most the distance to the 

nearest one. 

• Complement:  

)()\,( 3 xfAxd A−=ℜ  

• Intersection: 
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Transformations: 

If the transformation is isometric, only the inverse 

transformation must be applied to the parameters of the f 

distance function (so the same as the implicit functions). 

In general, if the transformation is the D operator, then 

the distance function of the transformed surface is 

))(( 1 xDf d
−

. According to the chain rule the Lipschitz 

constant of the composition of two functions cannot be 

greater than the product of the two Lipschitz constants. 

So we get the Lipschitz constant of the transformed 

function by calculating the Lipschitz constant of the 

inverse transformation, and multiply it with that of the 

original distance function’s. 

3 Preprocessing 

3.1 Distance transform 

Until now we estimated distances from the surface only 

analytically. This narrowed the field of application of 

sphere tracing to a special class: Lipschitz functions. It is 

proved that most of the primitive functions used in CSG 

modeling can be turned into a Lipschitz function, but 

there are other applications as well. We would also like 

to use sphere tracing for general implicit functions. On 

the other hand, calculating the distance function can be 

quite costly, especially when our model consists of 

several primitive functions (like a fluid with hundreds of 

blobs). Sometimes we cannot afford to calculate the 

distance function in every step. 

 

In [4] Donnelly presents an implementation of sphere 

tracing displacement maps using preprocessed distance 

maps. We followed a way similar to that algorithm. 

The first stage of the preprocessing is sampling. 

According to a 3D grid, we divide the bounding volume 

(AABB – Axis Aligned Bounding Box) of the surface to 

small volume elements, voxels. In each voxel we 

calculate the function in a representative point. Storing 

these values in a 3D array we have got a discrete 

volumetric model of the original implicit object. 

Choosing the proper sampling frequency is important, 

because we must find the golden mean between 

undersampling and the computational and storage 

overhead. In real time, when we want to store data in the 

memory of the GPU, we cannot afford large data size. 

 

t = 0 
f = f(origin + direction*t) 
while (t < D){ 
 dt = f(origin + direction*t) 
 if(dt < epsilon) 
  return t //there is intersection 
 t = t + dt 
} 
return -1 //no intersection 



Now we encode the object in a 3D array: if the sample in 

the voxel was outside the body, then we store 1, 

otherwise we store 0. If we can find for every voxel the 

nearest one with value 1 and store the distance between 

them, then we have got the radius of the greatest sphere 

which does not intersect the surface. The same we need 

in the sphere tracing algorithm! The resulting distance 

array is called distance map, and the procedure described 

in the previous paragraphs is distance transform. Figure 3 

illustrates the derivation of a basic distance field from a 

sampled geometry. 

 

Figure 3: The idea of the distance transform 

demonstrated in two dimensions. In this example we 

applied the Manhattan metric, in which the result is the 

sum of the horizontal and vertical distances of the points. 

 

Having completed the distance transform, we can 

visualize the original surface with sphere tracing, since 

we know the distance to the nearest point of the surface 

at each point of the discretized space. Passing along the 

ray, we do not even need to compute the distance 

function, dt can be read directly from memory. This way 

the complexity of ray tracing gets independent of the 

complexity of the original function. 

3.2 Danielsson’s algorithm 

For the computation of the distance map we used 

Danielsson’s algorithm ([4], [5]). Making use of the 

dynamic programming, it gives approximately right 

results for the Euclidean distances. It can be ranked 

among the fastest algorithms for having linear 

complexity (O(n) for n samples). In three dimensions the 

size of the samples is proportional with the cubic of the 

sampling frequency. 

Here, for illustration we describe the two dimensional 

variant. The input is a T array with 0/1 items encoding 

the object which we can take as a black and white image. 

The output is a Tdist array, which has a same size, but 

consists of vectors pointing to the nearest point of the 

body. 

Initially: 
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The algorithm is based on the thought that if we know 

the nearest surface points to the neighbors of a given p 

point, then we can infer the nearest surface point to p 

from that. In the first pass we slide a “window” from the 

upper left corner to the lower right corner by passing 

along the image row by row. The vector belonging to the 

current point is produced of the vectors of the left and top 

neighbours: 
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By the end of this pass, the vector in the lower right 

corner holds the final value. But for the other points we 

did not consider the right and bottom neighbours, so the 

second pass of the algorithm runs backward, reversing 

the “window”: 
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Each item was visited two times, and the procedure finds 

approximately the right distances. See figure 4 below 

illustrating the passes. When selecting the minimum, we 

compare the length of the vectors. Euclidean distance 

needs a square root, but squaring is monotonous, so the 

square root can be left out during comparation. 

