
Flow Simulation using Obstacle Dependent Grids

Gergely Klár∗

Department of Control Engineering and Information Technology Budapest University of Technology
and Economics Budapest / Hungary

Abstract

In this paper we present a method to simulate visually
plausible large scale flow of fluids or smoke while main-
taining real-time speed. We define the simulation over
a coarse grid which is refined with more detailed grids
around moving obstacles where fine details may emerge.
The detailed grids also act as fixed frames of reference to
the surrounded obstacles to prevent the need for working
with moving boundaries in the flow.

Keywords: flow simulation, real-time simulation, level-
of-details, GPU computation, Navier-Stokes

1 Introduction

Modelling the flow of gases, fluids, and smoke has been
a field of interest for engineering sciences for a long
time. Computational fluid dynamics is a well developed
field, but application of its findings for computer graphics
started only in the last decade.

Flow simulation can be used to visualise a diverse range
of natural phenomena including rivers, smoke or wind.

There are two main approaches to re-create fluids or
smoke for computer graphics. The particle based approach
animates a large number of elements based on their inter-
actions with each other and the environment. On the other
hand, the grid based approach simulates the dynamics of
the fluid or smoke in a predefined region.

While these particle based methods are well suited for
simulations where there are many interactions with the
environment and the flow path is complex, grid based
methods are particularly important for smoke simulation.
The particle based simulation of smoke would require too
many particles to produce pleasing effects.

The main driving dynamics of a flow are captured by
the Navier-Stokes equations, which describe the motion
of incompressible flows. These equations can be decom-
posed to four principal terms, including advection, diffu-
sion, pressure, and external forces.

Advection is transport in a fluid. Objects immersed in
a flow are carried by the flow’s advection. Advection is
based on the flow’s velocity field, hence the velocity field
is said to be self-advected, because the changes in velocity
are caused by the velocity itself.

∗g.klar@creativereboot.hu

The diffusion term accounts for the diffusion of momen-
tum in the flow. This is defined in terms of the viscosity
of the fluid. This term is usually dropped in gas or smoke
simulations, yielding the so called Euler-equations.

The pressure term represents forces arising from com-
pression and expansion appearing in the flow due to ad-
vection.

Every other force interacting with the fluid or gas falls
in the category of external forces.

To be used in computational fluid dynamics, the original
partial differential equation is redefined in a finite differ-
ence form over grids of scalar and vector quantities. The
resolution of the grid defines the amount of details that can
appear in the flow.

Our paper organized as follows. First we will discuss
previous works about flow simulation in Section 2. This is
followed by the overview of the used simulation technique
and our new obstacle dependent grids method in Section
3. Implementation details are described in Section 4. We
present experiment results in Section 5, conclude and dis-
cuss future works in Sections 6 and 7.

2 Previous Works

The main challenge in flow simulation for computer
graphics is presenting realistic results while keeping the
grid resolution as low as possible thus reducing the re-
quired computational time. Fedkiw et al. [1] presented a
method called vorticity confinement to reinsert fine details
lost due to numerical dissipation. This way the grid’s res-
olution can be decreased without losing important visual
features.

Increase in accuracy can be achieved by using a stag-
gered grid in which vector quantities are represented at cell
boundaries and not in cell centres [2].

Due to the complex nature of the computations in-
volved, running simulations fast enough to allow the user
to interact with the flow in real-time presents further chal-
lenges. The evolution of modern graphics hardware gave
birth to methods and principles enabling partial differen-
tial equation (PDE) solving on the GPU at much higher
rates. As Harris presented in his work [3], the driving
dynamics of a flow defined by the Navier-Stokes equa-
tions can be efficiently and easily computed in GPU. The
highly parallel nature of the computations involved makes
the GPU a really suitable and fast platform. The use of



texture images as a discretized approximations of the vec-
tor and scalar fields is a key concept for PDE solving on
GPU, thus for the principle of fluid dynamics simulation
on the GPU as well.

Harris’ work utilizes an implicit method based on
Stam’s Stable Fluids [5]. This method not only provides a
stable simulation for arbitrary large time-steps and veloci-
ties, but the use of an implicit methods necessary in GPU
implementations, because explicit methods require storing
values to cells other than the one being processed, what is
not possible on current GPUs.

