
On Interpolation for Triangulation-represented Digital
Image

Tomáš Janák*†

Department of Computer Science and Engineering

University of West Bohemia
Pilsen / Czech Republic

Abstract
Triangulation is a good tool for vector representation of
raster image data. To visualize the image represented by
triangulation, one needs to fit a continuous surface of
colour intensity in the triangulation, i.e. to interpolate
data stored in its vertices. This paper presents some
interpolation methods for the purpose of use on digital
images and compares them. The commonly used
piecewise linear interpolation lacks means to adapt to
behaviour of intensity in the surroundings of currently
interpolated triangle. This leads to disturbance of
continuity of the mentioned intensity surface. In this
paper, two possible solutions to this problem are given.
One suggests making an approximation of the surface in
a surrounding area by estimation of surface normals, the
other is to interpolate directly on larger formations
instead of on a single triangle. Zienkiewicz’s
interpolation is presented as a method to use the normal
information, interpolation on Bézier triangle patch and
on Coons patch are presented as methods of interpolation
on larger surfaces.

Keywords: Delaunay triangulation, interpolation, image
representation, image reconstruction

1 Introduction

Under the term a digital image, one usually imagines a
rectangular grid of pixels, an image stored as a bitmap.
Though this (a matrix of pixels) is the form in which we
visualize the image, scaling or other transformations of
such bitmap are rather problematic as they introduce
various artifacts, distortions and other unwanted changes
to the resulting image.

We can avoid such problems if we convert the raster
into vector representation, i.e. if we represent the image
as a set of geometrical simplices. The transformation is
then simplified to a change of coordinates of the points,
which define individual simplices (triangles in our case).

* tjanak@students.zcu.cz
† This work was supported by the Grant Agency of the Academy
of Sciences of the Czech Republic (GA AV ČR), project No.
KJB101470701.

We interpolate among those points to get the remaining
points, which create the image. Thus the solution leads to
a representation alternative to the raster based formats
(JPEG, PNG, etc.) and that is a triangulation
representation.

The basic strategy is to create some triangulation
from the input image and, when visualizing it,
reconstruct the image with a piecewise linear
interpolation of each triangle. This simple approach
obviously does not generate satisfactory results. Main
problems are that large, almost mono-coloured, areas are
not “smooth” enough and colour edges are not “sharp”
enough. By the lack of smoothness we mean
discontinuity in colour intensity among individual
triangles forming the area and by the lack of sharpness
we mean that the colour edges, which make an individual
object in the picture recognizable, are blurred. There are
basically two directions in which this basic model has to
be modified in order to achieve better results.

First of them is an improvement of the process of
triangulation construction. The set of vertices, which
forms the triangulation, resembles pixels of the original
image (their x and y coordinates and colour intensity).
This means that there are many different ways of how to
choose which pixel should become a vertex. We also
have many different types of triangulations that can be
used. The construction can have various impacts on the
quality of the reconstructed image, thus the choice of the
type of triangulation is very important. Interpolation
methods presented in this paper were tested on Delaunay
triangulation, but they should be applicable to any other
triangulation.

The second thing to improve is the interpolation
method itself. Flaws of the commonly used piecewise
linear interpolation are mainly caused by an ignorance of
intensity behaviour in areas surrounding the interpolated
triangle. In this paper, we discuss some options which
would enable us to incorporate those areas into
calculations of the resulting intesity. To achieve this, two
different approaches are suggested.

First are methods, which still interpolate the triangles
individually, but use vectors respective to the continuous
intensity surface varying across the whole image to
correlate the output. The other approach is to interpolate
on more complex surface structures formed by individual

triangles of the triangulation. This paper will depict some
exemplary interpolation methods of those approaches,
showing their advantages and disadvantages and evaluate
their usability for our purposes. Methods described in
this paper have already existed, but their application to
the digital image is original.

After a brief review of existing work in Section 2,
possibilities of interpolation on single triangle (Phong-
like and Zienkiewicz’s) are presented in Section 3. In
Section 4 we take a closer look on interpolations on
larger surfaces (Bézier triangle patch and Coons patch).
Section 5 contains a comparison of results of the tried
methods and their usability is then discussed in Section
6.

2 State of the art

The problem of magnification of a raster image is not
new. Numerous solutions with more or less plausible
results have already been developed. For example, in [9]
and [11] we can read about usability of the discrete
cosine transform for that purpose. In [2], assumption that
luminance remains constant along the generalized path
motion of a pixel in the image is used for reconstruction.