 

Figure 4: The steps of Danielsson’s algorithm 

 

This algorithm can be easily extended to three 

dimensions. The two pass system is the same, but this 

time we iterate between the two opposite corners of a 

box. We consider the neighbours along the z axis as well. 

Finally we get the distance map by calculating the length 

of each distance vector. The accuracy of this algorithm 

could be improved by introducing further passes (for 

example iterating between other two corners, too), but in 

practice this two proved to be enough. 

4 Shading and texturing 

After finding the intersection with the ray, the final step 

of rendering is shading. For shading we must know the 

direction of the surface normal, the material parameters 

of the surface point, and the incoming illumination. 

 

 



4.1 Illumination 

We get the surface normal of an implicit model by taking 

the gradient at the specified point: 
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When computing incoming illumination we can render 

self-shadows easily with a small improvement. From the 

surface point we start rays towards each light source 

according to the same algorithm as ray tracing from the 

camera. If the ray can step out from the bounding box 

without hitting the surface, then the point is visible from 

that light source. If the ray gets into the body, then the 

point is in shadow. Other kinds of shadows are not so 

simple, we can use shadow maps for instance, but for 

that we must modify the depth buffer. 

4.2 Texturing 

A texture is commonly parameterized over the two 

dimensional unit square [ ]21,0),( ∈vu . Its points are 

mapped to the surface by the texture projection. In the 

case of implicit surfaces the traditional texturing methods 

usually cannot be used. There are no fix points on the 

surface like vertices, so we cannot assign (u, v) 

coordinates to the surface points. Other kind of texturing 

must be used. 

4.2.1 3D textures 

These kinds of textures fit the most to the principles of 

implicit modeling. A 3D texture is also a function 

defined over the unit cube in (u, v, w) coordinates. 

Procedural textures describe the texture space with 

mathematical functions, so that their level of detail can 

be increased infinitely. However, the possible texture 

patterns are bounded to the mathematically definable 

ones. A texture can be a discrete 3D array as well, similar 

to the two dimensional bitmaps. The main disadvantage 

is the needed storage space. A texturing artist cannot 

really handle 3D textures, so their usage is rare. 

Figure 5: Procedurally textured spheres rendered by our 

application. 53 FPS at 1280×1024 resolution. 

 

4.2.2 Texturing surfaces 

We can use a helper surface to project 2D textures onto 

the implicit surface. The helper surface can be textured in 

the usual way. The only question is how to set up the 

projection which assigns every f -1(0) surface point to the 

points of the helper surface. Many techniques has been 

developed addressing this problem with different levels 

of accuracy and complexity. 

 

The simplest texturing method is planar projection. 

Essentially we assign a texture to one side of the 

bounding box, and then determine a surface point (u, v) 

according to its position in modeling space. This leads to 

poor texturing results because of the distortion of the 

texture along the projection axis (figure 6a). 

 

Tri-planar projection (figure 6b) uses all the three main 

texturing planes (XY, YZ, XZ), to avoid distortion. It is 

based on the fact that texturing is accurate when the 

surface element is parallel to the texturing plane, and the 

distortion is maximal if it is perpendicular. According to 

the surface normal, we can assign each surface element a 

dominant plane, and we texture this surface according to 

this texturing plane. To get smooth interpolation of the 

three textures, we use all the three texturing planes, but 

weight them with the components of the surface normal. 

For procedural textures, nice results can be achieved this 

way. 

Figure 6: Different types of projective rendering 

methods. A – simple planar projection results in 

distortion along the z axis. B – tri-planar projection 

blends texture values according to the direction of the 

normal. C, D – This earth texture was applied to a blob 

model. The particle based approach resulted in smooth 

deformation of the texture space, following the functions. 

A,B: 55 FPS; C,D:37 FPS at 1280×1024. 

 

In [6] Wyvill et al. show an interesting, particle based 

approach for accurate surface texturing. The main part of 

the method that we shoot particles from the textured 

surface points, which hit the helper surface following the 

gradient field of the implicit function. Then the texture 



coordinates of the intersected point are assigned to the 

original surface point where the particle was coming 

from. This algorithm, as figure 6c-d shows results in 

surprisingly nice and correct projection even at very 

curved regions. 

At the same time, its real time application is limited 

because the algorithm must evaluate the gradient for 

every visible surface point many times. In the 

implementation section we present a possible 

approximating solution for that by preprocessing the 

texture coordinates with this method. 

5 Implementation and results 

The demonstrative application was implemented in C++, 

using DirectX 9. Our goal was to make the pixel shader 

perform ray tracing, and to leave only the preprocessing 

step to the CPU. 