3 Overview

In this section first we discuss an implementation of a
timestep based solver for the Navier-Stokes equations. Af-
ter this we present our new method what uses a modified
version of this solver to simulate large scale flows using
overlaying grids.

3.1 Flow simulation on the GPU

Our purpose in fluid and gas simulations for computer
graphics is the visualization of the evolution of the flow.
Opposed to some engineering applications, we are not
looking for a stationary solution of the Navier-Strokes
equations, but we are interested the changes of the velocity
field.

The Navier-Stokes equations describe the change of the
velocity field with the following partial differential equa-
tions:

∂u
∂ t

=−(u ·∇)u− 1
ρ

∇p+ν∆u+F, (1)

∇ ·u = 0, (2)

where ρ is the density of the fluid, and ν is the kinematic
viscosity. The terms on the right-hand side of the first
equations are called advection, diffusion, pressure, and ex-
ternal forces terms.

A timestep based solution to these equations is pre-
sented in details in Harris’ work [3]. Harris uses the opera-
tor splitting technique to define operations that result in an
aproximation of the velocity field for the next timesteps.

The defined operators are advection (A), diffusion (D),
application of external forces (F) and projection (P). Us-
ing these notations, computation of the velocity field in
the next timestep un+1 from the current velocity field un is
described by the following equation:

un+1 = P◦F◦D◦A(un).

Each of these operators corresponds to a term on the
right-hand side of equation (1), and is implemented as a
fragment shader program.

The advection operator computes an approximate solu-
tion for the advection term by using the implicit method

described in Stam’s Stable fluids [5]. The resulting opera-
tor for r scalar or vector field advected by velocity field u
is:

Ar(x) = r(x−∆t ·u(x)).

The diffusion operator is defined to approximate the dif-
fusion term of equation (1). The implicit form of the solu-
tion for this equation yields a Poisson equation:

(I−∆t ·ν∇2)un+1 = un, (3)

where ∆t is the timestep, and I is the identity matrix.
Harris uses a Jacobi iteration implemented in shader

program to solve Poisson equations. The shader program
computes x(k+1)

i, j for each cell of a discretized scalar or vec-
tor field x using:

x(k+1)
i, j =

x(k)
i+1, j + x(k)

i−1, j + x(k)
i, j+1 + x(k)

i, j−1 +αbi, j

β
,

where b is the right-hand side of the Poisson equation, α
and β are constants. This general form of the iteration
allows us to use the same shader with different constants
to solve other Poisson equations.

For solving equation (3), x is un+1, b is un, α = (∆x)2

ν∆t ,
and β = 4 + α , where ∆x is the horizontal or vertical dis-
tance of the cell centres in the discretized grid. We work
with equidistant grids, so these two distances are the same.

To account for the boundary conditions, when an (i′, j′)
index refers to a cell outside of the fluid, the cell in the
centre is (i, j) and (i′, j′) 6= (i, j), then xi, j is used in the
iteration in place of the respective xi′, j′ terms.

The operator for external forces includes all the applica-
tion specific forces that affect the flow. Such forces can be
gravity, buoyancy, or forces representing user interactions.

The projection operator corresponds to the pressure
term of equation (1), but using the Helmholtz-Hodge de-
composition theorem it can be show, that this term projects
w = F◦D◦A(un) to a divergence-free velocity field un+1,
thus the solution for the next timestep satisfies equation
(2).

The Helmholtz-Hodge decomposition theorem is also
used to find a scalar field q for which ∇q = 1

ρ ∇p. Using
the theorem to get q for vector field w we get:

∇2q = ∇ ·w. (4)

This is also a Poisson equation, hence the aforemen-
tioned Jacobi iteration can be used to find a solution for
q. For this the Jacobi iteration used with x = q, b = ∇ ·w,
α =−(∆x)2 and β = 4.

The projection operator is more complex than the ones
before and requires several steps to compute un+1 = Pw.
These steps are: computing the divergence of w, solving
the Poisson equation (4) with Jacobi iteration, and sub-
tracting the gradient of q from w.

These steps are implemented either as shader programs,
or as repeated application of a shader program in case of
the Jacobi iteration.



The application of these operators results in a new
divergence-free velocity field that describe the state of the
fluid in the next timestep. This velocity field is then used
again with the operator to continue the simulation.