As was already told in Section 1, sharpness of colour
edges is very important for a proper reconstruction. This
knowledge led many research groups to putting a large
emphasis on the colour edges when developing the
interpolation methods. In [1], Allebach et al. suggest to
create a high resolution edge map of the image and for
the interpolation to use a bilinear interpolation modified
to prevent interpolation across edges. In [8], this
approach is enhanced by using the estimations of local
covariance characteristics of the initial image to direct
the interpolation of the magnified image.

Triangulations are also quite a popular tool for image
reconstructions and their usability has been widely
tested. In 1990, Dyn, Levin and Rippa showed in [5] that
a piecewise linear interpolation on a Data-Dependent
Triangulation (DDT) can lead to plausible results when
used for image reconstruction. Since then, many authors
enhanced their method in various ways, as can be seen,
e.g., in [13], [12] or [7]. As [6] or [4] shows, also other
triangulations then DDT, as the well-known Delaunay
triangulation, can be used efficiently.

However, in the above stated work, the attempts to
solve the problem of imperfect results are mostly
narrowed to enhancement of the algorithm for
triangulation construction. The usage of piecewise linear
interpolation as a method to fill the pixels inside each
triangle is usually mentioned as a given fact which is not
a subject to discussion. But there are many interpolation
methods already used in other applications (e.g.
interpolations based on various splines, used successively
in 3D rendering; interpolations of higher than linear
degree, etc.), which could be modified and used for our
purposes. This paper tries to bring some attention to this,
because, as images presented in Section 5 shows,
improvement of the interpolation methods themselves

can lead to better results, independently of the used
triangulation.

3 Interpolation on a single
triangle

Following methods describe some possibilities of using
normal (Phong-like) and gradient (Zienkiewicz’s) vectors
for better approximation of behaviour of the global
colour intensity function.

3.1 Phong–like interpolation

Linear interpolation on a triangle is sometimes also
referred to as Gouraud shading, a method initially
developed for shading of 3D objects. Phong shading is
considered as an enhancement to Gouraud shading (a
brief description of both can be found in [14]) in case of
3D rendering. Since the Gouraud method is commonly
used in our problem, we were curious whether we can
use principles of Phong shading to achieve a similar
improvement in interpolation of triangulated images. The
interpolation method of Phong shading suggests to
linearly interpolate not only intensities, but also normal
vectors in the control vertices. Phong shading was
initially meant for the Phong reflection model, which
describes a 3D scene. Therefore, we also approach it as a
3D situation, with colour intensity as the third dimension.

The surface normal in each vertex is determined as
an average of normals of adjacent triangles. All normal
vectors are normalized before computations. This ensures
that the final vector is not affected by the size of normal
vectors (which are proportional to the area of their
respective triangles), but only by their direction. Normal
vectors in each pixel of a given triangle are then found as
a linear combination of components (x and y coordinates
and colour intensity) of the normal vectors in the triangle
vertices. Barycentric coordinates are used as coefficients
to respective normals, as shown in Eq. (1):

normal = (a·nAX + b·nBX + c·nCX, (1)
a·nAY + b·nBY + c·nCY, a·nAI + b·nBI + c·nCI)

where a, b, c are barycentric coordinates of the triangle
A,B,C, normalA = (nAX; nAY; nAI), normalB = (nBX; nBY;

nBI) and normalC = (nCX; nCY; nCI) are the normal vectors
in vertices A, B, C respectively, each defined by x, y and
intensity components. In a similar way the basic color
intensity in each pixel, as a combination of intensities of
the triangle vertices, is found, see Eq. (2):

 basic color = a·AI + b·BI + c·CI (2)

AI, BI, CI are intensities in the triangle vertices A, B, C

and a, b, c are barycentric coordinates. This value is used
as the value to be modified by the color intensity
component of the normalized normal in this pixel. Note
that in order to describe points inside the triangle, the
barycentric coordinates a, b, c must take values from
zero to one and their sum must be one.

