
Delaunay Triangulation of Moving Points

Tomáš Vomáčka∗†

Institute of Computer Graphics
University of West Bohemia

Pilsen / Czech Republic

Abstract

Delaunay triangulation and its dual structure - Voronoi di-
agram represent a multi-purpose data structures which are
widely used in computational geometry. Using these struc-
tures for sets of moving data is also relatively well-known
and the general approaches have already been discovered.
This paper focuses on the rarely discussed problem - com-
puting of the topological events - e.g. the exact times of
structural changes in the data structures. Our algorithm
uses the Sturm sequences of polynomials to quickly dis-
cover the roots, with a possibility to compute only those
roots, which are necessary and will most probably be use-
ful.

Keywords: Delaunay Triangulation, Kinetic Data, Com-
putational Geometry

1 Introduction

According to [6], Delaunay triangulation of moving points
represents an efficient way of collision detection. It is so
because a point has to be checked for collision only against
its neighbors in the triangulation (e.g., with all the points
to which it is connected) and only when a new edge con-
taining this point as a vertex is added to the triangulation.

Even though the collision detection is the most straight-
forward (and most often discussed) application of the De-
launay triangulation of moving points, it is by far not the
only one. Together with the transformation to Voronoi dia-
gram it may provide a base data structure for path planning
in an environment with moving objects (especially when
extended to three dimensional space). Some triangulation-
based methods for video compression may take advantage
of the triangulation that changes its structure according to
the movement of the points. Other use of similar data
structures may be easily found anywhere the data repre-
sent moving points.

There are two main approaches to moving the points in
a triangulation. The first of them (and the simpler one) is
to remove each moving point and then reinsert it back to
the triangulation at new coordinates. This approach has

∗tvomacka@students.zcu.cz
†This work was supported by Ministry of Education - project No.

LC06008

a significant disadvantage when we want to use it for a
collision detection - when a point moves relatively fast, its
new position may be so far from the original one that some
edge insertion and removal may be skipped. If this edge
represents a collision edge (e.g., this fast moving point col-
lides with the other vertex of this edge), a collision will be
missed.

The other approach models continuous movement and
utilizes a priority queue to keep track of scheduled topo-
logical events. When a request is made to acquire the cur-
rent state of the triangulation, events from the queue are
popped and processed until the inner time of the triangu-
lation matches the requested one. This procedure ensures
that the triangulation structure will only be altered when
the movement of the points causes a topological change.

This paper focuses only on points moving with constant
velocity vector. This limitation may seem too serious, but
the mathematical relations described in this paper may be
(with some effort) modified for movement along polyno-
mial curves. Other types of trajectories cannot be gener-
ally solved in the same way and are beyond the focus of
this paper.

Known and described techniques of solving the problem
are described in Section 2. Section 3 of this paper provides
some basic definitions. Inner structural changes of the tri-
angulation as a result of the movement of the points are
described in Section 4. Section 5 describes several ways
of obtaining the topological events and outlines geometri-
cal meaning of the solved equations with an emphasis on
the count and multiplicity of their roots. Section 6 docu-
ments results of our work so far. Summary of the project
and further work proposals are given in Section 7.

2 State of the Art

Even though various papers on similar subject propose
the technique discussed in this paper (see [6, 7]), almost
nothing has been written about obtaining the topological
events from the mathematical description of the movement
of the points. However the principle of this approach, as
well as the general iteration algorithms for maintaining the
structure of kinetic Delaunay triangulations or Voronoi di-
agrams, is well known and described together with the
theoretical bounds of number of the processed topologi-
cal events in [1]. Even non-Euclidian metrics such as the



power and Manhattan metrics have been considered for
this problem, see [5], where those metrics are applied on a
set of moving discs and line segments.

Each of the mentioned articles describes the process
of obtaining the topological events (discussed later) as a
problem of finding real roots of the 4-th order polynomial.
This polynomial cannot be in practice solved analytically
(although the relations are known), so numerical solutions
are suggested (with almost no details on which numerical
methods should be used and why).

