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Abstract     
Triangulation is a good tool for vector representation of 
raster image data. To visualize the image represented by 
triangulation, one needs to fit a continuous surface of 
colour intensity in the triangulation, i.e. to interpolate 
data stored in its vertices. This paper presents some 
interpolation methods for the purpose of use on digital 
images and compares them. The commonly used 
piecewise linear interpolation lacks means to adapt to 
behaviour of intensity in the surroundings of currently 
interpolated triangle. This leads to disturbance of 
continuity of the mentioned intensity surface. In this 
paper, two possible solutions to this problem are given. 
One suggests making an approximation of the surface in 
a surrounding area by estimation of surface normals, the 
other is to interpolate directly on larger formations 
instead of on a single triangle. Zienkiewicz’s 
interpolation is presented as a method to use the normal 
information, interpolation on Bézier triangle patch and 
on Coons patch are presented as methods of interpolation 
on larger surfaces. 
 

Keywords: Delaunay triangulation, interpolation, image 
representation, image reconstruction 

1 Introduction 

Under the term a digital image, one usually imagines a 
rectangular grid of pixels, an image stored as a bitmap. 
Though this (a matrix of pixels) is the form in which we 
visualize the image, scaling or other transformations of 
such bitmap are rather problematic as they introduce 
various artifacts, distortions and other unwanted changes 
to the resulting image. 

We can avoid such problems if we convert the raster 
into vector representation, i.e. if we represent the image 
as a set of geometrical simplices. The transformation is 
then simplified to a change of coordinates of the points, 
which define individual simplices (triangles in our case). 
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We interpolate among those points to get the remaining 
points, which create the image. Thus the solution leads to 
a representation alternative to the raster based formats 
(JPEG, PNG, etc.) and that is a triangulation 
representation. 

The basic strategy is to create some triangulation 
from the input image and, when visualizing it, 
reconstruct the image with a piecewise linear 
interpolation of each triangle. This simple approach 
obviously does not generate satisfactory results. Main 
problems are that large, almost mono-coloured, areas are 
not “smooth” enough and colour edges are not “sharp” 
enough. By the lack of smoothness we mean 
discontinuity in colour intensity among individual 
triangles forming the area and by the lack of sharpness 
we mean that the colour edges, which make an individual 
object in the picture recognizable, are blurred. There are 
basically two directions in which this basic model has to 
be modified in order to achieve better results. 

First of them is an improvement of the process of 
triangulation construction. The set of vertices, which 
forms the triangulation, resembles pixels of the original 
image (their x and y coordinates and colour intensity). 
This means that there are many different ways of how to 
choose which pixel should become a vertex. We also 
have many different types of triangulations that can be 
used. The construction can have various impacts on the 
quality of the reconstructed image, thus the choice of the 
type of triangulation is very important. Interpolation 
methods presented in this paper were tested on Delaunay 
triangulation, but they should be applicable to any other 
triangulation. 

The second thing to improve is the interpolation 
method itself. Flaws of the commonly used piecewise 
linear interpolation are mainly caused by an ignorance of 
intensity behaviour in areas surrounding the interpolated 
triangle. In this paper, we discuss some options which 
would enable us to incorporate those areas into 
calculations of the resulting intesity. To achieve this, two 
different approaches are suggested. 

First are methods, which still interpolate the triangles 
individually, but use vectors respective to the continuous 
intensity surface varying across the whole image to 
correlate the output. The other approach is to interpolate 
on more complex surface structures formed by individual 



triangles of the triangulation. This paper will depict some 
exemplary interpolation methods of those approaches, 
showing their advantages and disadvantages and evaluate 
their usability for our purposes. Methods described in 
this paper have already existed, but their application to 
the digital image is original. 

After a brief review of existing work in Section 2, 
possibilities of interpolation on single triangle (Phong-
like and Zienkiewicz’s) are presented in Section 3. In 
Section 4 we take a closer look on interpolations on 
larger surfaces (Bézier triangle patch and Coons patch). 
Section 5 contains a comparison of results of the tried 
methods and their usability is then discussed in Section 
6. 