∑
⋅

=
k

kk

A

nA
normal

 −−
=

I

y

I

x

n

n

n

n
gradient ,

[]

[]

[]
)(

)()23(

)(

)()23(

)(

)()23(),,(

2
2

9

2
2

81
2

7

2
2

6

2
2

51
2

4

2
2

3

2
2

21
2

1

kacu

kacukccu

kcbu

kcbukbbu

kbau

kbaukaaucbaP

+⋅⋅−

++⋅⋅++−⋅+

++⋅⋅−

++⋅⋅++−⋅+

++⋅⋅−

++⋅⋅++−⋅=

However, our situation differs from a usual 3D case.
We lack information about the light sources used by the
Phong reflection model and it is highly improbable that
we would be able to simulate them. Even if so, the
reflection model is based on physical observations of
light behaviour in 3D world, which would most likely be
of no use in our coordinates (x, y and intensity).
Therefore, we abandoned attempts to simulate Phong
reflection model and searched for other ways to use the
information presented by the normal vectors.

Let us analyze what that information actually is. Note
that the surface normal in each triangle is gained as a
cross product of two of its edge vectors and that the edge
vector is gained as a difference between the two vertices
of the edge.

Firstly, imagine a triangle inside some larger patch,
which should be smooth. Then the colour intensities in
its vertices are almost the same. Therefore the intensity
components of the edge vectors are almost zero. Thanks
to the cross product in the normal vector computation,
this zero exposes in x and y coordinates of the resulting
normal vector. After normalization, the intensity
component will than converge to one, because the size of
the normal will be almost equal to the (pre-
normalization) size of its intensity component. It can be
seen that in the opposite case, where there is a large
difference between intensities in the individual vertices
(an edge is encountered), the size of the normal vector
gets much bigger than the size of its intensity component.
Therefore, after normalization it becomes very small,
converging to zero.

If the normals of all triangles adjacent to a vertex
behave as in the first case (they lie in a smooth patch) or
as in the second case (an edge is between them), than
also the surface normal in the vertex behaves so. Thus
the information from normal vectors is whether the
interpolation should behave smoothly over edges of the
triangles which surround the interpolated one or not.
However, they do not give us any information about the
value of colour intensity needed for the interpolation.
Figure 1 illustrates this problem by visualizing colour
components of normal vectors in each pixel as a grey-
scale image – vectors with intensity converging to one

are visualized as white, while the ones with intensity
converging to zero are visualized as black. We can see
that individual objects, i.e. smooth areas bordered by a
colour edge, are easily recognizable. However, the
colours that fill them are the same (white), even though
their colours in the original image are not.

To sum up, normal vectors can be used for quite an
accurate description of global behaviour of the intensity,
but do not present any direct tool for use of this
knowledge. To use it, we would have to find some
relation between normal vectors and intensities stored in
vertices of the interpolated triangle. Section 3.2
introduces a method, which gives us such relation.

3.2 Zienkiewicz’s interpolation

This method was used in [3] for interpolation of
geographical data represented by triangulation. Because
of satisfactory results it has in [3], it was worth trying to
exploit it for our purpose.

In some way, it makes use of the knowledge
presented by normals mentioned in Section 3.1 – gradient
vectors are suggested for description of intensity
behaviour. A simple method for a gradient estimation in
a vertex is as follows: find an average of normalized
surface normal vectors of each of the triangle adjacent to
this vertex (as in Section 3.1), weighted by their areas, as
expressed by (3):

 (3)

where nk is the normalized surface vector of the k-th
triangle, Ak is its area and A is the sum of all the areas Ak.
With this estimated normal, gradient of intensity (along x
and y axis) can be determined as shown in Eq. (4):

 (4)

where nx and ny are normal components in the x and y
coordinate and nI is its colour component.

This estimation is then inserted into formula (5)
derived for Zienkiewicz’s interpolation, which cubically
interpolates intensity across the triangle.

 (5)

Result of the formula (5) is the intensity value in

point (pixel) P, depending on parameters a, b, c, which
are barycentric coordinates of the interpolated triangle

Figure 1: Part of the “Peppers” image, on the left we see intensity

components of normals visualized as a grey-scale image, on the right

original image for comparison.

2

2

2

1

cbc
k

cbak

⋅⋅
=

⋅⋅⋅=

b

a

i

gABu

gABu

Au

⋅=

⋅=

=

3

2

1

c

b

i

gBCu

gBCu

Bu

⋅=

⋅=

=

6

5

4

a

c

i

gCAu

gCAu

Cu

⋅=

⋅=

=

9

8

7

0,0,0

1

≥≥≥

=++

cba

cba

kjin

ijk

nkji

ijk

n

ijk

cba
kji

n
cbaBwhere

PcbaBcbaP

!!!

