
Real-time Image Based Rendering Using Limited Resources

Esmir Pilav∗

Belma Ramić-Brkić†

Sarajevo School of Science and Technology
Sarajevo / Bosnia and Herzegovina

Abstract

We are living in an age when computers are becoming
powerful enough that real-time graphics are experiencing
fewer computational issues. One of the areas where lim-
ited computational power still prevails is that of hand-held
devices which usually have very limited memory and com-
putational power. In this paper, we present a solution for a
real-time data visualisation application. The application is
to be applied to a hand-held medical device that assesses
patient’s needs for further examination in the case of con-
cussion, stroke or other brain disorder. The scalp electric
potential difference is measured via electrodes and is vi-
sualised on the display of the device. In this paper we
describe the first stage in the development of a 3D visuali-
sation solution for this device.

Keywords: Real-time CG, Image based rendering, Data
visualisation, Optimization

1 Introduction

A number of authors have explored visualisation with re-
spect to devices with the problem of limited resources.
In [7] authors explored how to accurately display com-
puter graphics application colours on different devices.
In [6] authors developed an optimized Linux-based sys-
tem whose capabilities are in line with the requirements
for our project. A framework for rendering 3D graphics
on a hand-held device is presented in [3].

The advance of technology has given rise to widespread
use of hand-held devices, in particular, the use in medical
diagnostics ([4]). It is important to be able to determine
the type and severity of injuries immediately. Equipping
ambulances with different devices, improves the ability of
medical professionals to act in the best possible way and
improves the victim’s chances of quick recovery.

The particular device addressed in this paper is dis-
played in Figure 1. It is somewhat bigger that an iPod,
is battery operated and provides immediate information to
carry out timely medical intervention in cases of brain dis-
orders, such as stroke or concussion. It can be used by
physicians or nurses, Emergency Medical Teams, military

∗esmirpilav@yahoo.com
†belma.ramic@ssst.edu.ba

medics and other first responders. It is not intended to de-
termine the final diagnosis, but can assist in making triage
decisions.

It measures the difference in a electroencephalo-
gram(EEG) and a magnetoencephalogram(MEG) at dif-
ferent points on the scalp. This information describes the
approximate electric neuronal activity at different points
on the scalp. It is very useful to medical personnel but its
usefulness is also determined by the quality of information
visualisation.

Figure 1: Hand-held device for brain function assessment

The solution that was used on a full size static device
applied LORETA([10]) imaging to solve the visualisation
problem. The full size device uses 19 EEG electrodes and
a PC for computation. The neural activity is estimated and
a great efforts are made to preserve its original location.
The activity was described with a blurred coloured image
of the location of the head where the activity was mea-
sured. The colour depended on the difference of EEG and
MEG measurements. This system is too large to be in-
stalled on a hand-held device. Hand-held device uses only
6 electrodes and has a much smaller computational power.



Also, the hand-held device is meant to be used for imme-
diate but not for final decision making. The visualisation
solution for the full-size device (in Figure 2) was used in
our work to make an assessment of the approximate posi-
tions of the 6 measuring electrodes to be use on a hand-
held device.

Figure 2: Loreta image of a 3D head with electrodes

In the first phase of development we concentrated on
maximizing the computer graphics quality of the applica-
tion.

We started with a 3D model of the head([12]), which
was then divided into sectors. Every sector was in charge
of presenting information from one electrode. In the rest
of the paper, the terms sector and cluster are used inter-
changeably. According to the strength of the difference in
EEG and MEG signals reported by the electrode, the sec-
tor colour needed to be changed. The number of colours
which each sector can take will be definite and specified
in advance. Every sector would be given a chance to
change its colour regardless of other sectors, but accord-
ing to the strength of the signal received from the elec-
trode(Figure 3). To the end user, the interface will offer
the opportunity of seeing all sectors from different view-
points.

One simple solution for this problem is to pre-compute
all the possible images and then, once the values from elec-
trodes are read, display an image in accordance with these

values. There are 128 different values coming from each
electrode and, having in mind that there are 6 electrodes
on the handheld device, the number of data visualisation
combinations is 1286. To compute the number of images
that need to be pre-computed and stored we also need to
multiply this number with the number of views for each
data visualisation. After computing these numbers it is ob-
vious that we cannot pre-render all the combinations; we
have to do some real-time rendering.

