
Ray tracing implicit surfaces on the GPU

Gábor Liktor
*

Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Budapest / Hungary

* magitor@gmail.com

Abstract

In this paper we examine the methods of rendering

implicit surfaces with a per-pixel approach. Ray tracing

the implicit model directly has several benefits as

opposed to processing tessellated meshes, but also

invokes new kinds of problems. The main challenge is

efficiently finding the first ray-surface intersection point

where the surface is not given in an explicit form. Our

implementation uses the sphere tracing algorithm to

attack this problem and runs on the GPU to achieve high

frame rates. We also discuss secondary issues like

shading and texturing implicit models.

Keywords: Sphere Tracing, Implicit Surface, Distance

Transform, Lipschitz Function, Texturing

1 Introduction

The ability to give a flexible definition for volumetric

models makes the implicit surfaces very suitable for

modeling natural phenomena and scientific visualization.

Unlike most common methods of geometric modeling

which define surfaces – polygonal surfaces, parametric

surfaces – implicit modeling is a pure volumetric

approach.

This section gives a short summary on the popular

methods, and describes why we have chosen the ray

tracing for further research. Section 2 presents the

sphere tracing algorithm used to safely find the first ray-

surface intersection. Section 3 improves performance by

introducing a preprocessing stage, section 4 covers

shading and texturing, because texturing an implicit

surface is not trivial. Finally section 5 describes our

implementation.

An implicit surface is defined by a three dimensional

scalar function f(x,y,z), which can be evaluated at each

point in space. The surface is the set of points where

f(x,y,z)=C

To define the inside of the body, usually the f(x,y,z) < C

region is selected. In practice, the C constant is usually

zero.

The main advantage of implicit surfaces is their power to

describe organic objects. The geometric details of such

models can be represented using less implicit primitives

than required by other methods. But visualizing an

implicit surface is a non-trivial task. During rendering we

look for the point which can be seen through a pixel.

While one can quickly determine if a given point is on

the surface, the ray intersection point generally cannot be

given in a simple form.

For this reason it can be useful to approximate the

implicit surface with a triangle mesh before image

synthesis (tessellation). We can mention the widely used

marching cubes algorithm as an example, which

evaluates the function at sample grid points, then

produces a polygonal surface as a result. By using

adaptive tessellation we can improve the accuracy of the

resulting mesh where the curvature of the surface is too

high, as described by Bloomenthal in [1].

The advantage of the tessellation is that it converts the

implicit model according to the requirements of the

conventional rendering pipeline. Nevertheless, it gives

only an approximation of the original surface. To get

correct results, the modeling function must be evaluated

in huge number of sample points. This is especially a

crucial problem when the body changes dynamically

over time, where the tessellation must be repeated for

each frame.

During design time, particle based visualization can be a

good compromise [1]. In this case only the geometric

shape is shown, but rendering speed must be at least

interactive. Here the modeling system shows the surface

by scattering particles on it. These particles can start for

example on the bounding sphere of the object, and can

follow the gradient field until the surface is hit.

The other main method of rendering implicit surfaces is

ray tracing. In this case tessellation is needless;

algorithms locate the intersection of rays from the

camera (through pixels) and the surface. Besides

reducing the overhead it has another advantage: it

automatically provides smooth level of detail. Objects

nearer to the camera occupy more pixels than farther

ones, so they receive more rays. Polygonal methods can

achieve smooth LOD only by changing the mesh

resolution depending on the distance. This property can

be ideal for terrains and many similar applications where

dynamic LOD is needed.

And at last but not least, ray tracing is a highly parallel

procedure. It can be done for every pixel independently,

so we could implement it on the pixel shader to achieve

high rendering speed.