!
),,(

),,(),,(

⋅⋅
=

⋅= ∑
=++

101011110

002
2

020
2

200
2

222

),,(

PacPbcPab

PcPbPacbaP

⋅+⋅+⋅

+⋅+⋅+⋅=

A,B,C. For better clarity, some terms of the interpolation
formula (5) were shortened into variables u and k. Their
meaning is described by Eq. (6):

 (6)

where AB, BC and CA are the edge vectors (B - A, C - B
and A - C, respectively), ga, gb and gc are gradients in
vertices A, B, C; a, b, c are the barycentric coordinates
and Ai, Bi, Ci are colour intensities in the corresponding
vertices.

4 Interpolations on patches

Following methods do not interpolate on individual
triangles, but on patches created by them. This way we
incorporate information held not by only three, but by
more vertices, which should lead to smoother results.
The first discussed method interpolates on the Bézier
triangle patch, the second describes possibilities of
interpolation on the Coons patch.

4.1 Interpolation on the Bézier triangle
patch

Bézier triangle patch is a triangular surface, which can be
made by joining three Bézier curves. Its degree is
denoted by the degree of these curves, i.e. by the number
of control points the curves have. For our purpose we
consider patches of the second degree. Therefore, each
boundary curve has three control points, which makes six
control points to define the surface. A possible
configuration of such a patch can be seen in Figure 2.

Figure 2: Bézier patch of the second degree with its control points

If we look on Figure 2, another way of interpretation

of such a patch might occur. We can view it as a patch
created by some triangle and its neighbours, i.e., the
triangles, which share an edge with the one in center.
Therefore, we can easily construct such a patch for each

triangle in our triangulation. We only take the triangle
and append its neighbours. Note that this approach
cannot be used on triangles which are on the border of
the interpolated image, because they do not have three
neighbours. This singular case can be solved by using
other interpolation method, e.g. bilinear, to render those
triangles.

To describe points inside the patch, barycentric
coordinates of vertices P200, P020 and P002 can be used.
We will refer to them as a, b and c, respectively. The
conditions ensuring that the point P(a, b, c) lies inside
triangle P200, P020, P002 are mentioned in Eq. (7).

 (7)

Point P lying in the patch can than be described in the

form of Bernstein polynomials with these coordinates as
parameters, as Eq. (8) show:

 (8)

After inserting our values into Eq. (8), i.e. the degree
n = 2, it reduces to Eq. (9):

(9)

With the resulting formula presented in Eq. (9), we

are able to describe the whole surface defined by our
patch. Coordinates (x, y and intensity) of each point Pijk
of this surface are obtained from (9) by a successive
insertion of x, y and intensity coordinates of respective
points Pijk into the formula.

All points defined by coordinates a, b, c, which
satisfy conditions (7), then form a surface with the
following qualities. It lies in the convex hull of all
control points of the patch, pass through terminal control
points P200, P020, P002 and its boundaries, thanks to the
quadratic interpolation function, are parabolic splines
corresponding to the control points of individual
boundary curves. Though these properties are welcome,
they also cause problems with determining which pixels
actually belong to the patch. The points of the patch do
not have to project into each pixel of the triangles, which
create the patch. On the contrary, some of those points
can project outside of those triangles. A proposed
solution to this problem is to compute intensity values for
all possible triplets a, b, c that satisfy (7). Of course we
cannot count with every number between zero and one.
But since the number of pixels we want to render is finite
and relatively small, we can compute a set of coordinates
large enough to suffice. This can be done if we
subsequently increment any two of the coordinates from
zero to one by some “step”, a small (much smaller than

P200 P110 P020

P101 P011

P002

one) real number. Note that the third coordinate is easily
calculated, because we know the total sum must be one.
This way the desired surface can finally be rendered.

However, the choice of this „step“ brings some
difficulties. We project real values (a, b, c) on integer
values (pixel coordinates) and therefore some pixel could
be missed entirely because of rounding mistakes.
Therefore, even if we calculate an approximation of
number of pixels in the patch, we cannot be confident
that it will suffice to compute that many intensity values.
Much more values than there are pixels to render have to
be computed, which result in lengthier time consumed by
the computation. Though some optimization can be made
(e.g. the mentioned estimation of pixel count), the
quadratic time complexity of the algorithm makes it
unable to compete with single triangle based methods.