 

The frame rates of the test renders were measured in the 

following environment: 

• Intel Core2 Duo E4500 (2,2 GHz) CPU 

• Nvidia 8600GTS, 256MB GPU 

• 2GB DDR2 RAM 

 

All images were rendered at full screen (1280×1024) but 

in the illustrations they were cropped to fit into a square. 

5.1 Preprocessing 

In the preprocessing step we generate a three 

dimensional distance map of the implicit function using 

Danielsson’s algorithm described in section 3. Naturally 

this step can be omitted if we render the surface directly, 

using distance bound functions. We store the resulting 

distance map on the GPU as a 3D scalar texture. A ray 

tracing step will determine dt with a texture read. Here 

we emphasize the importance of texture filtering. If 

texture filtering is enabled then the hardware uses tri-

linear interpolation between the neighbouring texels. 

Table 1 summarizes how the rendering speed scales with 

the resolution of this 3D texture, and the number of ray 

casting iterations. 

 

Grid 

res. 
Iterations 5 10 15 20 

64×64×64 146 fps 91 fps 62 fps 42 fps 

128×128×128 147 fps 83 fps 42 fps 27 fps 

256×256×256 40 fps 6. 5 fps 2. 5 fps - 

 

Table 1: Performace test of the algorithm. Only the bold 

cells gave visually adequate results at full screen. The 

model we used was the blob object of figure 6d (without 

texturing). As the table shows, large distance fields 

should be avoided because of the cubic growth of the 

texture. At the resolution of 256×256×256 the size of the 

texture prevented efficient texture caching on the 

hardware; this explains the FPS breakdown at the last 

row. 

5.2 Vertex shader 

The sphere tracing algorithm runs entirely on the pixel 

shader. To invoke the pixel shaders we render the 

bounding box of the surface as a standard DirectX 

triangle list. 

The vertex shader has the only task to transform the 

bounding box vertices into the projective space. The 

pixel shader must know the original world coordinates of 

the vertices, so we pass them through the TEXCOORD0 

register. 

 

5.3 Pixel Shader 

First we enter into the bounding box with the ray. The 

coordinates of the ray hit are interpolated by the 

hardware in world space. Here we apply the inverse 

modeling transformation to the hit and the eye position to 

get the ray in modeling space. While the ray is in the 

bounding volume we can determine the distance from the 

surface by reading from the preprocessed 3D texture. 

Finally we store in the inside boolean if the ray has left 

the bounding volume. 

We locate the intersection using sphere tracing: find a 

pos1 point inside the surface and a pos2 point outside the 

surface. To simplify texture reading, the bounding 

volume was scaled to the [-0,5; 0,5]3 cube. Sphere tracing 

roughly locates the intersection between pos1 and pos2, 

now we can use a numeric root finding algorithm to 

refine the result. In this case our algorithm implements 

the regula falsi method.  

 

void ps_SphereTracing(float4 xpos:TEXCOORD0, float4 

texcoord:TEXCOORD1, out float4 color: COLOR0, out float 

depth:DEPTH0) 

{ 

 //get ray position and direction in model space 

 […] 

 for(int i=0; i < SPHERE_STEPS, i++){ 

  t=tex3D(SphereTex, float4(pos1.x+0.5f, pos1.y- 

  0.5f, pos1.z+0.5f, 0.0f)).x; 

  pos1+=look*t; 

 } 

 

 if(pos1.x > 0.5f || pos1.x < -0.5f || pos1.y > 0.5f || pos1.y <   

-0.5f || pos1.z > 0.5f || pos1.z < -0.5f ) 

  inside=false; 

 //”overshoot” the surface to ensure pos1 is inside the body 

 f1=F(pos1); 

 if(f1>=0) 

   pos1 = pos1+ look*delta; 

 inside=inside && (f1<0); 

 

 if(inside){ 

   //pos1 is inside, pos2 is outside. Perform regula falsi 

  pos2=pos1-look*4*delta; 

  f2=F(pos2); 

  spos=(pos1*f2-pos2*f1)/(f2-f1); 



  //step2 

  for(int j=0;  j < FALSI_STEPS; j++){ 

   t=F(spos); 

   if(t>0) { 

    f2=t; 

    pos2=spos; 

   } 

   else{ 

    f1=t; 

    pos1=spos; 

   } 

   spos=(pos1*f2-pos2*f1)/(f2-f1); 

  }  

[…] //shading 

  //modify the depth value of the fragment 

  depth= spos.z / spos.w; 

  return; 

 } 

else{ 

 color= backcolor; 

 depth=1.0f; 

 return; 

} 

 

Figure 7: Smooth metamorphosis of two objects with 

different geometry and texture (no preprocessing here!). 

This kind of topology change is hard to carry out in the 

conventional vertex based modeling methods. The 

implicit modeling solves it by making the weighted sum 

of the interpolated modeling functions. 