2 Sphere tracing

2.1 The root finding problem

The ray tracer shoots rays from the eye position through

the centre of each pixel. A ray is described by the

following equation:

,)(0 tdrtr
rrr

+=).,0(∞∈t

Where 0r
r
 is the eye position, d

r
is the ray direction. The

intersection of the ray and the surface is the solution of

the 0))((=trf
r

relation. So the ray tracing depends on

the root finding of this equation. While ray parameter t

generally cannot be expressed from the equation above,

root finding is solved by some iterative method.

During the so-called ray-marching we make small steps

along the ray, starting from the eye position. Evaluating

the function at each visited point, the intersection occurs

when it changes sign. However, one can always find an

“evil” function for any step size, so that this function

changes sign two times between two steps. Such evil

function represents a “thin” surface the ray-marching

steps over (See figure 1). Therefore our root finding

algorithm must also take into account some analytical

properties of the implicit function, only evaluation is not

enough.

Figure 1: A ray misses the first hit by stepping over the

thin geometric details.

Several intersection finding algorithms are discussed in

[2] which are suitable mostly for displacement surfaces,

but some of them can be used for general implicit

rendering as well. The simplest one is the linear search,

which takes fix steps along the ray until the function first

changes sign. After that we have a reference point in the

body, and a reference point outside the body, we can

refine our search by a numerical root finding algorithm.

Linear search is safe if dt is small enough.

However, this method uses too small knowledge of the

ray-traced function. If dt is too small, then the function

must be evaluated many times, which makes it slow. If dt

is greater, then finding the first ray hit is not guaranteed.

Let us call dt a safe step size, if

))'((sgn())((sgn(dttrftrf +=
rr

, dtdt <'

so the sign of the function remains the same along the

step. We can get a better searching algorithm if we can

give a proper estimation for such a safe step size. With

other words we are looking for a)(rd
r
function which

gives at every r
r
point the largest possible dt.

Sphere tracing was proposed first time by John C. Hart

[3] as a ray tracing algorithm for implicit surfaces. In the

following subsection we define the Lipschitz property,

and show how to use sphere tracing for functions with

such property.

2.2 Sphere tracing algorithm

Let us introduce some definitions first. We say that the

real function f is Lipschitz over domain H (Lipschitz

continuous), when there is a non-negative real L that

yxLyfxf −≤−)()(, Hyx ∈∀ ,

That means the steepness of a sector of two points cannot

be larger than a bound. The value of f(x) cannot change

more than L in a unit distance. The smallest L is called

the Lipschitz constant.

The ℜ→ℜ3:df function is distance bound by its

implicit surface)0(
1−

df if

))0(,(|)(|
1−≤ dd fxdxf ,

where))0(,(
1−

dfxd is the distance between point x
r

and the surface. This is important because if we have

found such a distance bound function, we can estimate

the distance to the surface, i.e. the safe step size. In [3]

Hart proves that every function with a Lipschitz constant

can be turned into a distance bound function.

If we have found a distance bound function for the ray

traced surface, then the safe dt step size along the ray is

at least))((trf d
r

. This is the essence of the sphere

tracing. The distance function defines “unbounding

spheres” in the space, i.e. spheres with radius small

enough not to intersect the surface (figure 2).

After that the ray-marching can be performed as follows:

The pseudo code of sphere tracing.

The method converges only if the ray has an intersection

with the surface so we must give a maximum D bound

for t. Root finding is the least efficient at the contours,

because there the rays fall almost parallel to the surface,

so the distances will be small.

Of course, sphere tracing can be useful only if the

practically used analytic functions can be turned into

distance bound functions. In his paper Hart proved it for

many frequently used modelling functions, such as

standard geometric primitives, soft bodies, etc. For

details see [3].

Figure 2: Comparison of the principles of linear search

and sphere tracing. Sphere tracing reduces step numbers

by estimating distances from the surface.

We can apply sphere tracing to CSG (Constructive Solid

Geometry) models if we can interpret the CSG operators

on distance functions as well. For example:

Set operators:

• Union:

)}(),(min{),(xfxfBAxd BA=∪ .