On the other hand, each of the redundant value
always projects onto some pixel. Thus we can get more
intensity values for each pixel, which are not necessarily
equal. Note that we also get those values for another
reason – the patches are constructed for each triangle in
the triangulation. Therefore, each triangle is involved in
four patches, which means even more intensity values for
pixels in the intersection of the neighbouring patches. We
have to ensure that the finally displayed value is correct
(that it did not end in the pixel only due to a rounding
mistake). Theoretically, the most often value should be
the most suitable, but experiments showed that results are
almost the same as with the arithmetical average of all
values projected into the individual pixels. Because
computing arithmetical average has lower memory
demands, we decided for this option. All results shown in
Section 5 were rendered using the arithmetical average as
the value to display.

4.2 Interpolation on the Coons patch

Coons patch is a surface defined by four curves as
boundaries of the patch. As in the case of the Bézier
triangle patch, our method suggests creating the Coons
patch from quartets of triangles (one central triangle and
his neighbours). The boundary curves are then defined by
vertices on edges of such a configuration, i.e. P200-P110-

P020, P020-P011-P002 and P200-P101-P002 (using notation as
presented in Figure 2). In order to get four curves,
subdivision of the longest of those three is suggested. But
before that, we have to decide what kind of curves we are
actually going to lead through those vertices.

Because we have three control points per curve, it is
reasonable to define the boundary curves for our patch as
parabolic, i.e. defined by a quadratic polynomial. Eq.
(10) shows a parametrical formula for such a curve (with
the parameter t).

curve(t) = a·t

2
 + b· t + c (10)

In order to set the curve uniquely, coefficients a, b

and c are found according to following requirements. We
want the curve to pass through the three vertices we have

on each border of our triangle configuration. Simply said,
we want the terminal vertices A and B (which are equal
to either P200 and P020, P020 and P002 or P200 and P002) to
be the “start” and “end” of the curve and the middle
vertex M (P110, P011 or P101) to be the peak (or at least
close to the peak) of our parabola. We get the
coefficients by solving the equation system (11) for
parameter t varying from zero to one:

A = curve(0) = a·0 + b·0 + c

M = curve(0.5) = a·0.25 + b·0.5 + c

B = curve(1) = a·1+ b·1 + c (11)

a = 2·A + 2·B – 4·M

b = 4·M - 3·A – B

c = A

Note that A, B and M represent either x, y or the
intensity value of the corresponding vertex, therefore,
each curve is actually defined by nine coefficients – ax,

bx, cx; ay, by, cy; aI, bI, cI.
To select which curve to subdivide, distances from A

to M and M to B are computed for all three curves and
the longest curve is then subdivided into two as follows:
x, y and intensity values of the longest curve for t = 0.25

and t = 0.75 are computed using formula (10) (with a,b,c

coefficients already known). The results are used to
construct vertices T0.25 (for t = 0.25) and T0.75 (for
t = 0.75). Vertices A, T0.75, M then define one of the new
curves and M, T0.25, B the other.

In this way we get two pairs of opposite curves. We
can now use them to describe the surface delimited by
them. Intensity value in each point of the surface is
gained as a superposition of splines corresponding to the
boundary curves in that point characterized by some
parameter. The routine then looks subsequently: let a1, a2

and b1, b2 be the pairs of the opposite boundary curves.

A

M

B

C

a2

a1

b1

b2

b0.1

a0.1
a0.2 a0.3

a0.6 a0.7 a0.8 a0.9
a0.5a0.4

P0

P10

A

M

B

C

a2

a1

b1

b2

b0.5

a0.1
a0.2 a0.3

a0.6 a0.7 a0.8 a0.9
a0.5a0.4

P0

P10

Figure 3: Two iterations of interpolation cycle on Coons patch

[] 01

1

)(

)(),()(

)(

11

2

21

1

=

−

−

⋅

⋅−−

v

v

BvaC

ubvuPub

MvaA

uu

Values in the parameter u for the curves b1, b2 gives us
terminal points of the spline bu. In Figure 3, the terminal
points are marked as P0 and P10. We interlace this spline
with each possible spline av characterized by the points
of pair a1, a2, i.e. by each parameter v from zero to one.
Parameter u is then incremented (a new spline bu is
chosen) and the inner cycle repeats. Routine ends when u
reaches one (every possible spline bu has been used). In
Figure 3, two iterations of this routine with step 0.1 are
depicted. During each iteration, you can see the spline bu

(marked by a solid line) being interlaced with all eleven
splines av with v varying from zero to one (marked by a
dashed line). Each intersection of those splines is the
interpolated point P(u, v).