24 FPS, 1280×1024 (70 FPS without textures). 

5.4 Texturing 

5.4.1. Procedural textures 

In our application, we applied 3D procedural and 

projective textures to the models.  The most of the 

procedural texturing algorithms derive from a simple 

modeling function, which is perturbed with a pseudo-

random spatial noise. The right choice of this noise 

function is important to achieve natural impression. The 

completely random noise does not provide realistic look.  

As natural textures can be observed, their smaller 

frequency components are stronger. For example a stone 

has a basic tone of colour, and the high frequency 

components give the variety of the surface for what we 

do not see it solid. 

We have used the Perlin noise ([7]) to modulate our 

procedural textures. This method can be ported to the 

GPU easily, because the random values are fetched 

iteratively from a 2D noise texture. In every iteration we 

increase the noise frequency to the double, and half the 

amplitude. The sum of the results is an infinitely refining 

noise function; in practice we should stop when the 

“wavelength” equals to the pixel size. 

5.4.2. Projective textures 

Simple planar texturing does not worth giving details. 

For tri-planar textures we used the same texturing 

method, but the three texture samples were weighted 

with the perpendicular components for each texturing 

plane of the surface normals. 

 

float2 texXY=float2(spos.x+0.5f,spos.y+0.5f); 

float2 texYZ=float2(spos.y+0.5f,spos.z+0.5f); 

float2 texXZ=float2(spos.x+0.5f,spos.z+0.5f); 

//scale the components to give one as sum 

float4 weights=normal / (weights.x + weights.y + weights.z); 

 

matdiffuse=getDiffuse(texXY.x,texXY.y,0.5f)*weights.z+getDiffu

se(texXZ.x,texXZ.y,0.5f)*weights.y 

+getDiffuse(texYZ.x,texYZ.y,0.5f)*weights.x; 

 

We have implemented an efficient approximation for the 

particle based texturing method. Because tracing 

particles from every surface point to the helper surface is 

very costly, we do not want to do that for every frame on 

the GPU. Instead, we have put the texture projection to 

the preprocessing step. 

Our algorithm works upon the fact, that after distance 

transform, we already have a three dimensional scalar 

texture in the GPU memory. Choosing the float4 instead 

of float texture, we can store a 3D vector besides the 

distance value at each voxel. In this vector we can store 

texture coordinates for instance. 

In the preprocessing step we trace particles along the 

gradient field accurately from every sample points, and 

store the (u, v) coordinates of the hits in the 3D texture. 

When rendering in real time, the texture coordinates of 

any point of the surface can be read from this texture by 



fast hardware interpolation. Of course this algorithm 

suits only for rigid models with fixed geometry, and 

gives only an approximate result depending on the 

texture resolution. The problem is that real texture 

projection is non-linear, but the interpolation between 

texture samples will be linear. However, as the tests 

showed, this method can be useful in many cases. 

 

6 Conclusion, future work 

According to our experiences from this demonstrative 

application, sphere tracing proved to be efficient enough 

to be able to reach real time frame rates on the GPU, 

especially when we can afford preprocessing. This is the 

case when rendering implicit surfaces with fixed 

geometry. 

Rendering deforming objects with this technique (figure 

7), however generally excludes preprocessing. The 

efficiency of the Lipschitz function based approach 

depends on how accurately we can estimate the distance 

from the surface. When the model consists of several 

primitive functions, even the calculation of the distance 

function can be expensive. The speed of the algorithm is 

determined by the complexity of the contained functions. 

 

Figure 8: F-Rep modeling - Boolean intersection and 

union of a sphere and a cube. 53 FPS, 1280×1024 pixels. 

The distance map contained 128×128×128 voxels. 

 

We successfully integrated this ray-traced visualization 

algorithm into the standard rendering pipeline. By 

rendering the bounding box, then modifying the contents 

of the depth buffer, the implicit objects can be used 

together with the polygonal ones. The image synthesis 

needs an extra rendering pass for each surface, but this 

can be improved in the future.  

 

The preprocessing method can be refined as well. If we 

mention sampling it is worth thinking how large storage 

space the samples consume if we take them according to 

a 3D grid. In the future it would be useful to use more 

efficient, hierarchical structures to perform adaptive 

sampling. 

Another important notice is that sphere tracing is actually 

too cautious. We always step along the ray small enough 

not to hit the surface, though in reality it is not a problem 

if we cross the surface, this is even necessary for the 

following numerical root finding. So the real solution 

would be finding those largest spheres which radius does 

not intersect the surface more than once. What we must 

ensure is, that we can always find the first intersection. 

This so-called relaxed sphere tracing would mean a 

significant improvement compared to the one this paper 

was about. 
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