 This is logical, for the distance to the union of

two bodies can be at most the distance to the

nearest one.

• Complement:

)()\,(3 xfAxd A−=ℜ

• Intersection:

)}(),(max{),(xfxfBAxd BA≥∩

Transformations:

If the transformation is isometric, only the inverse

transformation must be applied to the parameters of the f

distance function (so the same as the implicit functions).

In general, if the transformation is the D operator, then

the distance function of the transformed surface is

))((1 xDf d
−

. According to the chain rule the Lipschitz

constant of the composition of two functions cannot be

greater than the product of the two Lipschitz constants.

So we get the Lipschitz constant of the transformed

function by calculating the Lipschitz constant of the

inverse transformation, and multiply it with that of the

original distance function’s.

3 Preprocessing

3.1 Distance transform

Until now we estimated distances from the surface only

analytically. This narrowed the field of application of

sphere tracing to a special class: Lipschitz functions. It is

proved that most of the primitive functions used in CSG

modeling can be turned into a Lipschitz function, but

there are other applications as well. We would also like

to use sphere tracing for general implicit functions. On

the other hand, calculating the distance function can be

quite costly, especially when our model consists of

several primitive functions (like a fluid with hundreds of

blobs). Sometimes we cannot afford to calculate the

distance function in every step.

In [4] Donnelly presents an implementation of sphere

tracing displacement maps using preprocessed distance

maps. We followed a way similar to that algorithm.

The first stage of the preprocessing is sampling.

According to a 3D grid, we divide the bounding volume

(AABB – Axis Aligned Bounding Box) of the surface to

small volume elements, voxels. In each voxel we

calculate the function in a representative point. Storing

these values in a 3D array we have got a discrete

volumetric model of the original implicit object.

Choosing the proper sampling frequency is important,

because we must find the golden mean between

undersampling and the computational and storage

overhead. In real time, when we want to store data in the

memory of the GPU, we cannot afford large data size.

t = 0
f = f(origin + direction*t)
while (t < D){
 dt = f(origin + direction*t)
 if(dt < epsilon)
 return t //there is intersection
 t = t + dt
}
return -1 //no intersection

Now we encode the object in a 3D array: if the sample in

the voxel was outside the body, then we store 1,

otherwise we store 0. If we can find for every voxel the

nearest one with value 1 and store the distance between

them, then we have got the radius of the greatest sphere

which does not intersect the surface. The same we need

in the sphere tracing algorithm! The resulting distance

array is called distance map, and the procedure described

in the previous paragraphs is distance transform. Figure 3

illustrates the derivation of a basic distance field from a

sampled geometry.

Figure 3: The idea of the distance transform

demonstrated in two dimensions. In this example we

applied the Manhattan metric, in which the result is the

sum of the horizontal and vertical distances of the points.

Having completed the distance transform, we can

visualize the original surface with sphere tracing, since

we know the distance to the nearest point of the surface

at each point of the discretized space. Passing along the

ray, we do not even need to compute the distance

function, dt can be read directly from memory. This way

the complexity of ray tracing gets independent of the

complexity of the original function.

3.2 Danielsson’s algorithm

For the computation of the distance map we used

Danielsson’s algorithm ([4], [5]). Making use of the

dynamic programming, it gives approximately right

results for the Euclidean distances. It can be ranked

among the fastest algorithms for having linear

complexity (O(n) for n samples). In three dimensions the

size of the samples is proportional with the cubic of the

sampling frequency.

Here, for illustration we describe the two dimensional

variant. The input is a T array with 0/1 items encoding

the object which we can take as a black and white image.

The output is a Tdist array, which has a same size, but

consists of vectors pointing to the nearest point of the

body.