2 State of the art 

The problem of magnification of a raster image is not 
new. Numerous solutions with more or less plausible 
results have already been developed. For example, in [9] 
and [11] we can read about usability of the discrete 
cosine transform for that purpose. In [2], assumption that 
luminance remains constant along the generalized path 
motion of a pixel in the image is used for reconstruction.  

As was already told in Section 1, sharpness of colour 
edges is very important for a proper reconstruction. This 
knowledge led many research groups to putting a large 
emphasis on the colour edges when developing the 
interpolation methods. In [1], Allebach et al. suggest to 
create a high resolution edge map of the image and for 
the interpolation to use a bilinear interpolation modified 
to prevent interpolation across edges. In [8], this 
approach is enhanced by using the estimations of local 
covariance characteristics of the initial image to direct 
the interpolation of the magnified image. 

Triangulations are also quite a popular tool for image 
reconstructions and their usability has been widely 
tested. In 1990, Dyn, Levin and Rippa showed in [5] that 
a piecewise linear interpolation on a Data-Dependent 
Triangulation (DDT) can lead to plausible results when 
used for image reconstruction. Since then, many authors 
enhanced their method in various ways, as can be seen, 
e.g., in [13], [12] or [7]. As [6] or [4] shows, also other 
triangulations then DDT, as the well-known Delaunay 
triangulation, can be used efficiently.  

However, in the above stated work, the attempts to 
solve the problem of imperfect results are mostly 
narrowed to enhancement of the algorithm for 
triangulation construction. The usage of piecewise linear 
interpolation as a method to fill the pixels inside each 
triangle is usually mentioned as a given fact which is not 
a subject to discussion. But there are many interpolation 
methods already used in other applications (e.g. 
interpolations based on various splines, used successively 
in 3D rendering; interpolations of higher than linear 
degree, etc.), which could be modified and used for our 
purposes. This paper tries to bring some attention to this, 
because, as images presented in Section 5 shows, 
improvement of the interpolation methods themselves 

can lead to better results, independently of the used 
triangulation. 

3 Interpolation on a single 
triangle 

Following methods describe some possibilities of using 
normal (Phong-like) and gradient (Zienkiewicz’s) vectors 
for better approximation of behaviour of the global 
colour intensity function. 

3.1 Phong–like interpolation 

Linear interpolation on a triangle is sometimes also 
referred to as Gouraud shading, a method initially 
developed for shading of 3D objects. Phong shading is 
considered as an enhancement to Gouraud shading (a 
brief description of both can be found in [14]) in case of 
3D rendering. Since the Gouraud method is commonly 
used in our problem, we were curious whether we can 
use principles of Phong shading to achieve a similar 
improvement in interpolation of triangulated images. The 
interpolation method of Phong shading suggests to 
linearly interpolate not only intensities, but also normal 
vectors in the control vertices. Phong shading was 
initially meant for the Phong reflection model, which 
describes a 3D scene. Therefore, we also approach it as a 
3D situation, with colour intensity as the third dimension.  

The surface normal in each vertex is determined as 
an average of normals of adjacent triangles. All normal 
vectors are normalized before computations. This ensures 
that the final vector is not affected by the size of normal 
vectors (which are proportional to the area of their 
respective triangles), but only by their direction. Normal 
vectors in each pixel of a given triangle are then found as 
a linear combination of components (x and y coordinates 
and colour intensity) of the normal vectors in the triangle 
vertices. Barycentric coordinates are used as coefficients 
to respective normals, as shown in Eq. (1): 