3.2 Obstacle Dependent Grids

Although the speed-up gained by GPU implementation is
remarkable, the attainable scale of the flow while keep-
ing the simulation real-time is limited. Simulation of large
scale flows with fine details requires high computation
times when using ordinary methods.

To enable larger scales of simulated flow whilst keeping
computational costs low, we define a level of detail hierar-
chy over the scalar and vector fields used in the equations.

Let’s denote the coarse grid covering the whole field as
the main grid, and denote the smaller, but refined grid as
the sub-grid. The sub-grid overlays a portion of the main
grid, but in such manner that several cells of the main grid
are covered by the refined grid as shown in Figure 1. If the
proportion of the grids were such that the sub-grid covers
only a few of the main grid’s cells, it would lead to sharp
changes at the edges of the sub-grid.

Figure 1: Relation of the main grid and the sub-grid.

The sub-grid is defined to surround the obstacles that
might cause fine detailed changes in the flow. The ob-
stacle should be fully contained in the sub-grid and addi-
tional space is required for the details to emerge between
the obstacle boundaries and the sub-grid’s edges. The ex-
act placement and alignment of the obstacle in the sub-grid
is arbitrary but immutable during the simulation.

The sub-grid is fixed to the object it contains, and its
frame of reference follows the objects, should it be mov-
ing. This will result in a difference between the grid’s and
the sub-grid’s frame of reference, that is addressed during
computations. The benefit of fixing the frame to the ob-
ject is that this way we can tackle the need to work with
moving obstacles and the boundary conditions have to be
calculated only once.

The result of the prior constraints is that only one object
or objects moving together should be contained by a single
grid. Allowing multiple, independently moving obstacles
in the same grid would be contradicting to our aim to avoid
the need of working with moving obstacles.

Admittedly, multiple obstacles can be enclosed by sep-
arate refined grids, but these grids should never overlap

during the simulations.

Complementary Velocities

The flow in the sub-grid emerges from the difference be-
tween the frames of references. Zero velocities in respect
to the main grid’s frame are non-zero velocities in a mov-
ing sub-grid’s frame. We address this difference by adding
complementary velocities to the sub-grid. Our aim is to
modify the sub-grid’s velocities to counter the motion and
to keep zero velocity parts of the grids still and non-zero
velocity parts moving the proper direction. We have to
deal with linear and circular motion of an obstacle sep-
arately, because circular motion could be approximated
with linear motion only if the motion’s centre is far off
from the sub-grid.

In case of linear motion the complementary velocity is
uniform over the sub-grid, and equals the inverse of the ob-
stacle velocity, rotated and scaled to the sub-grid. Figure 2
illustrates this relation between the obstacle’s velocity and
the complementary velocities.

Figure 2: Linear motion of an obstacle (left) and the re-
quired complementary velocities (right).

In case of circular motion the complementary velocity
is derived from the tangential velocity for each cell of the
sub-grid as shown in Figure 3. Section 4.2 details the com-
putations of this velocity.

Figure 3: Circular motion of an obstacle (left) and the re-
quired complementary velocities (right).

4 Implementation

The GPU implementation follows the GPGPU concepts
described in Harris’ work [4]. The grids acting as vector
and scalar fields are represented using textures with texels



corresponding to the cells centres of the grids. Since each
texel is a four dimensional vector, vector field calculations
can be done with ease and each texture can be used to store
up to four scalar fields. Figure 4 demonstrates a texture
containing values of a two dimensional velocity field.

Figure 4: Velocity field texture example.

The computation steps are done on the GPU by frag-
ment programs. To invoke the computations, a full-screen
quad is rendered with a texture set as render target. The
results will be stored in the specified render target. The
fragment program calls will happen on a per-pixel basis,
therefore the quad’s texture coordinates have to be set up
so that each texel maps perfectly to a single pixel. Failing
to do so will result in interpolated values getting stored in
the result texture. To prevent this, a half pixel sized offset
should be applied to the quad’s texture coordinates.

The GPU provides features on the hardware that would
require additional calculations in a CPU implementation.
These features include bilinear interpolations for texture
reads for addresses between texel centres. Exploiting this
feature yields more precise numerical simulation. Han-
dling of texture addresses outside a texture’s range can
also be done automatically by the hardware, so there is
no need to define separate cases for computations of inner
and boundary cells.