Initially:

[]
[]

=∞∞

=
=

0),(,,

1),(,0,0
),(

jiTif

jiTif
jiT dist

The algorithm is based on the thought that if we know

the nearest surface points to the neighbors of a given p

point, then we can infer the nearest surface point to p

from that. In the first pass we slide a “window” from the

upper left corner to the lower right corner by passing

along the image row by row. The vector belonging to the

current point is produced of the vectors of the left and top

neighbours:

[]
[]

+−

−+−
=

1,0)1,(

;0,1),1();,(
min:),(

jiT

jiTjiT
jiT

dist

distdist

dist

By the end of this pass, the vector in the lower right

corner holds the final value. But for the other points we

did not consider the right and bottom neighbours, so the

second pass of the algorithm runs backward, reversing

the “window”:

[]
[]

−++

++
=

1,0)1,(

;0,1),1();,(
min:),(

jiT

jiTjiT
jiT

dist

distdist

dist

Each item was visited two times, and the procedure finds

approximately the right distances. See figure 4 below

illustrating the passes. When selecting the minimum, we

compare the length of the vectors. Euclidean distance

needs a square root, but squaring is monotonous, so the

square root can be left out during comparation.

Figure 4: The steps of Danielsson’s algorithm

This algorithm can be easily extended to three

dimensions. The two pass system is the same, but this

time we iterate between the two opposite corners of a

box. We consider the neighbours along the z axis as well.

Finally we get the distance map by calculating the length

of each distance vector. The accuracy of this algorithm

could be improved by introducing further passes (for

example iterating between other two corners, too), but in

practice this two proved to be enough.

4 Shading and texturing

After finding the intersection with the ray, the final step

of rendering is shading. For shading we must know the

direction of the surface normal, the material parameters

of the surface point, and the incoming illumination.

4.1 Illumination

We get the surface normal of an implicit model by taking

the gradient at the specified point:

==

dz

pdf

dy

pdf

dx

pdf
pgradpn f

)(
,
)(

,
)(

)()(

When computing incoming illumination we can render

self-shadows easily with a small improvement. From the

surface point we start rays towards each light source

according to the same algorithm as ray tracing from the

camera. If the ray can step out from the bounding box

without hitting the surface, then the point is visible from

that light source. If the ray gets into the body, then the

point is in shadow. Other kinds of shadows are not so

simple, we can use shadow maps for instance, but for

that we must modify the depth buffer.

4.2 Texturing

A texture is commonly parameterized over the two

dimensional unit square []21,0),(∈vu . Its points are

mapped to the surface by the texture projection. In the

case of implicit surfaces the traditional texturing methods

usually cannot be used. There are no fix points on the

surface like vertices, so we cannot assign (u, v)

coordinates to the surface points. Other kind of texturing

must be used.

4.2.1 3D textures

These kinds of textures fit the most to the principles of

implicit modeling. A 3D texture is also a function

defined over the unit cube in (u, v, w) coordinates.

Procedural textures describe the texture space with

mathematical functions, so that their level of detail can

be increased infinitely. However, the possible texture

patterns are bounded to the mathematically definable

ones. A texture can be a discrete 3D array as well, similar

to the two dimensional bitmaps. The main disadvantage

is the needed storage space. A texturing artist cannot

really handle 3D textures, so their usage is rare.

Figure 5: Procedurally textured spheres rendered by our

application. 53 FPS at 1280×1024 resolution.

4.2.2 Texturing surfaces

We can use a helper surface to project 2D textures onto

the implicit surface. The helper surface can be textured in

the usual way. The only question is how to set up the

projection which assigns every f -1(0) surface point to the

points of the helper surface. Many techniques has been

developed addressing this problem with different levels

of accuracy and complexity.

The simplest texturing method is planar projection.

Essentially we assign a texture to one side of the

bounding box, and then determine a surface point (u, v)

according to its position in modeling space. This leads to

poor texturing results because of the distortion of the

texture along the projection axis (figure 6a).