Although some online software libraries for polynomial
solving exist (for instance the GSL library - see [3]), the
implemented algorithms used for polynomial solving are
usually based on the analytical approach or optimized for
finding the complex roots of polynomials. Both of these
options are unsuitable for our work.

We propose a new algorithm which determines the
amount, approximate location and multiplicity of the roots
and which allows us to simply discard some of the roots
and enumerate the others.

3 Definitions

3.1 Triangulation

Triangulation T (S) of a set of points S in the Euclidean
plane is a set of edges E such that

• no two edges in E intersect at a point not in S,

• the edges in E divide the convex hull of S into trian-
gles

Delaunay triangulation DT (S) over a finite set S of n
points in 2D

S = {P1,P2, ...Pn}
is the triangulation that fulfills the condition that no point
is inside the circumcircle of any triangle in DT (S). This
property, known as the Delaunay condition, is a key fea-
ture in our application and must be preserved over time
despite the movement of the points.

To determine if a triangle P1P2P3 and a point P4 satisfy
the Delaunay condition, the incircle test must be made
over the three points of the triangle and the considered
point. If Pi = [xi,yi] where xi,yi ∈ R represent the coor-
dinates of points P1, ...,P4, then we can determine the po-
sition of P4 against the circumcircle of the triangle P1P2P3
according to the sign ot the determinant of the matrix I (for
details see [8]):

detI = det




x1 y1 x2
1 + y2

1 1
x2 y2 x2

2 + y2
2 1

x3 y3 x2
3 + y2

3 1
x4 y4 x2

4 + y2
4 1


 (1)

If the vertices of the triangle P1P2P3 are oriented
counter-clockwise, then the positive sign of Eq. (1) means
that P4 lies inside the circumcircle of P1P2P3, negative sign

means that P4 lies outside and zero always means (inde-
pendently on the orientation of the vertices of the triangle)
that P4 lies exactly on the circumcircle.

3.2 Point Movement

Points P1, ...,Pn are moving at a constant velocity and their
coordinates must be thus defined as linear functions of
time:

Pi(t) = [xi(t),yi(t)] (2)
xi(t) = xi0 +∆xi · t,yi(t) = yi0 +∆yi · t (3)

where t ≥ 0, Pi(0) = [xi0,yi0] is the initial position of the
point Pi, e.g. the position of its insertion and ∆xi,∆yi ∈ R
represent velocity coordinates of Pi. We require the initial
positions of the points to be inside a triangulation area - a
rectangle in E2 defined as:

O =< xmin;xmax >×< ymin;ymax >

and state that no point may ever leave this rectangular area.
If a point is to move outside the given bounds, a collision
event will occur and (as described in Section 3) change the
velocity of the point in such a fashion to keep it inside the
boundaries.

3.3 Priority Queue

A priority queue is an abstract data type, which provides
the following operations:

• Push (i, t): add the item i to the queue with respect to
the priority t.

• Pop: remove item i with the highest priority from the
queue and return it.

• And sometimes others, such as returning the first ele-
ment in the queue without removing it (known as the
”Head” function).

4 Triangulation Behavior

4.1 Overall Functionality

Functionality of the algorithm (also described in [1, 5])
may be divided in two steps - the preprocessing and the it-
eration. In the preprocessing step, the Delaunay triangula-
tion of the points in their initial positions is created (in our
case by using the Incremental Insertion algorithm - see [2])
and the first topological event is computed for each pair
of adjacent triangles by determining the nearest time their
four points become cocircular (see further). In addition to
those events, the collision times are computed for each pair
of points connected with an edge, forming point-point col-
lision events, and the collision times for each point with
the boundaries of the triangulation area (let the edges of



the bounding rectangle be known as the walls), forming
point-wall collision events.

All the computed events are then placed into the priority
queue with the priority defined as:

p = tcurr− tevent

where tevent ∈ R is the time of the execution of the event
and tcurr ∈ R is the current time of the triangulation
(tevent ≥ tcurr).