4.1 Simulation Steps

Each simulation step consists of the following operations:
simulation step on the main grid, then simulation step on
the sub-grid, and finally sub-grid to main grid feedback.
Listing 1 details these operations. Each of these operations
are described in the following sections.

The computations on the main grid are independent
from the sub-grid, therefore the advection and projec-
tion operations can be implemented with the programs de-
scribed by Harris [3]. Similarly, we do not have to take the
main grid into account for the projection operation of the

for each advectant of the main grid:
advect(advectant);

advect(velocity);
project();

for each advectant of the sub-grid:
advectOnSubGrid(advectant);

advectVelocityOnSubGrid(subGridVelocity);
correctVelocities();
projectOnSubGrid();

updateTime();
updatePosition();

feedback();

Listing 1: Detailed simulation step

sub-grid. Therefore projections of the main grid and the
sub-grid differ only in parameters.

The advection of velocity differ from advection of other
carried quantities in the sub-grid. The sub-grid’s advec-
tions depend on the main grid, and velocities read from
the main grid have to be converted to the sub-grid’s frame
of reference and be modified by the complementary veloc-
ities.

In each simulation step the sub-grid’s velocities have to
be readjusted after advection, because advection corrupts
the complementary velocity components.

4.2 Velocity Correction

At each change of the obstacle’s velocity, angular velocity
or rotational centre the complementary velocities have to
be readjusted. This is done by subtracting the old, then
computing and adding the new complementary velocities
to the sub-grid’s values.

Let w denote the complementary velocity. This vector
w is simply the scaled and rotated inverse of the obstacle
velocity for linear motion. Because w is uniform over the
sub-grid, advection does not affect this component of the
velocities, so there is no need for correction after advec-
tion during linear motion. Vector w is computed using the
following equation:

w = rotate(−v/scale,−φ),

where v is the obstacle’s velocity, scale is the sub-
grid/main grid side ratio, and φ is the angle of the sub-
grid’s and main grid’s axes. Because handling linear mo-
tion is quite straightforward, our further discussion fo-
cuses mainly on circular motion.

In case of circular motion, vector w is not uniform over
the sub-grid, but changes with the distance from the cen-
tre of rotation in each cell. Because our flow dynamics’
advection term uses an implicit method to transport veloc-
ities, vector w has to be defined for cell position p in the



grid so that p−w has the same distance from the centre of
rotation as p does.

To achieve this, instead of using the tangential veloci-
ties derived from the angular velocity we use the follow-
ing equation. Let cr denote the centre of rotation, ω the
angular velocity, ∆t the timestep of the simulation, and let
r = p− cr.

r′ = rotate(r,−ω∆t),

w = (r− r′)
1
∆t

.

Note that w is not tangent to the circle of motion, there-
fore not parallel to the tangential velocity. Tracing back
along w from p by ∆t, as it happens in advection, yields a
point on the circle.

Since advection of a field u, either scalar or vector, at
point p is defined as unew(p) = u(p−∆tv(p)), the quan-
tities if u will be carried along perfectly in circles defined
by the centre of rotation if it is not affected by other veloc-
ities.

The advection carries the velocity from the back-traced
cell to the one being processed. The magnitudes of the
original and the back-traced velocities are the same, but
their directions are different. To account for this, the ve-
locities of the sub-grid have to be rotated toward the centre
of the circular motion as if it were centripetal acceleration.
This rotation is defined by the following equation:

w′ = rotate(w,ω∆t).

This step can be viewed as rotating the velocity field’s
vectors to follow the rotation of the grid.

4.3 Advection

The main difference between the advections on the sub-
grid and on the main grid is that the sub-grid’s advection
takes the main grid’s values into account too. Whenever
the implicit scheme’s back-traced position is not inside the
sub-grid, the corresponding position of the main grid is
used.

In Listing 2, we show the fragment programs used for
advection. In both cases first a check is made to see if the
processed cell is inside the obstacle. If it is, then zero value
is returned. Next, if the back-traced position is inside the
sub-grid, then the value in given position multiplied by the
dissipation term is returned.

