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Abstract

This paper presents an algorithm to detect a rigid straight
biopsy needle in multi-view C-arm X-ray images and re-
construct its tip and orientation in 3D-space. Several well
known computer vision techniques are applied to achieve
this goal. The processing pipeline that we describe con-
sists of five stages containing a denoising and preprocess-
ing stage with Gaussian filtering, computing the Hessian
tensorfield and a Radon transform for ridge detection, nee-
dle tip detection, the reconstruction of the data into 3D-
space with Direct Linear Transform and improving ro-
bustness by backprojection. The processing steps are de-
scribed in detail, a short overview is given about the sur-
rounding application and finally we present the evaluation
results of the experiments on real X-ray imaging data.

Keywords: X-ray, multiview geometry, Radon trans-
form, Hessian matrix, line detection

1 Introduction

During prostate biopsy a probe head and a core needle are
inserted to excise a tissue sample from the prostate for his-
tological examination to find out if cancer or other abnor-
mal cells are present or to remove or destroy tumors in the
prostate. Since this happens in vivo with least possible in-
trusion, the surgeon has no direct visual opportunity to get
feedback on the needle’s exact position. Due to this, the
surgeon can not be certain about the success of taking the
sample without retracting the probe or if the right positions
were penetrated.

To overcome this problem several X-ray photographs
are taken with a C-arm device from different angles.

A good approach would be to determine a model of the
patient’s organs with a computed tomography as a prelimi-
nary stage to the biopsy, fit this model to the reconstruction
from the inter-operative X-ray images [9] and reconstruct
the needle within this model. This will permit the surgeon
to relocate a specific position of the needle and, if nec-
essary, to adhere to a fixed predefined pattern of taking a
number of samples.

Recent work has already covered the registration of the
pre-operative CT volume dataset and inter-operative X-ray
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images [5]. In this paper we present an algorithm to recon-
struct the needle’s position and orientation in a robust way
from several views.

1.1 Outline

In Section 2 we give a short overview of similar work that
has been done considering the task of detecting a needle.
In Section 3 we describe the basics of the algorithms and
principles of the methods that we apply.

The processing pipeline stages consist of the following
steps: detecting the needle ridge in each image, finding its
tip, reconstructing this information in 3D-space and reject-
ing outliers that would lead to misdetection. The stages of
the algorithm are covered in Section 4 along with a short
description of the overall application that this algorithm is
a part of, and the results are discussed in Section 5.

In Section 6, at last, we will point out the main issues
that have arisen during the experiments and provide some
future prospects.

2 Related work

A lot of research has been put recently into robotic steer-
able needle insertion as this seems to be very promising to
improve methods in minimal invasive therapy and surgery
in near future. Though most of the papers focus on the
robotic and mechanical aspects of this task, needle detec-
tion seems to play an increasingly important role.

In [4], an optically controlled flexible needle steering
device is presented, where needle detection in X-ray im-
ages plays an important role in the feedback loop of the
steering control. It is based on detecting a characteris-
tic shape at the basis of the needle with a normalized
cross correlaton of a template image and the X-ray image.
The needle tip itself is found afterwards by following the
low gradient area that starts at the detected basis feature.
Knowing the length of the needle, the shape detected can
easily be verified. Additionally, the shape of the needle
is fitted by a polynomial that smoothes the line. This ap-
proach seems sufficiently robust for testing environments,
but as the authors state it is subject to noise, occlusion by
beads and low contrast of the image intensities.

In [3] a steering aid for flexible needles is developed that
is intended to operate as an image enhancer to the physi-



cian or fully automatically. In contrast to the method de-
scribed by Glozman and Shoham [4], the image of the nee-
dle is taken on an ultra sound basis, where the transducer
has to be aligned to the image plane manually once. The
needle detection algorithm takes two points on the approx-
imate needle axis determined manually as an initial value
and then performs the detection. The detection is based
on noise filtering, gradient based edge detection, Hough
transform and polynomial fitting of the needle. Although
the needle detection is very robust, it is stated that the de-
tection of the needle tip is not very accurate due to the
noise in ultrasound images, e.g. speckles and signal drop-
out.