The iteration step is repeated each time a request for the
triangulation state is received. If the current time of the
triangulation is lower than the current time, the event from
the head of the queue is popped and executed (this may
lead to adding some new events to the queue as well as
removing some of the events in the queue) and the current
time of the triangulation is set to the time of the executed
event. This step is repeated until the current time of the
triangulation matches the requested time.

4.2 Explanation of Topological Events

When the triangulation contains at least one point with a
nonzero velocity vector, its structure will have change in
time due to the Delaunay condition. As shown in [6, 1],
moving points may change their position without struc-
tural changes in the triangulation until a topological event
occurs (see Figure 1). As shown in the figure, the topologi-

Figure 1: Triggering of the topological event

cal event occurs when four points become cocircular and it
is thus determined by the time a point (point P4 →P′4 →P′′4
here) enters a circumcircle of a triangle P1P2P3. At this
point the triangulation becomes non-Delaunay. At this
time, the Delaunay condition is violated and the triangula-
tion must be repaired by processing the topological event.

4.3 Creating the Topological Events

When all points are added into the triangulation and move-
ment starts, topological events are scheduled for each edge
in triangulation. For each edge e we test its vertices for
mutual collision and collision with the walls of the bound-
ing rectangle and then, if e is shared by two triangles, we
compute the nearest topological event for their four points
in the future (events in the past may be byproduct of the
computation and are discarded for obvious reasons).

If any of the performed computations result in a pos-
itive event time greater than the current time of the tri-
angulation, we store it in the priority queue. This means
that point-point and point-wall collisions are stored in the
queue along with topological events and are processed
similarly (see further). Figure 2 shows a simple example
of queueing the events. As we can see, the point P4 moves
with the velocity vector v4 and this movement will cause
at least four events displayed in the Queue box of Figure 2.

Figure 2: Scheduling the events for P4

Note that the collision event in the time t4 determines
the time when P4 will leave the area O. Proper handling of
this type of events will ensure that all points will remain
inside the boundary. Also note the fact that collisions be-
tween points represent singular cases and are always time
identical with cocircular events. These singular cases may
be handled in various ways. For instance safety disc may
be added around each point or the events. The safety discs
only serve for computing collision times - they make two
points collide when they come close enough, creating col-
lision events in situations where they would not otherwise
occur. They also force the points to collide earlier than
they would without them if the collision would occur any-
way and thus eliminate the singularities. Another way to
handle the singular cases is to order events in the priority
queue in such way that if two events of a different kinds are
scheduled to the same time, then a collision event should
be executed before any cocircular event. This precau-
tion helps in situations where one point is deflected away
from another one by reactive forces (these forces are of
course dependent on implemented physical model), with-
out changing the topology of the triangulation. For any
other time near the collision, there is only one legal con-
figuration and it is the original one, so the edge swap is not
necessary.

4.4 Processing the Topological Events

When a topological event is triggered, the triangulation
structure changes. As mentioned in [6, 1], the changes will
be local - to process a topological event means to swap the
common edge (see Figure 3) of the two triangles involved
in the event and schedule new topological events.



Figure 3: Edge swap as a result of a topological event

Along with scheduling topological events, vertices of
the new edge (generated by the edge swap) must be tested
for mutual collision. Removing triangles from the trian-
gulation (which is a result of swapping the edges) makes
some events in the queue invalid, because the considered
triangle do not exist anymore. This fact must be consid-
ered and the invalid events must either be removed from
the queue immediately or discarded when popped. Al-
gorithm in Figure 4 shows the complete procession of a
topological event.

5 Computing the Topological Events

5.1 Basic Relationships

To determine time of a topological event, we have to com-
pute the time, when four points become cocircular. This
can be done by solving the Eq. (4), where I denotes the
incirlce-test matrix from relation (1), with point coordi-
nates defined as in (2) and (3). This equation is a modified
version of the incircle test which is normally used for con-
structing Delaunay triangulations.

detI = 0 (4)

In this equation, coordinates [x1,y1], ..., [x4,y4] represent
time dependent coordinates of points P1, P2, P3 and P4 as
defined in Section 3.2. If the coordinates of the points are
linear functions of time, then solving this equation means
to solve a polynomial of the fourth or lower degree.