As in the Bézier patch interpolation, it is unknown
which pixel lies on the surface. Therefore the step we add
to the parameters during each iteration of the cycle
should be as small as possible to ensure that all pixels are
covered. Computation of a point of the surface (the
superposition of splines in a certain point) can be
expressed by Eq. (12).

(12)

As a solution of this equation, shown in Eq. (13), we
get x, y or colour intensity of point P dependently on
parameters u and v. A, M, B and C are x, y or intensity
values in the respective vertices. a1(v), a2(v), b1(u), b2(u)

are x, y or colour intensity values of points in respective
boundary curves, denoted by parameters u and v.

P(u,v) = (1 – u)·a1(v) + u·a2(v) +
 + (1 – v) ·b1(u) + v·b2(u) +
 – (1 – u) ·(1 – v) ·A - u·(1 – v) ·C +

 – (1 – u) ·v·M – u·v·B (13)

Control points of the curves a1, a2, b1, b2 are written

in Eq. (14). The considered longest initial curve is the
curve denoted by the vertices A, M, B.

 a1= (A, MAC, C), a2 = (M, T0.25, B),

 b1= (A, T0.75, M), b2= (C, MBC, B) (14)

where MAC is the vertex between A and C, MBC is the
vertex between B and C, T0.25 and T0.75 are vertices
created during subdivision of curve A, M, B.

The visualized value in each pixel is also gained as an
arithmetic average of all values which were projected
into that pixel (see Section 4.1 for details behind this
decision).

Unfortunately, among other similarities, this method
also shares a long computing time with the interpolation
on the Bézier triangle patch. The reason is the same
algorithm that is used for intensity distribution among
pixels in the patch.

5 Experiments

In this Section, output images generated by methods
discussed in Section 3 and 4 are presented and their
qualities compared one with another and also with the
most usual method, i.e. piecewise linear interpolation.

All experiments were performed on triangulations
made from grey-scale images, because they better
illustrate eventual artifacts. But since we can consider a
colour image as an image with three different levels of
grey-scale intensity, there should not be any problems to
use these methods on colour images. All the methods
were tested in our own implementation.

As mentioned in Section 1, the qualities we are
looking for are sharpness across the colour edge and
smoothness along the edge. Figures 4 and 5 focus on
Lena’s cheek as an example of a smooth surface (see
Figure 6 for the original image). We can see that, as
expected, behaviour of patch–oriented methods is better
then of linear and Ziekiewicz’s method. If only
smoothness is considered, interpolation on Bézier
triangle patch (in Figure 5, up) is clearly the favourite.

However, Zienkiewicz’s interpolation still
indisputably overcomes results of the common linear

Figure 4: Piecewise linear interpolation up and Zienkiewicz interpolation
down.

interpolation – outlines of individual triangles, which
makes the cheek looks rugged in case of linear
interpolation (Figure 4, up), are flattened by
Zienkiewicz’s interpolation (as expected). Also, a
difference in smoothness of images created by an
interpolation on Coons patch and by Zienkiewicz’s
interpolation are rather minor (for example, area right

beneath the right eye looks better in case of the Coons
patch). This is quite surprising, because we presumed
the patch method to get much smoother results.

But the good smoothing performance of patch–
oriented interpolations also has a disadvantage. Imagine
some thin object described by a small count of triangles.
So small, that there is almost no patch that is made
entirely by triangles of this object. The object can than
be almost fully erased as the colours of its surroundings
blend with it. It is clear that in order to use interpolations
on patches universally, we need to pay a better attention
to preservation of colour edges, because these methods
tend to blur them. In Figure 6 we can see a triangulation,
which has colour edges expressively marked by a border
of small triangles.

Although this kind of triangulation solves the
problem of blurring colour edges of the patch–oriented
interpolations, Figures 7 and 8 show, that it introduces
another problem instead. Patches created by triangles of
markedly different sizes tend to be very deformed and
far from the ideal shape. This leads to clearly visible
artifacts spreading around the whole border, while
Zienkiewicz’s interpolation has no problem with an
accurate visualization of colour edges, as can be seen in

Figure 9.

Figure 5: Interpolation on Bézier patch up and interpolation on Coons
patch down.