Tri-planar projection (figure 6b) uses all the three main

texturing planes (XY, YZ, XZ), to avoid distortion. It is

based on the fact that texturing is accurate when the

surface element is parallel to the texturing plane, and the

distortion is maximal if it is perpendicular. According to

the surface normal, we can assign each surface element a

dominant plane, and we texture this surface according to

this texturing plane. To get smooth interpolation of the

three textures, we use all the three texturing planes, but

weight them with the components of the surface normal.

For procedural textures, nice results can be achieved this

way.

Figure 6: Different types of projective rendering

methods. A – simple planar projection results in

distortion along the z axis. B – tri-planar projection

blends texture values according to the direction of the

normal. C, D – This earth texture was applied to a blob

model. The particle based approach resulted in smooth

deformation of the texture space, following the functions.

A,B: 55 FPS; C,D:37 FPS at 1280×1024.

In [6] Wyvill et al. show an interesting, particle based

approach for accurate surface texturing. The main part of

the method that we shoot particles from the textured

surface points, which hit the helper surface following the

gradient field of the implicit function. Then the texture

coordinates of the intersected point are assigned to the

original surface point where the particle was coming

from. This algorithm, as figure 6c-d shows results in

surprisingly nice and correct projection even at very

curved regions.

At the same time, its real time application is limited

because the algorithm must evaluate the gradient for

every visible surface point many times. In the

implementation section we present a possible

approximating solution for that by preprocessing the

texture coordinates with this method.

5 Implementation and results

The demonstrative application was implemented in C++,

using DirectX 9. Our goal was to make the pixel shader

perform ray tracing, and to leave only the preprocessing

step to the CPU.

The frame rates of the test renders were measured in the

following environment:

• Intel Core2 Duo E4500 (2,2 GHz) CPU

• Nvidia 8600GTS, 256MB GPU

• 2GB DDR2 RAM

All images were rendered at full screen (1280×1024) but

in the illustrations they were cropped to fit into a square.

5.1 Preprocessing

In the preprocessing step we generate a three

dimensional distance map of the implicit function using

Danielsson’s algorithm described in section 3. Naturally

this step can be omitted if we render the surface directly,

using distance bound functions. We store the resulting

distance map on the GPU as a 3D scalar texture. A ray

tracing step will determine dt with a texture read. Here

we emphasize the importance of texture filtering. If

texture filtering is enabled then the hardware uses tri-

linear interpolation between the neighbouring texels.

Table 1 summarizes how the rendering speed scales with

the resolution of this 3D texture, and the number of ray

casting iterations.

Grid

res.
Iterations 5 10 15 20

64×64×64 146 fps 91 fps 62 fps 42 fps

128×128×128 147 fps 83 fps 42 fps 27 fps

256×256×256 40 fps 6. 5 fps 2. 5 fps -

Table 1: Performace test of the algorithm. Only the bold

cells gave visually adequate results at full screen. The

model we used was the blob object of figure 6d (without

texturing). As the table shows, large distance fields

should be avoided because of the cubic growth of the

texture. At the resolution of 256×256×256 the size of the

texture prevented efficient texture caching on the

hardware; this explains the FPS breakdown at the last

row.

5.2 Vertex shader

The sphere tracing algorithm runs entirely on the pixel

shader. To invoke the pixel shaders we render the

bounding box of the surface as a standard DirectX

triangle list.

The vertex shader has the only task to transform the

bounding box vertices into the projective space. The

pixel shader must know the original world coordinates of

the vertices, so we pass them through the TEXCOORD0

register.

5.3 Pixel Shader

First we enter into the bounding box with the ray. The

coordinates of the ray hit are interpolated by the

hardware in world space. Here we apply the inverse

modeling transformation to the hit and the eye position to

get the ray in modeling space. While the ray is in the

bounding volume we can determine the distance from the

surface by reading from the preprocessed 3D texture.

Finally we store in the inside boolean if the ray has left

the bounding volume.