If the back-traced position is outside of the sub-grid,
the corresponding main grid position is computed using
local2world, and the value of the main grid’s advected
field is read from the resulting position. While this value
can be used directly if the advected quantity is not the ve-
locity, but further steps are needed if it is. The function
chordVelocityAt returns the complementary veloc-
ity for circular motion, as described in the previous sec-
tion. Additionally the velocity have to be converted to
the sub-grid’s frame of reference, what is done by the
worldV2localV function.

float4
psAdvectVelocityOnSubGrid(vsOutput input)
: COLOR0

{
float b = tex2D(boundary, input.tex).w;
float2 pos;
float4 ret;
if (b == 1.0)

ret = 0;
else
{

pos = input.tex - timestep *
tex2D(velocity, input.tex);

float2 posC = clamp(pos, 0,1);
if (posC.x == pos.x && posC.y == pos.y)
ret = dissip*tex2D(advectant, pos);

else
{
pos = local2world(pos);
ret = tex2D(mainGridVelocity, pos);
ret.xy = worldV2localV(ret.xy);
ret.xy += chordVelocityAt(pos,

centre, angularVelocity);
}

}
return ret;

}

float4
psAdvectOnSubGrid(vsOutput input)
: COLOR0

{
float b = tex2D(boundary, input.tex).w;
float2 pos;
float4 ret;
if (b == 1.0)

ret = 0;
else
{

pos = input.tex - timestep *
tex2D(velocity, input.tex);

float2 posC = clamp(pos, 0,1);
if (posC.x == pos.x && posC.y == pos.y)
ret = dissip*tex2D(advectant, pos);

else
{
pos = local2world(pos);
ret = dissip*tex2D(mainGridAdv, pos);

}
}
return ret;

}

Listing 2: Modified advections implemented as fragment
programs



float4
psTransformVelocity(vsOutputPass input)
: COLOR0

{
float2 v = tex2D(velocity, input.tex);
v -= chordVelocityAt(input.tex,

relCentre, angularVelocity);
v = localV2worldV(v);

return float4(v,0,0);
}

Listing 3: Fragment program used for velocity transfor-
mation before feedback

4.4 Feedback

Because every level of the hierarchy on the whole depends
on an other one, efficient feedback of the simulated quan-
tities is crucial.

Feedback from the sub-grid to the main grid can be done
with ease by exploiting the fact that the simulation takes
place on the GPU. For feedback, for each cell of the main
grid the corresponding cells of the sub-grid should be de-
termined, their values filtered, for example, by averaging,
and should be registered back to the main grid. Fortunately
this task can be committed to the graphics hardware by
rendering a full-screen quad for the main grid and then
rendering a scaled and properly aligned quad for the sub-
grid. This can be done by a simple pass-through fragment
program for the scalar fields such as inks or smoke densi-
ties. The render target’s resolutions should be the same as
the main grid’s. The new data is the result of the current
simulation step and should be used in the subsequent step
for the main grid.

However, in case the advected field is the velocity field
itself, an additional step is needed to transform the sub-
grid’s velocities to the main grid’s frame of reference. For
this step we render the velocity field to a temporary texture
using the fragment program shown in Listing 3. First the
complementary velocity is subtracted from the sub-grid’s
velocity then it is converted to the main grid’s frame of
reference using the localV2worldV function, what is
the inverse of worldV2localV used during advection.

4.5 Numerical Diffusion

The discrete nature of the methods results in diffusion of
the advected quantities, particularly of velocities. This
leads to a serious problem if the surrounded obstacle is
making circular motion. Considering only the comple-
mentary velocities, back-tracing along a velocity vector
will mark a point of the same distance away from the cen-
tre of the rotation as the original point, but this new point
will coincide with a cell centre only in the rarest cases in
real use. Off-centre values read from a texture will be in-
terpolated from the ones surrounding it by the graphics

hardware. While this is appealing in general and improves
numerical accuracy, in this very case the interpolation will
result in velocities that will cause the advected quantities
to spiral inwards.

To resolve this problem, the advected velocities should
be boosted by a small amount, using the dissipation term
in advection. The exact boosting rate heavily depends on
the other parameters of the simulations, but they can be
found easily by experimenting.

5 Results

The main achievement of our work is that large scale flows
with relatively small moving elements can be simulated
without a demanding simulation of large scalar and vector
fields while preserving fine details.