To further improve needle tip detection it is suggested
to actively oscillate the tip with some higher frequency.
This is not interfering with the steering of the needle and
permits the ultra sound device to detect the source of the
frequency easier.

3 Background Techniques

Throughout this work several well established methods are
applied to accomplish the given task and in this Section we
want to describe the principles of these shortly.

3.1 The Radon transform for line detection

The Radon transform is defined in general to integrate
functions f on n-dimensional Euclidean space Rn over all
n− 1-dimensional hyperplanes. In our case, f that can
be considered a two dimensional distribution is projected
onto all lines by determining all line integrals of f on some
domain D on R2.

f̂ =
∫

L
f (x,y)ds (1)

This can also be thought of rotating a parallel beam projec-
tor around a problem domain and simultaneously register-
ing the incoming beams at the opposite site of the domain,
as illustrated in Figure 1. A line L can be denoted by the
normal form

p = xcosφ + ysinφ (2)

A straight line becomes a single point in this transformed
space, so the problem of detecting a line can be further
reduced to detecting a peak in two dimensional parameter
space, which can be found easily.

3.2 The Hessian matrix for ridge detection

The ridge detector we used is based on the Hessian matrix
defined in (3), as it is supposed to be very responsive at
edges and blobs [10]. The Hessian matrix is defined as:

H(x,y) = (∇t ·∇)I =

[
∂ 2I
∂x2

∂ 2I
∂xy

∂ 2I
∂xy

∂ 2I
∂y2

]
, (3)

Figure 1: The beamer-sensor system the Radon transform
can be thought of.

where ∇ denotes the operator
(

∂

∂x
∂

∂y

)T
, Ixx and Iyy are the

second derivatives of the image intensity I at position (x,y)
and Ixy is the mixed derivative in both directions. After
performing the eigenvalue decomposition of the Hessian
matrix

λ1,2 =
1
2

[
(H11 +H22)±

√
4H12H21 +(H11−H22)2

]
,

(4)
where |λ1| ≥ |λ2| are the eigenvalues of H(x,y) and

H(x,y)vi = λivi, i ∈ {1,2} (5)

where v1,2 are the eigenvectors of H(x,y). It can be stated
that if ∇Iv1 = 0, the point belongs to a ridge (λ1 < 0) or a
valley (λ1 > 0) [7].

3.3 Reconstruction of a point to 3d-space

A very simple linear triangulation method would be to
combine the known coordinates of the points in the image
planes xi = PiXi, which can also be written as

xi× (PiXi) = 0, (6)

where Xi are the world coordinates of xi and Pi =(
pi,1,pi,2,pi,3

)T are the respective projection matrices.
Reconstruction can be done by bringing the above into

a form of homogeneous equations AX = 0, where A is a



composition of two Equations (6) for each image:

u1pT
1,3 − pT

1,1
v1pT

1,3 − pT
1,2

u2pT
2,3 − pT

2,1
v2pT

2,3 − pT
2,2

...
unpT

n,3 − pT
n,1

vnpT
n,3 − pT

n,2


X = 0, (7)

where ui and vi are the elements of xi.
However, it is not possible to reconstruct the world co-

ordinates exactly from several views, but rather it is neces-
sary to estimate them in an optimization function that min-
imizes some cost function, as the rays that can be backpro-
jected from the image through the respective camera cen-
ters are skew and the system of Equations (7) is overdeter-
mined.

As stated in [6] this kind of reconstructional problems
can be treated as finding a least-squares solution to Equa-
tion (7), i.e., finding that X that minimizes AX subject to
‖X‖= 1.