 

normal = (a·nAX + b·nBX + c·nCX, (1) 
a·nAY + b·nBY + c·nCY, a·nAI + b·nBI + c·nCI)  

 
where a, b, c are barycentric coordinates of the triangle 
A,B,C, normalA = (nAX; nAY; nAI), normalB = (nBX; nBY; 

nBI) and normalC = (nCX; nCY; nCI) are the normal vectors 
in vertices A, B, C respectively, each defined by x, y and 
intensity components. In a similar way the basic color 
intensity in each pixel, as a combination of intensities of 
the triangle vertices, is found, see Eq. (2): 
 
 basic color = a·AI + b·BI + c·CI (2) 
 
AI, BI, CI are intensities in the triangle vertices A, B, C 

and a, b, c are barycentric coordinates. This value is used 
as the value to be modified by the color intensity 
component of the normalized normal in this pixel. Note 
that in order to describe points inside the triangle, the 
barycentric coordinates a, b, c must take values from 
zero to one and their sum must be one. 
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However, our situation differs from a usual 3D case. 
We lack information about the light sources used by the 
Phong reflection model and it is highly improbable that 
we would be able to simulate them. Even if so, the 
reflection model is based on physical observations of 
light behaviour in 3D world, which would most likely be 
of no use in our coordinates (x, y and intensity). 
Therefore, we abandoned attempts to simulate Phong 
reflection model and searched for other ways to use the 
information presented by the normal vectors.  

Let us analyze what that information actually is. Note 
that the surface normal in each triangle is gained as a 
cross product of two of its edge vectors and that the edge 
vector is gained as a difference between the two vertices 
of the edge. 

Firstly, imagine a triangle inside some larger patch, 
which should be smooth. Then the colour intensities in 
its vertices are almost the same. Therefore the intensity 
components of the edge vectors are almost zero. Thanks 
to the cross product in the normal vector computation, 
this zero exposes in x and y coordinates of the resulting 
normal vector. After normalization, the intensity 
component will than converge to one, because the size of 
the normal will be almost equal to the (pre-
normalization) size of its intensity component. It can be 
seen that in the opposite case, where there is a large 
difference between intensities in the individual vertices 
(an edge is encountered), the size of the normal vector 
gets much bigger than the size of its intensity component. 
Therefore, after normalization it becomes very small, 
converging to zero. 

If the normals of all triangles adjacent to a vertex 
behave as in the first case (they lie in a smooth patch) or 
as in the second case (an edge is between them), than 
also the surface normal in the vertex behaves so. Thus 
the information from normal vectors is whether the 
interpolation should behave smoothly over edges of the 
triangles which surround the interpolated one or not. 
However, they do not give us any information about the 
value of colour intensity needed for the interpolation. 
Figure 1 illustrates this problem by visualizing colour 
components of normal vectors in each pixel as a grey-
scale image – vectors with intensity converging to one 

are visualized as white, while the ones with intensity 
converging to zero are visualized as black. We can see 
that individual objects, i.e. smooth areas bordered by a 
colour edge, are easily recognizable. However, the 
colours that fill them are the same (white), even though 
their colours in the original image are not.  

To sum up, normal vectors can be used for quite an 
accurate description of global behaviour of the intensity, 
but do not present any direct tool for use of this 
knowledge. To use it, we would have to find some 
relation between normal vectors and intensities stored in 
vertices of the interpolated triangle. Section 3.2 
introduces a method, which gives us such relation. 

3.2 Zienkiewicz’s interpolation 

This method was used in [3] for interpolation of 
geographical data represented by triangulation. Because 
of satisfactory results it has in [3], it was worth trying to 
exploit it for our purpose. 

In some way, it makes use of the knowledge 
presented by normals mentioned in Section 3.1 – gradient 
vectors are suggested for description of intensity 
behaviour. A simple method for a gradient estimation in 
a vertex is as follows: find an average of normalized 
surface normal vectors of each of the triangle adjacent to 
this vertex (as in Section 3.1), weighted by their areas, as 
expressed by (3): 

  (3) 
 

 
where nk is the normalized surface vector of the k-th 
triangle, Ak is its area and A is the sum of all the areas Ak. 
With this estimated normal, gradient of intensity (along x 
and y axis) can be determined as shown in Eq. (4): 
 
 

 (4) 
 
where nx and  ny are normal components in the x and y 
coordinate and nI  is its colour component. 