To evaluate the performance of our obstacle dependent
grids method we made several experiments. First, to de-
termine a reference value for the frame rate, we ran the
simulation on a single, 512× 512 grid. This simulation
ran at 7 frames per second. Then we ran the experiment
using hierarchic grids of several size ratios and resolutions.
The size ratio defined the resolution of the sub-grid, so the
sub-grid could be considered as a portion of the grid of the
reference experiment.

The experiments consisted of simulating a scenario with
a single fine grid, then making the same simulation, but
this time using hierarchical grids. We tested the hierarchi-
cal grids method with different size ratios, while examin-
ing the frame rates of the simulation.

Ratio Sub-grid Main grid FPS
1/2 256×256 256×256 19
1/2 256×256 128×128 28
1/4 128×128 256×256 32
1/4 128×128 128×128 60

Table 1: Performance results.

The observed results are displayed in Table 1. The
columns of the table represent, from left to right, (i) the
size ratio of the main grid and the sub-grid, (ii) the reso-
lution of the sub-grid, which directly arises from the size
ratio, (iii) the resolution of the main grid, and (iv) the ob-
served frame rate.

An example of simulated smoke disturbed by an object
can be seen in Figure 5. Both the main grid’s and the sub-
grid’s resolution is 256×256. The main grid’s side is five
times longer than sub-grid’s, therefore the same simulation
without using hierarchical grids would require processing
of grids of size 1280×1280.

6 Conclusions

In this paper we presented a method to improve the per-
formance of fluid simulations when the simulated domain



Figure 5: Smoke animated using hierarchical grids. Left: the smoke density field during simulation, the obstacle is marked
with red. Right: simulation composed to a simple scene with the area covered by the sub-grid indicated.

is significantly larger, than the obstacles causing distur-
bances in the flow. We established our method on the as-
sumption that fine details will emerge near these obstacles,
and these details dissipate further away from the obstacles.
Using this assumption we formulate the simulation using
a low resolution grid for the whole domain and a high res-
olution grid for the the proximity of the obstacles.

Our experiments showed that using this method resulted
in notable faster simulations rates while losing relatively
small amount of detail.

7 Future work

The algorithms presented in this paper are defined for two
dimensional flows but their main ideas are independent
from this constraint.

Simulation of three dimensional flows is of much inter-
est nowadays and due to its high computational cost sim-
plification methods are worth being researched.

Utilizing this technique for three dimensional flows
would provide significantly more performance gain than
for two dimensional flows. Providing means to reduce the
required grid resolution in two dimensions would reduce
the solution time and space requirements by the second
power, but doing likewise in three dimensions would re-
duce by the third power.

For today’s hardware this would not only make a differ-
ence on the highest achievable speed and resolution, but it
would determine the usability of three dimensional flow in
applications.

8 Acknowledgements

This work has been supported by the National Office for
Research and Technology (Hungary), by OTKA, and by
the Croatian-Hungarian Action Fund.

References

[1] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen.
Visual simulation of smoke. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages
15–22, New York, NY, USA, 2001. ACM Press.
http://doi.acm.org/10.1145/383259.383260.

[2] Michael Griebel, Thomas Dornseifer, and Tilman Ne-
unhoeffer. Numerical simulation in fluid dynamics:
a practical introduction. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.
ISBN 0-89871-398-6.

[3] Mark Harris. Fast fluid dynamics simulation on the
GPU. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, New York, NY, USA, 2005. ACM Press.
http://doi.acm.org/10.1145/1198555.1198790.

[4] Mark Harris. Mapping computational concepts to
GPUs. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, New York, NY, USA, 2005. ACM Press.
http://doi.acm.org/10.1145/1198555.1198768.

[5] Jos Stam. Stable fluids. In SIGGRAPH
’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive tech-
niques, pages 121–128, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.
http://doi.acm.org/10.1145/311535.311548.

[6] L. Szirmay-Kalos, Gy. Antal, and F. Csonka.
Háromdimenziós grafika, animáció és játékfejlesztés.
ComputerBooks, 2003. ISBN 9-636-18303-1.

[7] Stefan Turek. Efficient Solvers for Incompressible
Flow Problems: An Algorithmic and Computational
Approach. Springer, Berlin, 1999. ISBN 3-540-
65433-X.