4 Processing pipeline

The chosen approach can be partitioned into several
smaller stages, which can be treated as individual mod-
ules as depicted in Figure 2. They are detailed in their
respective subsections regarding a short overview of the
overall application in Section 4.1, removing clutter (e.g.
small globes, probe head) in Section 4.2, finding the line
the needle is aligned to in section 4.3, detecting the tip
along this line in Section 4.4, combining this data to find
its representation in world coordinates in Section 4.5 and
finally rejecting the wrongly detected needle with back-
projection of the reconstructed data in Section 4.6.

4.1 Application

As already stated, this module is part of a more complex
application supposed to assist the surgeon during biopsy
of the prostate, i.e., exciting tissue for histological exami-
nation, the ablation of cancerous tissue or the implantation
of low radiating beads that would destroy the former.

A precondition to this minimal invasive navigational
surgery is knowledge of the exact location of the biopsy
needles inside the prostate and the establishment of a map-
ping pathology of the cancer lesion in the single patient.

It is considered to take three images with a mobile C-
arm, each with maximal mechanical offset (e.g., −45◦, 0◦

and +45◦) but minimal femoral influence. Subsequently,
line detection methods have to be adopted to detect the
needle in these images. The needle images are projected
back into 3D space, where the best fitting line will be com-
puted. At the same time, a CT or MR based model of the

patient would be registered to the 3D space and the loca-
tion of the penetrated tissue will be available.

For the purpose of reconstructing camera positions and
orientations, a special target with small globes attached in
a specific pattern visible to X-ray imaging has been de-
signed and used for reconstruction of the camera orienta-
tion. Furthermore, the cameras are to be calibrated ahead
of the biopsy.

Visualization and interaction methods should finally al-
low the surgeon to easily access the desired information.
We chose Coin3D1 for visualization of the resulting data.

4.2 Filtering background clutter

As shown in Figure 2, there is already some work done a
priori, that can be used to ease the task of filtering back-
ground clutter:

• The geometry of the screen always stays the same.
This implies, that we can use a constant mask to mask
out the additional information that is written to the
image, such as the name of the patient and others, so
that we can focus on the actual image area, which is
circular in our case.

• The cameras are already calibrated, i.e., the images
are undistorted. This plays a very important role, as
X-ray images are subject to a very strong pincushion
distortion.

• The positions of the small globes are computed dur-
ing an earlier step, so this information can be used to
mask out the small beads.

After doing so, we want to mask out the probe head, too,
as this is the only significant structure in the image besides
the needle that we want to detect, that remains.

However, prior to processing the data, a Gaussian fil-
ter should be applied to the images, since X-ray image
sources tend to be very noisy and we are going to compute
second order derivatives later on, which are very sensitive
to noisy images. As it will permit us to do scale space
operations, too, we start by building the well known Gaus-
sian pyramid [1] from the images. This is done the way
described in [8], so we apply several filters at each octave
of the scale.

To detect the probehead, it has turned out to be very
efficient to threshold the image to a very low value at a
higher scale and detect the biggest area remaining. After
dilating this area several times and combining it with the
already known information we have a good mask to apply
to the image.

4.3 Detecting the line the needle lies on

The core needle which is used to extract the tissue samples
is a hollow needle which contains the tissue sample after

1A free scene graph library under GPL - http://www.coin3d.org



Gaussian

Pyramid

Mask
generation

Hessian
matrix

Line-space Multiview
geometry

On Hessian EV

back 
projection

Undistorted

Images
Positions of 

spheres
Camera

information

pre-

process
Enhance

Ridges

Line

detection

Tip

search reconstruct
accept/

rejectINPUT OUTPUT

Needle Detection

Further

processing

and

visualization

Figure 2: A schematic overview of the processing pipeline with its stages and its interaction with the entire application.

a successful shot. It can be considered an elongated rigid
object of a small diameter of a few millimeters. When
viewing the image it can be considered a thick line, so the
problem of detecting the needle is reduced to detecting a
line in the image. In [2] it is stated, that the Radon trans-
form is strongly related to the Hough transform, which is
commonly used to detect lines in images, as described in
Section 3.1.