Figure 7: Interpolation on the Bézier patch of the triangulation in

Figure 6

Figure 6: Fragment of a triangulation with bordered edges

Figure 8: Interpolation on the Coons patch of the triangulation in

Figure 6

Figure 6: Original image for comparison

6 Conclusion and future work

While not being perfectly flawless, presented
Zienkiewicz’s interpolation outperforms commonly used
linear interpolation in smoothness of the output image
and in some cases also preserves edges better. Moreover,
a difference of a consumed time between both methods is
insignificant. Therefore it seems like a good replacement
of a linear interpolation for purposes of digital image
represented by a triangulation.

Though methods interpolating on patches present
better results for smooth areas, they are too dependent on
triangulation construction to be used universally.
However, as attempts to use Phong-like method showed,
we are able to predict which areas should be smooth.
Therefore an opportunity to exploit patch–oriented
methods might be in a hybrid interpolation method.
These would use one of such methods to render smooth
patches and other, e.g. Zienkiewicz’s method, to render
areas, where the colour intensity is sharply varying.
Unfortunately, the problem of long computation time of
patch–oriented methods remains unsolved. The time can
reach tenths of minutes during interpolation of high –
resolution images. Therefore, those methods are not
usable for the purpose of real time reconstruction (for
space reasons, exact time tables have been omitted, but
can be seen in [15], as well as high resolution images).

Future research possibilities include the already
mentioned hybrid methods. We also plan to take a closer
look on interpolations on Voronoi diagram. Voronoi
diagram is a dual configuration to the Delaunay
triangulation and as such can be reconstructed from the
given Delaunay triangulation and used for interpolation.

Acknowledgements

I would like to thank to my supervisor Josef Kohout,
Ph.D. for providing me his triangulation – processing
program, triangulation samples and mainly for offering
me the opportunity to work on this project. Big thanks
also belong to Dr. Ivana Kolingerová for useful advices
on some methods and help with the paper preparation.

References

[1] J. Allebach, P.W. Wong. Edge-directed

interpolation. International conference on Image
Processing 1996, Vol. 3, pp. 707-710.

[2] B. Ayazifar and J.S. Lim. Pel-adaptive model-based

interpolation of spatially subsampled images.

International conference on Acoustic Speech and
Signal Processing proceedings, Vol. 3 (1992), pp.
181-184

[3] P. Čermák. Výpočet vrstevnic na trojúhelníkové síti.
Diploma thesis, Faculty of Applied Sciences,
University of West Bohemia in Pilsen, Czech
Republic, 2002.

[4] L. Demaret, A. Iske. Advances in Digital Image

Compression by Adaptive Thinning. Marie Curie
Fellowship Association Annals, Vol. 3 (2004), pp.
105-109.

[5] N. Dyn, D. Levin, and S. Rippa. Data Dependent

Triangulations for Piecewise Linear Interpolation.
IMA Journal of Numerical Analysis, Vol. 10 (1990),
pp. 137-154.

[6] J. Kohout. On Digital Image Representation by the

Delaunay Triangulation. PSIVT 2007, December
17-19 2007, pp. 826-840

[7] B. Lehner, G. Umlauf, B. Hamann. Image

Compression Using Data-Dependent

Triangulations. ISVC 2007, November 26 – 28
2007, pp. 351 – 362

[8] X. Li, M. Orchard. New Edge Directed

Interpolation. IEEE Transactions on Image

Processing, Vol. 10, Issue 10, October 2001, pp.
1521-1527

[9] S. A. Martucci. Image resizing in the discrete cosine

transform domain. International Conference on
Image Processing proceedings Vol.2 (1995), pp.
2244

[10] T. Akenine-Möller, E. Haines. Real-Time

Rendering. A.K. Peters Ltd., July 2002

[11] E. Shinbori, M. Takagi. High Quality Image

Magnification Applying the Gerchberg-Papoulis

Iterative Algorithm with DCT. Visual
Communications and Image Processing, November
1992, pp. 311-321

[12] D. Su, P. Willis. Image Interpolation by Pixel Level

Data-Dependent Triangulation. Computer Graphics
Forum, Vol. 23 No. 2, June 2004, pp. 189 – 201

[13] X. Yu, B. Morse, T.W. Sederberg. Image

Reconstruction Using Data-Dependent

Triangulation. IEEE Computer Graphics and
Applications, Vol. 21 No. 3, pp. 62-68, May/June
2001

[14] http://en.wikipedia.org/wiki/Phong_shading

[15] http://home.zcu.cz/~tjanak/CESCG

Figure 9: Zienkiewicz’s interpolation of triangulation in Figure 6