This estimation is then inserted into formula (5) 
derived for Zienkiewicz’s interpolation, which cubically 
interpolates intensity across the triangle.  
 

 
   
   
     

 (5) 
 
 
 
 
 

 
Result of the formula (5) is the intensity value in 

point (pixel) P, depending on parameters a, b, c, which 
are barycentric coordinates of the interpolated triangle 

Figure 1: Part of the “Peppers” image, on the left we see intensity 

components of normals visualized as a grey-scale image, on the right 

original image for comparison.  
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A,B,C. For better clarity, some terms of the interpolation 
formula (5) were shortened into variables u and k. Their 
meaning is described by Eq. (6): 
 

 
 
 
 

 
 
 

 (6) 
 

 
where AB, BC and CA are the edge vectors (B - A, C - B 
and A - C, respectively), ga, gb and gc are gradients in 
vertices A, B, C; a, b, c are the barycentric coordinates 
and Ai, Bi, Ci are colour intensities in the corresponding 
vertices. 

4 Interpolations on patches 

Following methods do not interpolate on individual 
triangles, but on patches created by them. This way we 
incorporate information held not by only three, but by 
more vertices, which should lead to smoother results. 
The first discussed method interpolates on the Bézier 
triangle patch, the second describes possibilities of 
interpolation on the Coons patch. 

4.1 Interpolation on the Bézier triangle 
patch 

Bézier triangle patch is a triangular surface, which can be 
made by joining three Bézier curves. Its degree is 
denoted by the degree of these curves, i.e. by the number 
of control points the curves have. For our purpose we 
consider patches of the second degree. Therefore, each 
boundary curve has three control points, which makes six 
control points to define the surface. A possible 
configuration of such a patch can be seen in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Bézier patch of the second degree with its control points 

 
If we look on Figure 2, another way of interpretation 

of such a patch might occur. We can view it as a patch 
created by some triangle and its neighbours, i.e., the 
triangles, which share an edge with the one in center. 
Therefore, we can easily construct such a patch for each 

triangle in our triangulation. We only take the triangle 
and append its neighbours. Note that this approach 
cannot be used on triangles which are on the border of 
the interpolated image, because they do not have three 
neighbours. This singular case can be solved by using 
other interpolation method, e.g. bilinear, to render those 
triangles. 

To describe points inside the patch, barycentric 
coordinates of vertices P200, P020 and P002 can be used. 
We will refer to them as a, b and c, respectively. The 
conditions ensuring that the point P(a, b, c) lies inside 
triangle P200, P020, P002  are mentioned in Eq. (7).  

 
 
           (7) 
 
Point P lying in the patch can than be described in the 

form of Bernstein polynomials with these coordinates as 
parameters, as Eq. (8) show:  

 
 

 

 

 

 (8) 
 

After inserting our values into Eq. (8), i.e. the degree 
n = 2, it reduces to Eq. (9): 

 

 
(9) 

 
With the resulting formula presented in Eq. (9), we 

are able to describe the whole surface defined by our 
patch. Coordinates (x, y and intensity) of each point Pijk 
of this surface are obtained from (9) by a successive 
insertion of x, y and intensity coordinates of respective 
points Pijk into the formula. 