The determinant of I(t) will not change if we substract
the first row of I(t) from all its rows. This transformation
means we set the first point to be identical with the origin.
Using this technique, we transform the fourth row of I(t)
to [0,0,0,1], but the maximum order of the solved polyno-
mial remains unchanged and equal to four.

Due to the fact that we are only interested in topological
events taking place in the future, we do not have to search
for all the roots of the equation. We just have to obtain the
roots which are greater than or equal to the current time of
the triangulation.

Input:

• Ev - the topological event on top of the priority
queue; Ev.T1, Ev.T2 - the involved triangles

• Let Ev.T1 = P1P2P3 and Ev.T2 = P1P4P2 as in Figure 3

Output:

• Update of the topological structure of the triangula-
tion and events in the priority queue.

Auxiliary:

• Q – priority queue
• DT – Delaunay triangulation of the points P1, ...,Pn

Algorithm:

• Ev← Q.pop()
• if (Ev.T1 is invalid or Ev.T2 is invalid)

– discard Ev and exit

• Swap the common edge of Ev.T1 and Ev.T2 →
Ev.T1 = P1P4P3 and Ev.T2 = P2P3P4

• Test P3 and P4 for point collision Col at time tCol

– Q.push(Col, tCol)

• For each triangle N sharing a common edge with
Ev.T1

– Test Ev.T1 and N for the nearest future topolog-
ical event Ev1 at time tEv1

∗ Q.push(Ev1, tEv1)

• For each neighbor N (N 6= Ev.T1) of Ev.T2

– Test Ev.T2 and N for nearest future topological
event Ev2 at time tEv2

∗ Q.push(Ev2, tEv2)

Figure 4: Processing of a topological event

5.2 Polynomial Root Dependency on Nature
of Topological Events

As told before, count and multiplicity of roots of equation
(1) depends on which points are moving and how. For in-
stance, when only one point (of the four considered points)
moves, there is no possibility that the polynomial will have
more than two roots (or one double root). This is because
the velocity vector of this moving point and its current po-
sition define a line and the three other points define a cir-
cle. By solving the given equation, we are looking for the
points of intersection of the line and the circle. The fol-
lowing figures show some of the basic examples of root
dependency on the positions and velocities of the involved
points.

Figure 5 shows the situation when a point P4 moves tan-
gentially to the circumcircle of the triangle P1P2P3. In this



Figure 5: Tangential movement of the point P4

case we will obtain one double root by solving Eq. (4).
This fact means that two edge swaps are taking place at the
same time. By swapping the edge even times (i.e. twice
or four times in our case) we return the two triangles to
their original state. This means that when we search for
topological events, we can ignore all roots of even degree.

Figure 6: Points moving away from the center of their cir-
cumcircle

When the four points P1, P2, P3 and P4 are cocircular and
moving with velocity vectors v1, v2, v3 and v4 as shown in
Figure 6 (the center of their circumcircle C lies on all four
of their movements’ trajectories), then two singular cases
may occur:

1. v1 = v2 = v3 = v4 = 0
In this case, all the points are cocircular and not mov-
ing. The equation (1) degenerates into 0 = 0 and can-
not be solved.

2. ‖v1‖= ‖v2‖= ‖v3‖= ‖v4‖ 6= 0
The points move away from their circumcenter
equally fast. This means that there will be a topologi-
cal event for each t ∈R as the circumcircle will grow.
We may discard all of the obtained topological events
because both possible triangle configuration are legal
due to all four points lying on the same circle and
thus no edge swapping is necessary. Similar situation
arises when the points are all moving towards their
circumcenter.

Other special point configurations may exist, but the
ones mentioned in Figures 5 and 6 are highly valuable
for solving the topological event equation.