We locate the intersection using sphere tracing: find a

pos1 point inside the surface and a pos2 point outside the

surface. To simplify texture reading, the bounding

volume was scaled to the [-0,5; 0,5]3 cube. Sphere tracing

roughly locates the intersection between pos1 and pos2,

now we can use a numeric root finding algorithm to

refine the result. In this case our algorithm implements

the regula falsi method.

void ps_SphereTracing(float4 xpos:TEXCOORD0, float4

texcoord:TEXCOORD1, out float4 color: COLOR0, out float

depth:DEPTH0)

{

 //get ray position and direction in model space

 […]

 for(int i=0; i < SPHERE_STEPS, i++){

 t=tex3D(SphereTex, float4(pos1.x+0.5f, pos1.y-

 0.5f, pos1.z+0.5f, 0.0f)).x;

 pos1+=look*t;

 }

 if(pos1.x > 0.5f || pos1.x < -0.5f || pos1.y > 0.5f || pos1.y <

-0.5f || pos1.z > 0.5f || pos1.z < -0.5f)

 inside=false;

 //”overshoot” the surface to ensure pos1 is inside the body

 f1=F(pos1);

 if(f1>=0)

 pos1 = pos1+ look*delta;

 inside=inside && (f1<0);

 if(inside){

 //pos1 is inside, pos2 is outside. Perform regula falsi

 pos2=pos1-look*4*delta;

 f2=F(pos2);

 spos=(pos1*f2-pos2*f1)/(f2-f1);

 //step2

 for(int j=0; j < FALSI_STEPS; j++){

 t=F(spos);

 if(t>0) {

 f2=t;

 pos2=spos;

 }

 else{

 f1=t;

 pos1=spos;

 }

 spos=(pos1*f2-pos2*f1)/(f2-f1);

 }

[…] //shading

 //modify the depth value of the fragment

 depth= spos.z / spos.w;

 return;

 }

else{

 color= backcolor;

 depth=1.0f;

 return;

}

Figure 7: Smooth metamorphosis of two objects with

different geometry and texture (no preprocessing here!).

This kind of topology change is hard to carry out in the

conventional vertex based modeling methods. The

implicit modeling solves it by making the weighted sum

of the interpolated modeling functions.

24 FPS, 1280×1024 (70 FPS without textures).

5.4 Texturing

5.4.1. Procedural textures

In our application, we applied 3D procedural and

projective textures to the models. The most of the

procedural texturing algorithms derive from a simple

modeling function, which is perturbed with a pseudo-

random spatial noise. The right choice of this noise

function is important to achieve natural impression. The

completely random noise does not provide realistic look.

As natural textures can be observed, their smaller

frequency components are stronger. For example a stone

has a basic tone of colour, and the high frequency

components give the variety of the surface for what we

do not see it solid.

We have used the Perlin noise ([7]) to modulate our

procedural textures. This method can be ported to the

GPU easily, because the random values are fetched

iteratively from a 2D noise texture. In every iteration we

increase the noise frequency to the double, and half the

amplitude. The sum of the results is an infinitely refining

noise function; in practice we should stop when the

“wavelength” equals to the pixel size.

5.4.2. Projective textures

Simple planar texturing does not worth giving details.

For tri-planar textures we used the same texturing

method, but the three texture samples were weighted

with the perpendicular components for each texturing

plane of the surface normals.

float2 texXY=float2(spos.x+0.5f,spos.y+0.5f);

float2 texYZ=float2(spos.y+0.5f,spos.z+0.5f);

float2 texXZ=float2(spos.x+0.5f,spos.z+0.5f);

//scale the components to give one as sum

float4 weights=normal / (weights.x + weights.y + weights.z);

matdiffuse=getDiffuse(texXY.x,texXY.y,0.5f)*weights.z+getDiffu

se(texXZ.x,texXZ.y,0.5f)*weights.y

+getDiffuse(texYZ.x,texYZ.y,0.5f)*weights.x;

We have implemented an efficient approximation for the

particle based texturing method. Because tracing

particles from every surface point to the helper surface is

very costly, we do not want to do that for every frame on

the GPU. Instead, we have put the texture projection to

the preprocessing step.

