
Realistic Lighting of Architectural Projects Based on IBL Method

Krzysztof Wrobel∗

Computer Graphics Group

Szczecin University of Technology

Szczecin / Poland

Abstract

The aim of this paper is to present new approach to re-

alistic rendering of architectural objects, which simplifies

scene lighting preparation process, and shortens rendering

time. We present how to apply Image Based Lighting in

visualization of architectural projects, and how to imple-

ment it so that rendering takes at most few seconds, even

for complex 3D models. Our results show that this ap-

proach can be used in practice successfully, and that there

are many ways to refine the method, and obtain images

with even better quality.

Keywords: architectural visualization, CAD/CAM, im-

age based lighting, high dynamic range imaging, image

synthesis

1 Introduction

Currently dedicated CAD systems are used to develop ar-

chitectural project. During the design process, architect

draws the shape of a building as a 3D model. Such model

has to be presented to the investor for final approval. But

most CAD systems, although very efficient in design, are

not effective in producing realistic visualizations of 3D

models.

We decided to develop and implement software that

would import 3D architectural project from a CAD envi-

ronment, and automatically produce realistic renderings,

at minimum effort from user. Visualization process con-

sists of: conversion of material and geometry form CAD

project, lighting configuration, rendering, tone mapping

and visualization.

One of the most difficult and time consuming parts of

the process of creating realistic 3D visualizations is con-

figuring scene lighting. Average architect finds it diffi-

cult to setup position, direction, luminance and color of

light sources in a scene. Even experienced architects are

not will to spend many hours on this task. Therefore

we decided to replace this process with something much

more user friendly - Image Based Lighting (IBL) tech-

nology [1]. In our solution user needs only to choose

High Dynamic Range (HDR) image that he wants to use

for scene lighting - and light sources will be setup in the

∗krzysztof.wrobel@gmail.com

scene automatically. We use IBL method which finds light

sources in HDR image, then maps their position onto a

sphere surrounding 3D model, and assignees appropriate

properties to all light sources in the scene.

There are many programs dedicated to architecture de-

sign, one of the most popular is Autodesk Architecture

(the latest version: Autodesk Architecture 2008). This is

complex and expensive system that doesn’t provide good

enough visualization tools. Autodesk Architecture ren-

dering engine produces poor quality images and visual-

ization computations are rather slow. Because of this, to

create professional and realistic visualizations, additional

programs are used by professional architects. There are

a few such programs in a market: Autodesk 3ds Max,

Blender, Maya, Autodesk Viz, etc. All of them are ca-

pable of producing realistic high quality images. They use

similar global illumination rendering algorithms: photon

mapping or radiosity methods supported by ray tracing and

scanline algorithms. The main drawback of these methods

is long computation time. Usually many test images have

to be created in architectural visualization before achiev-

ing desired effect. This is why shortening rendering time

is so crucial.

This drawback was recognized and efforts to find so-

lution were undertaken. In 1997 Debevec and Malik [2]

described an algorithm of recovering high dynamic range

Radiance maps from photographs. In the following pa-

per [1] the Image Based Lighting (IBL) method was pre-

sented and both theoretical and practical aspects of realis-

tic rendering based on IBL were discussed. In this paper

we present adaptation of this method to visualization of

architectural projects.

In section 2, detailed scheme of our algorithm is pre-

sented and each step of the algorithm is explained. In

section 3 we reveal implementation details and present

achieved results. Both quality of acquired images and time

needed to render them are discussed. In the final section

we conclude the paper and propose future work.

2 Realistic rendering of architectural

objects

In this section we present rendering method that allows

obtaining high quality images of artificial architectural ob-

jects. The method is based on the IBL algorithm. Their



results are comparable to global illumination methods but

computational costs are significantly smaller. It uses HDR

images for realistic illumination of rendering scene, and

because of that, rendering process is enriched and simpli-

fied. Only by changing light probe, we can light up objects

with morning like lighting, evening light, lightening cap-

tured in a sunny or cloudy day, or even with a light sample

obtained directly at the location of future building.