5.3 Approaches to solving of the equation

As mentioned before, in order to obtain the topological
events, we need to solve a polynomial of the fourth or
lower degree. Let us define the solved polynomial as in
Eq. (4). We can enumerate the coefficients of p(t) by
transforming Eq. (1) to more suitable form (detI(t) ≡
p(t)).

p(t) =
4

∑
i=0

ai· t i = 0 (5)

where ai ∈ R.
Theoretically, the given polynomial may be solved an-

alytically using Vieta’s and Cardano’s formulas (see [11]
for solving quartic equations and [10] for solving cubic
equations). However, the limited floating point precision
and subresults being complex numbers make this approach
inadvisable. These features result in both unprecise results
and an incorrect number of roots (including their multi-
plicity). Quadratic and linear equations may be solved an-
alytically with sufficiently precise results.

Various numerical methods represent another option for
finding the roots of the polynomial, Newton’s method does
not represent a good option because small values of the
solved polynomial derivation may cause the method to
find next iteration very far from the current one and pos-
sibly converge to a different root. Another downside of
the Newton’s method presented in [9] is the fact that it has
problems in finding roots of multiplicity greater than one.
A better method proposed by [4] and described in [9] is
called Sturm Sequences.

f1(x) = f (x)
f2(x) = f ′(x) (6)

f j−1(x) = q j−1(x) f j(x)− f j+1(x), j = 2, ...,m−1
fm−1(x) = qm−1(x) fm(x)

As proved in [9], a sequence of polynomials in Eqs. (6)
is Sturm sequence. Eqs. (6) also show the way of construc-
tion of Sturm sequence from a polynomial f (x). In these
relations q j−1(x) is the quotient and f j+1(x) is the negation
of the remainder of division of the polynomial f j−1(x) by
the polynomial f j(x). { fi(x)} is thus a sequence of poly-
nomials of a decreasing degree (in our case this sequence
will have no more than four terms). The most important
feature of Sturm sequence of polynomials in our case is
the fact that it allows us to easily determine the count of
real roots in any interval 〈a;b〉 (a or b may be even infi-
nite) and determine their multiplicities. Note that only the
remainders of each division have to be counted, the quo-
tients are not needed in further steps of the construction of
the sequence.

To obtain the root values, we only have to count V (a)−
V (b) where the function V (x),x∈ (R) determines the num-
ber of signum changes between successive polynomials
in the sequence (zeros are ignored). Multiplicities of the
roots may be easily determined by solving the last polyno-
mial in the sequence. As proved in [9], each multiple root



of f1(x) = f (x) with the multiplicity r > 1 is also a root
of fN(x) with multiplicity equal to r−1. Here, m denotes
the count of polynomials in the sequence. Considering the
fact that in our case fm(x) is a polynomial of the third or
lower degree and that the total count of complex roots of
any polynomial with real coefficients must be even, we
can formulate the guidelines to solving the polynomial1 as
presented in Table 1.

deg f (x) fm(x) real root mult. f (x) real root mult.
3 {2} {3}
3 {1} {2, 1}
3 none {1} or {1, 1, 1}
4 {3} {4}
4 {2} {3, 1}
4 {1, 1} {2, 2}
4 {1} {2} or {2, 1, 1}
4 none {1, 1} or {1, 1, 1, 1}

Table 1: Features of the polynomial depending on its
Sturm sequence

Input:

• p(t) = ∑n
i=0 ai· t i = 0 ... a polynomial of degree n

Output:

• Sequence {ti}r
i=1 of the real roots of p(t) = 0, r ≤

n−1. Or empty sequence, if no real roots exist.

Algorithm:

• if(n≤ 2)

– Compute analytically, return the sequence of
roots {r0, ...,rn}.

• if(n = 3)

– Solve using the Sturm3 algorithm - see Figure 8

• if(n = 4)

– Solve using an extension to the fourth degree of
polynomials of the Sturm3 algorithm from Fig-
ure 8. It is not listed in this paper, because the
idea is the same as in the third order algorithm.