All points defined by coordinates a, b, c, which 
satisfy conditions (7), then form a surface with the 
following qualities. It lies in the convex hull of all 
control points of the patch, pass through terminal control 
points P200, P020, P002 and its boundaries, thanks to the 
quadratic interpolation function, are parabolic splines 
corresponding to the control points of individual 
boundary curves. Though these properties are welcome, 
they also cause problems with determining which pixels 
actually belong to the patch. The points of the patch do 
not have to project into each pixel of the triangles, which 
create the patch. On the contrary, some of those points 
can project outside of those triangles. A proposed 
solution to this problem is to compute intensity values for 
all possible triplets a, b, c that satisfy (7). Of course we 
cannot count with every number between zero and one. 
But since the number of pixels we want to render is finite 
and relatively small, we can compute a set of coordinates 
large enough to suffice. This can be done if we 
subsequently increment any two of the coordinates from 
zero to one by some “step”, a small (much smaller than 

P200 P110 P020

P101 P011

P002



one) real number. Note that the third coordinate is easily 
calculated, because we know the total sum must be one. 
This way the desired surface can finally be rendered. 

However, the choice of this „step“ brings some 
difficulties. We project real values (a, b, c) on integer 
values (pixel coordinates) and therefore some pixel could 
be missed entirely because of rounding mistakes. 
Therefore, even if we calculate an approximation of 
number of pixels in the patch, we cannot be confident 
that it will suffice to compute that many intensity values. 
Much more values than there are pixels to render have to 
be computed, which result in lengthier time consumed by 
the computation. Though some optimization can be made 
(e.g. the mentioned estimation of pixel count), the 
quadratic time complexity of the algorithm makes it 
unable to compete with single triangle based methods. 

On the other hand, each of the redundant value 
always projects onto some pixel. Thus we can get more 
intensity values for each pixel, which are not necessarily 
equal. Note that we also get those values for another 
reason – the patches are constructed for each triangle in 
the triangulation. Therefore, each triangle is involved in 
four patches, which means even more intensity values for 
pixels in the intersection of the neighbouring patches. We 
have to ensure that the finally displayed value is correct 
(that it did not end in the pixel only due to a rounding 
mistake). Theoretically, the most often value should be 
the most suitable, but experiments showed that results are 
almost the same as with the arithmetical average of all 
values projected into the individual pixels. Because 
computing arithmetical average has lower memory 
demands, we decided for this option. All results shown in 
Section 5 were rendered using the arithmetical average as 
the value to display. 

4.2 Interpolation on the Coons patch 

Coons patch is a surface defined by four curves as 
boundaries of the patch. As in the case of the Bézier 
triangle patch, our method suggests creating the Coons 
patch from quartets of triangles (one central triangle and 
his neighbours). The boundary curves are then defined by 
vertices on edges of such a configuration, i.e. P200-P110-

P020, P020-P011-P002 and P200-P101-P002 (using notation as 
presented in Figure 2). In order to get four curves, 
subdivision of the longest of those three is suggested. But 
before that, we have to decide what kind of curves we are 
actually going to lead through those vertices. 

Because we have three control points per curve, it is 
reasonable to define the boundary curves for our patch as 
parabolic, i.e. defined by a quadratic polynomial. Eq. 
(10) shows a parametrical formula for such a curve (with 
the parameter t).  

 
curve(t) = a·t

2
 + b· t + c (10) 

 
In order to set the curve uniquely, coefficients a, b 

and c are found according to following requirements. We 
want the curve to pass through the three vertices we have 

on each border of our triangle configuration. Simply said, 
we want the terminal vertices A and B (which are equal 
to either P200 and P020, P020 and P002 or P200 and P002) to 
be the “start” and “end” of the curve and the middle 
vertex M (P110, P011 or P101) to be the peak (or at least 
close to the peak) of our parabola. We get the 
coefficients by solving the equation system (11) for 
parameter t varying from zero to one: 

 
A  = curve(0) = a·0 + b·0 + c 

M = curve(0.5) = a·0.25 + b·0.5 + c 

B  = curve(1)  = a·1+ b·1 + c      (11) 
------------------------------------------- 
a = 2·A + 2·B – 4·M 

b = 4·M - 3·A – B 

c = A 

 

Note that A, B and M represent either x, y or the 
intensity value of the corresponding vertex, therefore, 
each curve is actually defined by nine coefficients – ax, 

bx, cx; ay, by, cy; aI, bI, cI. 
To select which curve to subdivide, distances from A 

to M and M to B are computed for all three curves and 
the longest curve is then subdivided into two as follows: 
x, y and intensity values of the longest curve for t = 0.25 

and t = 0.75 are computed using formula (10) (with a,b,c 

coefficients already known). The results are used to 
construct vertices T0.25 (for t = 0.25) and T0.75 (for 
t = 0.75). Vertices A, T0.75, M then define one of the new 
curves and M, T0.25, B the other.  