Architectural geometry
transformation

Materials
transformation

Light probe
acquisition

Light sources
identification

Light sources
mapping

Real time

Rendering

HDR

image

Tone

mapping

LDR

Visualization

Architectural Project Enviroment

Figure 1: Algorithm generating realistic images of archi-

tectural objects. Starting from geometry transformation

through light computations, real time rendering, post pro-

cessing and visualization of generated picture

In Figure 1 a proposed algorithm for realistic render-

ing of architectural objects is presented. We assume that

the starting point is when we have a 3D model of an ob-

ject. Most architecture dedicated programs use their own

file type to store data. Therefore we need to import model

data, such as: meshes, materials, texture and camera co-

ordinates from an exchangeable format. In our project we

use 3ds format, one of the most popular 3D geometry for-

mats in the Internet, supported by various modelers.

Since color and pattern of an object is very important in

visualization of architectural projects, we have to import it

along with geometry. Textures are simply 2D images, but

can be stored in various formats. Most popular ones are

bmp, jpg, gif, png, tga. To be able to handle many formats

we use SDL Image library.

In our approach we do not use whole light probe in

rendering stage. We use only points identified as light

sources. The problem of identifying light sources is not

trivial and different approaches to this problem can be

found in literature. Ostromoukhov et al. [12] proposed

hierarchical importance sampling algorithm, based on the

Penrose tiling. Kollig and Keller [4] based their algorithm

on Lloyd’s relaxation method. Agarwal et al. [8] proposed

an approach that combines elements of importance and

stratified sampling. Last but not least paper describing ap-

proach based on Monte Carlo algorithm was presented on

CESCG 2007 by Maciej Laskowski [5]

Identified light sources have to surround objects being

lighted. Therefore light sources can be mapped onto a

cube, sphere or hemisphere that surrounds 3D geometry.

Mapping lights onto a sphere can be easily obtained with

use of spherical coordinate system. First step is to convert

position of light in 2D HDR to relevant position in spheri-

cal coordinate system (from 2D Cartesian space to spher-

ical coordinates), and then convert new values to final 3D

space coordinates. In this space geometry of architectural

object must be also defined.

Preparations described earlier provided all the data nec-

essary for rendering. Approach to rendering described

in this paper is significantly different form what was

presented in 1998 by Debevec [1]. Since 2002 when

fourth generation of GPUs was introduced, it is possible

to run custom build pixel and fragment shader programs

on graphic cards. Taking advantage of this, to achieve

best quality at affordable time cost Blinn-Phong shading

model was implemented, so that it can run directly on

GPU, and is computed for each fragment of a rendered

image. Unlike global illumination algorithms, IBL can be

rendered in real time by modern GPUs even with hundreds

of light sources lighting a scene Last part of rendering pro-

cess is applying TMO (Tone Mapping Operator). Ren-

dered HDR images contain much higher luminance than

the usual LCD can display. Therefore it is required to com-

press that luminance to the range supported by computer

LDR (Low Dynamic Range) monitor. Good effects are

achievable with use of gamma compression and clamping

(please see [3] for details). Presented algorithm is very

flexible. It could be easily extended - especially in the last

part, where rendered HDR image could be refined, and

special effects could be added to create even more realistic

visualization. It is also possible to skip some steps, like

acquiring Light Probe, because we can use images that are

available on the Internet.

3 Implementation and results

In this section we present the software for realistic render-

ing of architectural projects. The implementation scheme,

environment and additional libraries used in the software

are described. We also discuss testing environment and

achieved results.