The application was intended to run on the Linux op-
erating system and to be programmed in C programming
language with the OpenGL ([13],[2]) library. Since the
device has limitations concerning memory size and com-
putational power, it is essential to obtain the highest possi-
ble optimization in reading the 3D model of the head and
appropriate sectors for each view.

Figure 3: Example views with sectors of interest



2 Background

To develop an application which will fulfil the requested
conditions, it is necessary to use an appropriate 3D model.
There are various formats for storing 3D objects. A view
of the head model used in the application is given in Fig-
ure 4. In the future, we plan to optimize this model before
putting it into our rendering pipeline(Figure 5).

Figure 4: 3D head model

For this application, we used the .obj format ([11]),
which is actually a text file that stores information about
edges and the connections between them. We chose this
format since it contains just enough information needed in
this case. This is important to ensure the optimal final so-
lution. To read the model, we needed to develop a function
which would also be used later for reading and drawing in-
dividual sectors over image views.

We have already mentioned that due to space limitations
we had to do some real-time rendering, but due to compu-
tational limitations, we also needed to limit the real-time
rendering as well. To optimize this time-space problem we
came to a compromise. Since we need only a few views of
the 3D model of the head, we applied the following solu-
tion: we extract sectors in individual .obj files from the 3D
model, and for all the views of the head used images which
were pre-processed according to the viewpoint specifica-
tions.

The underlying images are to be changed from one
view to another while sectors are read from .obj files and
coloured according to the input data in real time. The sec-
tors are also appropriately adjusted (rotated) for each view
(Figure 6).

Since the head model alone is about 37 MB, and has a
few thousand of vertices and polygons, reading and dis-
playing it is much slower than showing all 6 sectors on the
head model combined with view images. Another impor-
tant choice was the format in which the images are stored.

Figure 5: Rendering pipeline

For this application we used the .tga image format([1],[9]).
One view image of 400 x 300 with a .tga extension

takes up about 315 KB. Taking all images in considera-
tion, about 2 MB of storage is needed. In the further de-
velopment of the application, we shall need to do further
optimizations and possibly change the .tga format with an-
other format which occupies even less memory space.

2.1 Visualisation Method

Even though we started with a 3D model in which we
wanted to visualise the data, the final desired product of
our application is a series of images. Since we needed a
computationally efficient application, we decided to use
image-based rendering (IBR). The advantage of using this
paradigm is that computational complexity is measured in
the number of pixels that need to be present in the image,
and not, for example, in the number of vertices in the geo-
metrical model.

In particular, the IBR technique used is billboarding
([8]). In this technique the image is rendered onto a poly-
gon facing the viewer. The positioning of that polygon
regarding the viewpoint is called billboarding. The poly-
gon that is rendered is called a billboard. If we want to
represent a different view, we need to reposition the poly-
gon.

There are several popular billboarding techniques.
What is in common to all is that a surface normal (n) and
an up direction (u) are determined to orientate the polygon
which is usually a quadrilateral. When these two vectors



Figure 6: Sector and rotated sector combined with an im-
age

are found, we can create an orthonormal basis for the sur-
face. That is basically saying that with these two vectors,
we have enough information to describe the rotation ma-
trix needed to rotate the polygon to its final position. The
position of the quadrilateral is taken to be its centre and is
noted as an anchor location. The desired surface normal n
and up vector u are often not perpendicular.

One of these two vectors is designated as a fixed vec-
tor. It needs to be maintained in the given direction. We
then need the other vector to be perpendicular to the fixed
vector. First, a vector pointing toward the right edge of the
quadrilateral is created and designated by r. This vector is
a cross product of u and n.

Since this vector is going to be used as an axis of the
orthonormal basis for the rotation matrix, it needs to be
normalized. If r has length zero, u and n must be parallel
and another technique needs to be used.

The unfixed vector (the one that remains - either n or u)
is modified by taking the cross product of the fixed vector
and r. This creates a vector that is perpendicular to both.