In this way we get two pairs of opposite curves. We 
can now use them to describe the surface delimited by 
them. Intensity value in each point of the surface is 
gained as a superposition of splines corresponding to the 
boundary curves in that point characterized by some 
parameter. The routine then looks subsequently: let a1, a2 

and b1, b2 be the pairs of the opposite boundary curves. 
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Figure 3: Two iterations of interpolation cycle on Coons patch 
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Values in the parameter u for the curves b1, b2 gives us 
terminal points of the spline bu. In Figure 3, the terminal 
points are marked as P0 and P10. We interlace this spline 
with each possible spline av characterized by the points 
of pair a1, a2, i.e. by each parameter v from zero to one. 
Parameter u is then incremented (a new spline bu is 
chosen) and the inner cycle repeats. Routine ends when u 
reaches one (every possible spline bu has been used). In 
Figure 3, two iterations of this routine with step 0.1 are 
depicted. During each iteration, you can see the spline bu 

(marked by a solid line) being interlaced with all eleven 
splines av with v varying from zero to one (marked by a 
dashed line). Each intersection of those splines is the 
interpolated point P(u, v). 

As in the Bézier patch interpolation, it is unknown 
which pixel lies on the surface. Therefore the step we add 
to the parameters during each iteration of the cycle 
should be as small as possible to ensure that all pixels are 
covered. Computation of a point of the surface (the 
superposition of splines in a certain point) can be 
expressed by Eq. (12).  

 
 

(12) 
 

As a solution of this equation, shown in Eq. (13), we 
get x, y or colour intensity of point P dependently on 
parameters u and v. A, M, B and C are x, y or intensity 
values in the respective vertices. a1(v), a2(v), b1(u), b2(u) 

are x, y or colour intensity values of points in respective 
boundary curves, denoted by parameters u and v.  
 

P(u,v) = (1 – u)·a1(v) + u·a2(v) + 
 + (1 – v) ·b1(u) + v·b2(u) + 
 – (1 – u) ·(1 – v) ·A - u·(1 – v) ·C + 

 – (1 – u) ·v·M – u·v·B  (13) 
 
Control points of the curves a1, a2, b1, b2 are written 

in Eq. (14). The considered longest initial curve is the 
curve denoted by the vertices A, M, B.  

 
 a1= (A, MAC, C), a2 = (M, T0.25, B), 

 b1= (A, T0.75, M), b2= (C, MBC, B) (14) 
 

where MAC is the vertex between A and C, MBC is the 
vertex between B and C, T0.25 and T0.75 are vertices 
created during subdivision of curve A, M, B. 

The visualized value in each pixel is also gained as an 
arithmetic average of all values which were projected 
into that pixel (see Section 4.1 for details behind this 
decision). 

Unfortunately, among other similarities, this method 
also shares a long computing time with the interpolation 
on the Bézier triangle patch. The reason is the same 
algorithm that is used for intensity distribution among 
pixels in the patch. 

5 Experiments 

In this Section, output images generated by methods 
discussed in Section 3 and 4 are presented and their 
qualities compared one with another and also with the 
most usual method, i.e. piecewise linear interpolation. 

All experiments were performed on triangulations 
made from grey-scale images, because they better 
illustrate eventual artifacts. But since we can consider a 
colour image as an image with three different levels of 
grey-scale intensity, there should not be any problems to 
use these methods on colour images. All the methods 
were tested in our own implementation. 