In Figure 2 main modules of software architecture are



Scene
geometry

HDR
data

Renderd
pixels

SDL_image
Library

Texture
data

SDL
surface

Cg
Toolkit

CPU

GPU

Architectural model
data conversion

SDL
library

Lib3ds
library

IBL

Method

PFSTOOLS
library

Cg fragment &
vertex shaders

Output
image

Figure 2: Architecture of the software for realistic render-

ing of architectural projects. Separate CPU and GPU pro-

cessing pipelines are presented. External libraries, except

for Cg Toolkit, are available under GNU Lesser General

Public License

presented. The module responsible for loading architec-

tural projects consists of three separate libraries. Lib3ds

library [6] (version 1.3) is used to access 3D model data

(e.g. meshes, materials and texture coordinates) stored in

the .3ds file format. Since textures can be stored in various

formats, the SDL image library [10] (version 1.2) is used

to decode this formats and write pixel values to the SDL

Surface structures. The SDL Surface class is implemented

in the SDL library [9] (version 1.2).

Separate part of the software handles HDR image op-

erations. The PFSTools library [7] (version 1.6.2) meth-

ods and classes are used to load, store, and manipulate

Light Probe images. HDR image used for scene lighting

is loaded into the program in RGB format. To obtain lu-

minance values of each pixel, we convert image to XYZ

format.

IBL method implemented for this presentation, finds 49

pixels with biggest Y component, and treats them as light

sources. The number of light sources could be increased

to obtain even more accurate renderings. Position of all

light sources is mapped from image space to world space

coordinates, and then used in color calculation process.

Color calculations are made by fragment shaders in

GPU in following order. Firstly material properties are ac-

quired. If fragment being processed has a texture assigned

to it, texture image has to be sampled. Then lighting equa-

tion is solved. Ambient component is computed once for

each fragment, whereas diffuse and specular components

are calculated accordingly to number of light sources.

Last part of the process is to apply tone mapping oper-

ator. Because tone mapping calculations are done in GPU

for each fragment separately and usage of local tone map-

ping would be tricky, we implemented global tone map-

ping operator. We use gamma operator with gamma set to

1,8.

Vertex shaders are used for model-view-projection

transformations.

The software is written in C++ under Microsoft Visual

Studio 2005 environment. We use Cg Toolkit (version

1.5), provided by NVIDIA Corporation, to program GPU.

Figure 3: 3D Architectural test model (downloaded

from [11]), rendered in Autodesk 3ds Max(most impor-

tant settings used: scanline renderer, radiosity, advanced

shadows, antialiasing, bump maps). We use this rendering

as a reference for further comparisons.

Figure 4: Sequence of transformations necessary to place

sub-objects in right object space positions. Images on the

left side show view of the model where actual sub-object

geometry was replaced with spheres. Images on the right

side show actual object geometry.



In the Figure 3 the test 3D model is presented. Like

most of architectural models, it is very complex, consists

of 113 hierarchically arranged sub-objects (Figure 4), each

built with over 30 000 faces and 20 000 vertices. It comes

along with 18 high resolution diffuse textures and 18 bump

maps.

Figure 5: Three example images rendered by our IBL al-

gorithm (top) and exemplary Autodesk 3ds Max rendering

- most important settings used: scanline renderer, radios-

ity, advanced shadows, antialiasing, bump maps(bottom).

The different light probe was used for each IBL rendering

In Figure 5 images of rendered monastery are presented,

together with HDR images used for the scene lighting.

While selecting light probes, our main concern was not

what does light probe actually present, but rather what will

be the tint and brightness of light sources selected from it.

Also because we wanted to present at least few samples,

and the light probe doesn’t affect the IBL algorithm itself,

we decided to use already existing light probes, rather than

creating our own ones. This approach let us obtain signif-

icant difference in rendered images. The tint of the build-

ing changes together with a light probe that is lighting the

scene.

The quality of achieved images is higher than images

obtained by OpenGL rendering (see Figure 4 for an exam-

ple), but Autodesk 3ds Max engine generates higher qual-

ity images 3. There are still some optical phenomenon’s

(like Bump Mapping and shadow rendering) that are not

implemented in our software. They have great influence

on image quality and further development of our engine

should even surpass Autodesk 3ds Max renderings.