If we fix the normal n (as most billboarding techniques
do), then the new up vector u′ is:

u′ = nxr

This process is shown in Figure 8. If, instead, we fix
the up direction (true for axially aligned billboards such as
trees on landscape), then the new normal vector n’ is:

n′ = rxu

The new vector normalized, together with n and u, is
used to form a rotation matrix. For a fixed normal n and
adjusted up vector u′ the matrix is:

M = (r,u′,n)

This matrix is used to transform a quadrilateral in the
xy plane to the appropriate orientation. Then a translation
matrix is applied to move the quadrilateral’s anchor point

Figure 7: Combining sector network with images using
rotation

to the appropriate location. The remaining task is then to
decide what surface normal (n) and up vector (u) are used
to define the billboard’s orientation. Based on this decision
different billboarding techniques are defined. The two that
we used are Screen-Aligned Billboard and World-Oriented
Billboard.

Screen-Aligned Billboard is the simplest form of bill-
boarding. The surface normal determined here is the nega-
tion of the view planes normal. The up vector u is a vector
in the view plane that defines the cameras up direction.

In World-Oriented Billboarding, the normal n is still the
negation of the view plane normal, but up vector u is world
up vector.

3 Implementation and Results

To develop this application we used combined Screen-
Aligned and World-Oriented billboard techniques. A fixed
number of views was chosen. Those views were then used
to construct the billboard of the head model together with
the appropriate sector. Constructed rotation matrices were
used to position the sectors appropriately.

The functions for reading the model and manipulate sec-
tors and combining them with the appropriate model view



Figure 8: Given a desired surface normal direction n and
an approximate up vector direction u, we wish to estab-
lish a set of three mutually perpendicular vectors to orient
the billboard. In the middle figure, the ”right” vector r is
found by taking the cross product of u and n, and so is per-
pendicular to both of them. In the right figure, the fixed
vector n is crossed with r to give a mutually perpendicular
up vector uf.

are programmed. The function for the display of the final
image was also programmed.

It was also necessary to create an engine which rotates
and adjusts the coordinate system with the model coordi-
nates. This engine also fetches the appropriate views of
the head model for later use.

Another function that is implemented groups a set of
individual triangles or faces into one sector. Since the
model has 26944 triangles, the manual selection of trian-
gles would have been impossible. The only way to do this
successfully is to automate this process. For this purpose,
we created an application which, for a chosen set of tri-
angles that form the centre of a sector, selects the faces
neighbouring the previously selected faces by recursion.
The faces that form the centre were selected beforehand.
With this form of selection, it is necessary to set an addi-
tional variable, which would indicate at which level of the
selection to stop. The selected faces form a cluster. In or-
der to get a smooth transition between the parts of the head
model and the coloured sectors that are added to the head,
given clusters need to define edges which form a border.
In order to construct the border, we had to take into ac-
count the breadth of each face sector (Figure 9). Based
on the information of sector breadth, each vertex common
to a sector and the rest of the model were coloured with
the colour of the model. This ensured smooth transition
between areas with and without coloured sectors.

This approach had a few flaws due to program speed
and reactions to events from the outside world in real time.
To enable optimization in this case (since a definite num-
ber of model views suffice the visualisation), images of
the model from a definite number of viewpoints are ex-
tracted. The model now becomes static and the only thing
that changes is the designated sectors. This makes an ex-
cellent optimisation since about 90% of the data becomes
pre-computed.

To accomplish this idea, in the pre-computation stage,
sectors were extracted into separate .obj files. This was
accomplished by a function that selected levels of trian-

Figure 9: a) The result after adding a separated sector to
already existing ones. b) The result of implementing a
function for separating a sector with a given centre and
breadth. A separated mesh is composed of more levels
base on distance from the sector’s centre which are later
used for gaining smooth transition between view image
and the sector.

gles with an algorithm mentioned above. The extracted
sectors occupy a few hundred kilobytes of memory. This
is a significant memory saving, compared to the memory
required to store the entire model.

In order to combine head images from specific view-
points with coloured sectors, we needed to remember all
relevant parameters that define a given viewpoint. When
moving from one viewpoint to another, the background
image of the head model related to that viewpoint is read.
Then the parameters which define that viewpoint, as well
as the sector position, are set.

The application at this project stage displays the head
model with five viewpoints and four defined sectors with
electrode centres. Sectors are displayed dynamically.
Colours that define the sectors are defined and their num-
ber is fixed.