Figure 7: Computing the roots of a polynomial

If a polynomial f (x) has at least one multiple root xi of
multiplicity r, we can divide it by polynomial (x−xi)r and
thus decrease its order. The result of this division may then
be solved analytically, because in the worst case the orig-
inal polynomial f (x) is of the fourth degree and the root

1We only consider cases where degree of f (x) is greater than two,
because linear and quadratic equation may be solved analytically as told
before. Also if the polynomial has no roots, we do not attempt to solve
it.

xi of multiplicity two. By dividing a quartic polynomial
by a quadratic one, we get another quadratic polynomial
as a result. If degree of f (x) is three or four and it has
no multiple roots, we solve its derivate (processing recur-
sively for the third order polynomial as a derivate of the
fourth order polynomial) and thus obtain all the local ex-
tremes of f (x). Local extremes then define intervals that
bound roots of f (x). From these intervals we may enumer-
ate the roots using some iteration method (such as - in the
simplest case - bisection). The whole procedure is shown
by the algorithm in Figure 7.

Input:

• p(t) = ∑3
i=0 ai· t i = 0 - a third order polynomial

Output:

• Sequence {ti}r
i=1 of the real roots of p(t) = 0, r ≤ 3.

Or empty sequence, if no real roots exist.

Auxiliary:

• Sturm sequence f1(t), ..., fm(t) of the polynomial
p(t) - see Eqs. (6), note that f1(t) = p(t).

Algorithm:

• Create Sturm sequence for p(t).
• rcount ← (V (−∞)−V (∞))

V (x), x ∈ (R) determines the number of signum
changes between successive polynomials in the se-
quence (zeros are ignored)

• if(rcount = 0)

– Return empty sequence of roots {}
• Rm = {rmi}rmult

i=1 ← sequence of rmult roots of fm(t)
(e.g. the multiple roots of p(t))

• if(‖Rm‖= 2)

– Return {rm1,rm1,rm1} (one triple root)

• if(‖Rm‖= 1)

– p(t) has a double and a single root (see Tab. 1).
– rs ← the only single root of p(t)

(t−rm1)2 = 0
– Return {rm1,rm1,rs} (a double and a single root)

• else

– Solve p(t), using a suitable numerical method.
– Return {ri}r

i=1 ... sequence of r ≤ 3 distinctive
roots.

Figure 8: Sturm3 algorithm



6 Performance

Presented results were obtained from a C# implementation
of the discussed algorithms. Our primary goal is the cre-
ation of a robust and stable program, speed optimization
has not been introduced yet. All presented results were
obtained for a random configuration of 100 points with a
safety discs of 1 unit diameter in 1000×1000 units rect-
angle. Certain percentage of the points was moving in a
random direction and velocity. Program performance was
observed during a 10 second interval and the final results
represent average values for three different sets of points.

Figure 9: Total runtime needed for the test.

The graph in Figure 9 shows the dependency of the to-
tal runtime needed for the execution of the whole test on
the percentage of the moving points. Assuming from the
measured values, the needed runtime has time complexity
with upper bound of O(n2) and with lower bound of O(n).

Figure 10: Number of polynomials solved during the pro-
gram life cycle

Figure 10 presents the dependency of the number of
polynomials of different orders solved during the whole
life cycle of the program. As we can see from this graph,
the number of the fourth degree polynomials grows with

the percentage of the points that are moving. The number
of third order polynomials has a global maximum for 50%
moving points ratio and is at near-zero value for 0% and
100% moving points ratio. The second order polynomials
form the majority for low percentages of moving points
but their number decreases for higher moving points ratios.
This behavior is caused by the fact that the degree of poly-
nomial in Eq. (4) generally grows for increasing number
of non-static points in the configuration of two adjacent
triangles. It is less likely to count topological events for
triangle pairs with three or four moving points in the con-
figurations with the lower percentages of moving points.

Figure 11: Numbers of executed and discarded events of
various kinds during the life cycle of the program

Algorithm in Figure 4 shows that some of the topologi-
cal events are discarded due to the topological changes in
the triangulation structure. Graph in Figure 11 shows the
numbers of executed and discarded topological events, as
well as the numbers of executed events of the other types.
We can see that the count of topological events (both exe-
cuted and discarded) is much greater than the counts of
the events of the other types. Another remarkable fact
is that the number of discarded topological events is al-
ways greater than the number of the executed topological
events. There seems to be an upper bound of O(n) and a
lower bound of O(logn) on the number of both executed
and discarded topological events.