Our algorithm works upon the fact, that after distance

transform, we already have a three dimensional scalar

texture in the GPU memory. Choosing the float4 instead

of float texture, we can store a 3D vector besides the

distance value at each voxel. In this vector we can store

texture coordinates for instance.

In the preprocessing step we trace particles along the

gradient field accurately from every sample points, and

store the (u, v) coordinates of the hits in the 3D texture.

When rendering in real time, the texture coordinates of

any point of the surface can be read from this texture by

fast hardware interpolation. Of course this algorithm

suits only for rigid models with fixed geometry, and

gives only an approximate result depending on the

texture resolution. The problem is that real texture

projection is non-linear, but the interpolation between

texture samples will be linear. However, as the tests

showed, this method can be useful in many cases.

6 Conclusion, future work

According to our experiences from this demonstrative

application, sphere tracing proved to be efficient enough

to be able to reach real time frame rates on the GPU,

especially when we can afford preprocessing. This is the

case when rendering implicit surfaces with fixed

geometry.

Rendering deforming objects with this technique (figure

7), however generally excludes preprocessing. The

efficiency of the Lipschitz function based approach

depends on how accurately we can estimate the distance

from the surface. When the model consists of several

primitive functions, even the calculation of the distance

function can be expensive. The speed of the algorithm is

determined by the complexity of the contained functions.

Figure 8: F-Rep modeling - Boolean intersection and

union of a sphere and a cube. 53 FPS, 1280×1024 pixels.

The distance map contained 128×128×128 voxels.

We successfully integrated this ray-traced visualization

algorithm into the standard rendering pipeline. By

rendering the bounding box, then modifying the contents

of the depth buffer, the implicit objects can be used

together with the polygonal ones. The image synthesis

needs an extra rendering pass for each surface, but this

can be improved in the future.

The preprocessing method can be refined as well. If we

mention sampling it is worth thinking how large storage

space the samples consume if we take them according to

a 3D grid. In the future it would be useful to use more

efficient, hierarchical structures to perform adaptive

sampling.

Another important notice is that sphere tracing is actually

too cautious. We always step along the ray small enough

not to hit the surface, though in reality it is not a problem

if we cross the surface, this is even necessary for the

following numerical root finding. So the real solution

would be finding those largest spheres which radius does

not intersect the surface more than once. What we must

ensure is, that we can always find the first intersection.

This so-called relaxed sphere tracing would mean a

significant improvement compared to the one this paper

was about.

Acknowledgements

This work has been supported by the National Office

for Research and Technology (Hungary), by OTKA, and

by the Croatian-Hungarian Action Fund.

References

[1] Jules Bloomenthal, Implicit Surfaces. Article on

implicit surfaces in the Encyclopedia of Computer

Science and Technology (2000)

[2] László Szirmay-Kalos, Tamás Umenhoffer:

Displacement Mapping on the GPU – State of the

Art. Computer Graphics Forum (2008)

[3] John C. Hart: Sphere Tracing: a geometric method

for the antialiased ray tracing of implicit surfaces.

The Visual Computer, vol. 12., p. 527-545 (1996)

[4] William Donnelly: Per-Pixel Displacement

Mapping with Distance Functions. Nvidia GPU

Gems, p. 123-136 (2005)

[5] Donald G. Bailey: An Efficient Euclidean Distance

Transform. Combinatorial Image Analysis, p. 394-

408 (2004)

[6] Brian Wyvill, Mark Tigges: Texture Mapping the

Blobtree. University of Calgary, (1998)

[7] Alan Watt, Mark Watt: Advanced Animation and

Rendering Techniques, Chapter 7: procedural

texture mapping and modelling. (1992, ACM Press)