To implement these functionalities we used the C++
programming language because of greater flexibility and
ability to use STL ([5]) library. To manipulate the graph-
ical objects, we used the OpenGL library routine. To ma-
nipulate the windows, we used the glut library which can
be used both on Windows and Linux operating systems.
The only thing that needs to be changed is the process of
compiling a different executable for a different operating
systems.

4 Conclusions and Future Work

In this paper we presented an approach for medical data
visualisation on the 3D model of the head. The approach is
designed for hand-held devices that have limited memory
and computation power. The solution that such devices
had been using thus far used only pre-computed images
and did not have the ability to view the visualized data
from several points of view.

In the second stage of the solution development we plan
to concentrate on testing this application on the actual de-
vice and coming up with further optimization solutions.
One image compression algorithm that can be used to fur-
ther reduce the memory space needed for this application
is JPEG ([1],[9]).

In the second stage of the project, we also need to take
into closer account the following measurements in order to
optimize the application even further: display dimension,
display resolution, essential colour of the head model, the
number of possible sector colours, the position of the head
model on the display, better approximation of sector cen-
tres, approximation of preferable sector breadth, the input
data interface.

With this additional data it is possible to carry out fur-
ther optimization in the sense of: reducing the amount of
space used by images of every viewpoint; decreasing the
speed of the application’s reaction to the change of input
parameters; and reducing the space occupied by the appli-
cation itself.

5 Acknowledgement

We would like to thank the INSPIRE D.O.O Company in
cooperation with BrainScope Inc. funded this research as
the part of the Beta Prototype of BrainScope ED Triage
project.

References

[1] C.Wayne Brown and Barry J. Sheperd. Graphics File
Formats: Reference and Guide. Manning Publica-
tions, 1995.

[2] Samuel R. Buss. 3D Computer Graphics : A Mathe-
matical Introduction with OpelGL. Cambridge Uni-
versity Press, 2003.

[3] Chun-Fa Chang and Shyh-Haur Ger. Enhancing 3d
graphics on mobile devices by image-based render-
ing. In PCM ’02: Proceedings of the Third IEEE
Pacific Rim Conference on Multimedia, pages 1105–
1111, London, UK, 2002. Springer-Verlag.

[4] Dan F. Criswell and Michael L. Parchman. Hand-
held Computer Use in U.S. Family Practice Resi-
dency Programs. Journal of American Medical In-
formatics Association, 2000.

[5] Nicolai M. Josuttis. The C++ Standard Library: A
Tutorial and Reference. Addison Wesley, 1999.

[6] Narayanaswami C.and Kamijoh N.and Raghunath
M.and Inoue T.and Cipolla T.and Sanford J.and
Schlig E.and Venkiteswaran S.and Guniguntala
D.and Kulkarni V.and Yamazaki K. IBM’s Linux
watch, the challenge of miniaturization. Computer,
IEEE Computer Society, 2002.

[7] Bruce J. Lindbloom. Accurate color reproduction for
computer graphics applications. Proceedings of the
16th annual conference on Computer graphics and
interactive techniques p 117-126, 1989.

[8] Tomas Moller, Eric Haines, and Tomas Akenice-
Moller. Real-Time Rendering. AK Peters, 2002.

[9] James D. Murray and William van Ryper. Encyclo-
pedia of Graphics File Formats. O’Reilly, 1996.

[10] R.D. Pascual-Marqui, M. Esslen, K. Kochi, and
D. Lehmann. Functional imaging with low resolu-
tion brain electromagnetic tomography (LORETA):
a review. Methods and Findings in Experimental and
Clinical Pharmacology, 2002.

[11] Keith Rule. 3D Graphics File Formats: A Program-
mer’s Reference. Addison-Wesley, 1996.

[12] Sidow. 3D Woman’s head.
http://www.turbosquid.com/ FullPre-
view/Index.cfm/ID/275671, 2007.

[13] Richard S. Wright, Benjamin Lipchak, and Nicholas
Haemel. OpenGL(R) SuperBible: Comprehen-
sive Tutorial and Reference (4th Edition) (OpenGL).
Addison- Wesley, 2007.