The hardware used to render all images presented in this

Rendering

method

Time to render

one frame

Decrease of

rendering time

in comparison

with the IBL

method

OpenGL 0.5 second 4x

IBL 2 seconds -

Autodesk 3ds

Max

7 minutes 59

seconds

240x

Table 1: Rendering time of the test scene.

paper consists of:

- Intel Pentium M 760 (2 GHz) 533FSB 2MB L2 Cache,

- 1 GB Ram, PC 4200 DDR2-533,

- NVIDIA GeForce Go 6600 256MB GPU.

Time necessary to render images is shown in table 1.

As we can see hardware accelerated IBL is slightly slower

than OpenGL rendering. But our method is 240 times

faster than Autodesk 3ds Max rendering engine. In many

application this speed-up can compensate the drawbacks

in image quality between IBL and Autodes 3ds Max meth-

ods.

4 Conclusions and Future Work

In order to achieve fast generation of realistic renderings of

architectural objects, we have presented and implemented

a framework that uses IBL method to light up the scene,

and then uses GPU to perform fast and accurate color cal-

culations. Presented results show that our approach gives

results comparable to Autodesk 3ds Max renderings. Our

method generates images of architectural objects, at mini-

mum effort from user. Conversion of 3D model designed

in CAD system, is in most cases fully automatic, even for

complicated models that consist of many sub models, and

use many materials or textures. For our test case result

was generated 240 times faster, than in software dedicated

to create photo realistic images. Our renderer generates

images of almost equal quality in comparison to Autodesk

3ds Max Radiosity renderer. To achieve higher quality im-

ages in comparison with Autodesk 3ds Max, other optical

phenomenon’s should be implemented (e.g. soft shadows,

bump mapping, environment mapping). Including addi-

tional objects, and a background accompanying the main

model, would also contribute to the overall impression.

Last but not least, more effective tone mapping operator,

(e.g. local version of photographic operator) could be im-

plemented.

5 Acknowledgments

The research work, which results are presented in this

paper, was sponsored by Polish Ministry of Science and

Higher Education (years 2007-2008).



References

[1] Paul E. Debevec. Rendering with natural light. In

SIGGRAPH ’98: ACM SIGGRAPH 98 Electronic art

and animation catalog, page 166, New York, NY,

USA, 1998. ACM.

[2] Paul E. Debevec and Jitendra Malik. Recover-

ing high dynamic range radiance maps from pho-

tographs. In SIGGRAPH ’97: Proceedings of the

24th annual conference on Computer graphics and

interactive techniques, pages 369–378, New York,

NY, USA, 1997. ACM Press/Addison-Wesley Pub-

lishing Co.

[3] Greg Ward Paul E. Debevec E. Reinhard,

Sumanta Pattanaink. High Dynamic Range

Imaging, acquisition, display, and Image-Based

Lighting. Elsevier, 2006.

[4] K. Kollig and A. Keller. Efficient illumination by

high dynamic range images. In Europgraphics Sym-

posium on Rendering: 14th Europgraphics Work-

shop on Rendering, page 4551, 2003.

[5] Maciej Laskowski. Detection of light sources in dig-

ital photographs. In 11th Central European Seminar

on Computer Graphics, 2007.

[6] Lib3ds. Available from http://lib3ds.

sourceforge.net/.

[7] PFSTools. Available from {http://www.

mpi-inf.mpg.de/resources/pfstools/

}.

[8] S. Belongie S. Agarwal, R. Ramamoorthi and H.W.

Jensen. Structured importance sampling of environ-

ment maps. In ACM Transactions on Graphics, page

605612, 2003.

[9] SDL. Available from http://www.libsdl.

org/projects/SDL_image/.

[10] SDLimage. Available from http://www.

libsdl.org/projects/SDL_image/.

[11] TurboSquid. Available from http://www.

turbosquid.com.

[12] C. Donohue V. Ostromoukhov and P.-M. Jodoin. Fast

hierarchical importance sampling with blue noise

properties. In ACM Transactions on Graphics, pages

488–495, 2004.