Another consequence of the behavior demonstrated by
the graph in Figure 10 is shown in the graph in Figure 12
- runtime spent on solving of the polynomials (of both the
third and the fourth degree) represents a vast majority of
time spent during the life cycle of the program. The other
parts of the program consume less than 10% of the runtime
for approximately 30% and greater moving point percent-
ages. This is caused solely by the increasing number of
solved polynomials because runtime needed to solve one
polynomial remains constant. Most of the time consumed
by solving polynomials in the current version of the pro-
gram is needed to numerically enumerate the roots.



Figure 12: Runtime needed for the main parts of the pro-
gram - the 4th order polynomial solving, the 3rd order
polynomial solving, insertion of the points into the trian-
gulation, the initialization step of the movement and total
time spent on the event execution

7 Conclusion and Future Work

We presented a new algorithm for determining the time
of the topological events. Our algorithm provides a hy-
brid numerical-analytical way of solving the polynomials
of the fourth or lesser degree with sufficient precision.

Future improvement of the performance of the algo-
rithm is possible. Results obtained by the tests determine
the polynomial solving part of the algorithm as the most
suitable area for further optimization (for example by ini-
tiating some highly sophisticated numerical method). An-
other possibility of speeding up the performance lies in
the minimization of the number of discarded topological
events. If the redundant events were successfully recog-
nized, the corresponding polynomials would not have to
be solved at all.

Our algorithm is currently being used as a part of
a triangulation-based video compression program devel-
oped at the Institute of Computer Graphics of the Uni-
versity of West Bohemia. Future usage of our algorithm
involves path planning and collision detection applica-
tions. Extension to 3D and considering other types of point
movement represent another possibilities of further devel-
opment.

Acknowledgement

This work would not be created without the advice and pa-
tient guidance of Dr. I. Kolingerová from the University of
West Bohemia, Pilsen, Czech Republic, to whom I would
like to thank. My thanks also belong to Mr. A. Kolcun
from the Academy of Sciences of the Czech Republic, to
Dr. A. Ferko from Comenius University, Bratislava, Slo-
vakia and to Dr. M. Gavrilova from the University of Cal-
gary, Calgary, Canada for their insight into the problem

and helpful ideas.

References

[1] Gerhard Albers, Leonidas J. Guibas, Joseph S. B.
Mitchell, and Thomas Roos. Voronoi diagrams of
moving points. International Journal of Compu-
tational Geometry and Applications, 8(3):365–380,
1998.

[2] Mark de Berg, Marc van Kreveld, Mark Overmars,
and Otfried Schwarzkopf. Computational geome-
try, algorithms and applications. Berlin Heidelberg:
Springer, 1997.

[3] M. Galassi et al. Gnu scientific library reference
manual (2nd ed.). From GSL - GNU Scientific Li-
brary. http://www.gnu.org/software/gsl/.

[4] Andrej Ferko. Personal communication, 2007.

[5] Marina Gavrilova and Jon Rokne. Swap conditions
for dynamic voronoi diagrams for circles and line
segments. Comput. Aided Geom. Des., 16(2):89–
106, 1999.

[6] Marina Gavrilova, Jon Rokne, and Dmitri Gavrilov.
Dynamic collision detection in computational geom-
etry. In 12th European Workshop on Computational
Geometry, pages 103–106, Munster, Germany, 1996.

[7] Ignacy R. Goralski and Christopher M. Gold. Main-
taining the spatial relationships of marine vessels us-
ing the kinetic voronoi diagram. In ISVD, pages 84–
90. IEEE Computer Society, 2007.

[8] Øyvind Hjelle and Morten Dæhlen. Triangulations
and Applications. Berlin Heidelberg: Springer, 2006.

[9] Anthony Ralston. A first course in numerical analy-
sis. McGraw-Hill, Inc.: New York, 1965.

[10] Eric W. Weisstein. Cubic equation. From
MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/CubicEquation.html,
2004.

[11] Eric W. Weisstein. Quartic equation. From
MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/QuarticEquation.html,
2004.