As mentioned in Section 1, the qualities we are 
looking for are sharpness across the colour edge and 
smoothness along the edge. Figures 4 and 5 focus on 
Lena’s cheek as an example of a smooth surface (see 
Figure 6 for the original image). We can see that, as 
expected, behaviour of patch–oriented methods is better 
then of linear and Ziekiewicz’s method. If only 
smoothness is considered, interpolation on Bézier 
triangle patch (in Figure 5, up) is clearly the favourite.  

However, Zienkiewicz’s interpolation still 
indisputably overcomes results of the common linear 

   

 
Figure 4: Piecewise linear interpolation up and Zienkiewicz interpolation 
down. 



interpolation – outlines of individual triangles, which 
makes the cheek looks rugged in case of linear 
interpolation (Figure 4, up), are flattened by 
Zienkiewicz’s interpolation (as expected). Also, a 
difference in smoothness of images created by an 
interpolation on Coons patch and by Zienkiewicz’s 
interpolation are rather minor (for example, area right 

beneath the right eye looks better in case of the Coons 
patch). This is quite surprising, because we presumed 
the patch method to get much smoother results. 

But the good smoothing performance of patch–
oriented interpolations also has a disadvantage. Imagine 
some thin object described by a small count of triangles. 
So small, that there is almost no patch that is made 
entirely by triangles of this object. The object can than 
be almost fully erased as the colours of its surroundings 
blend with it. It is clear that in order to use interpolations 
on patches universally, we need to pay a better attention 
to preservation of colour edges, because these methods 
tend to blur them. In Figure 6 we can see a triangulation, 
which has colour edges expressively marked by a border 
of small triangles.  

Although this kind of triangulation solves the 
problem of blurring colour edges of the patch–oriented 
interpolations, Figures 7 and 8 show, that it introduces 
another problem instead. Patches created by triangles of 
markedly different sizes tend to be very deformed and 
far from the ideal shape. This leads to clearly visible 
artifacts spreading around the whole border, while 
Zienkiewicz’s interpolation has no problem with an 
accurate visualization of colour edges, as can be seen in 

Figure 9. 

 

   

 

 
Figure 5: Interpolation on Bézier patch up and interpolation on Coons 
patch down. 

Figure 7: Interpolation on the Bézier patch of the triangulation in 

Figure 6 

Figure 6: Fragment of a triangulation with bordered edges 

Figure 8: Interpolation on the Coons patch of the triangulation in 

Figure 6 

 
 

Figure 6: Original image for comparison 



6 Conclusion and future work 

While not being perfectly flawless, presented 
Zienkiewicz’s interpolation outperforms commonly used 
linear interpolation in smoothness of the output image 
and in some cases also preserves edges better. Moreover, 
a difference of a consumed time between both methods is 
insignificant. Therefore it seems like a good replacement 
of a linear interpolation for purposes of digital image 
represented by a triangulation. 

Though methods interpolating on patches present 
better results for smooth areas, they are too dependent on 
triangulation construction to be used universally. 
However, as attempts to use Phong-like method showed, 
we are able to predict which areas should be smooth. 
Therefore an opportunity to exploit patch–oriented 
methods might be in a hybrid interpolation method. 
These would use one of such methods to render smooth 
patches and other, e.g. Zienkiewicz’s method, to render 
areas, where the colour intensity is sharply varying. 
Unfortunately, the problem of long computation time of 
patch–oriented methods remains unsolved. The time can 
reach tenths of minutes during interpolation of high – 
resolution images. Therefore, those methods are not 
usable for the purpose of real time reconstruction (for 
space reasons, exact time tables have been omitted, but 
can be seen in [15], as well as high resolution images). 

Future research possibilities include the already 
mentioned hybrid methods. We also plan to take a closer 
look on interpolations on Voronoi diagram. Voronoi 
diagram is a dual configuration to the Delaunay 
triangulation and as such can be reconstructed from the 
given Delaunay triangulation and used for interpolation. 
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