But applying the Radon transform on the preprocessed
grey value image we have got so far will most probably not
end up in a single point in parameter space, but rather in
very unpredictable results, since the background will also
contribute with a sine function for every point in the im-
age. Therefore, the image will not be used directly for the
Radon transform but it will be transformed to a different
representation to enhance discrimination of lines against
not entirely homogenous background utilizing the Hessian
matrix described in Section 3.2.

As shown in Figure 3, the needle is very prominent
feature in the image of the stronger eigenvalues - but so
are the small globes and the probehead. However, these
can be masked out to some degree as described in Section
4.2. What remains is the needle and some very low value
ridges of the patient’s bones. We have decided to threshold
the stronger eigenvalue image at the half of the maximum
value. This is used along with the conditions for ridge
detection defined above as input to the Radon transform.
The result (Figure 4) is then searched for local peaks af-
ter non-maximum suppression. The strongest of which is
most likely to be the ridge of the needle.

4.4 Detecting the needle’s tip

After finding the line that is most probably aligned to the
needle, we search for the position of the tip of the needle.

We first rotate the image containing the stronger eigenval-
ues, so that the needle is oriented with one of the image
axes, which will ease the task, since we only have to slide
a small window from one border of the image to the other
and follow the ridge in a narrow band surrounding the line
found.

During this process, the values beneath this sliding win-
dow area are stitched together, always centering the closest
local maximum value. Of course, the masks defined earlier
have to be taken into account, so that the algorithm would
not accidentally snap to e.g. the contour of the probe head.
This is simply done by repeating the last valid values as
many times as needed and stick to the last detected needle
center that was detected before entering the masked out
area.

After this procedure, we have a one dimensional cross
section of the needle ridge (see Figure 5). Since after the
tip there should be a significant step among the values reg-
istered, the needle’s tip recognition is based on these val-
ues.

Since the values are still subject to noise and there are
many small deviations of the data, it is smoothed with a
moving average filter. Afterwards the local minima and
maxima are detected and the differences between their val-
ues are computed. It is now supposed that the step, that
marks the end of the needle provides a very steep slope
with a very low value at the end. Since we would not want
to threshold these values as the variations of the data are
too high, we look for the steepest descent and its local min-
imum and the preceding maximum. Due to the Gaussian
filtering of the image and the smoothing of the data along
the ridge the needle tip will be between these two extrema.
The following Langrange line interpolation between the
two gradient values worked out very vell, as the turning
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Figure 3: Eigenvalues of the |λ1| 3(a) and |λ2| 3(b) of the computed tensorfield

(a)

(b)

Figure 4: 4(a) Radon transform of the image, 4(b) detail-
ing the maximum peak

point of the curve is a good indicator for the needle tip:

xtip =
xiyi−1− xi−1yi

yi−1− yi
(8)

where xi and yi refer to the values of the minimum of the
differences and xi−1 and yi−1 refer to the maximum and
xtip is the position of the zero crossing along the needle.

4.5 3D-Reconstruction of the needle

After having performed the previous steps to the images
it is now possible to reconstruct the needle (i.e., estimat-

ing the position and orientation of the needle in three di-
mensional space). As already mentioned earlier, this work
is part of a framework and a lot of work is done and in-
formation is gathered before needle detection is started.
The camera calibration matrix and the external camera ma-
trix (i.e., the rotation matrix and the translation vector) are
available and used for the reconstruction. Of course, this
implies the projection matrices that can be computed out
of the internal and external camera matrices are exact, but
it is sufficient to consider the coordinates from the images
to be erroneous.

4.5.1 Reconstruction of the needle tip in 3D-space

The solution to the problem is acquired applying the Direct
Linear Transform (DLT), see Algorithm 4.1 for the way
we reconstructed a single point. Please note that this is
a modified form of the algorithm presented in [6], since
we only have a single point in each image, we want to
reconstruct.

4.5.2 Reconstruction of the needle orientation in 3D-
space

In Section 4.3, we have already come up with a fairly ro-
bust solution to detecting the line that supports the needle.
In this Section we will show, how the orientation of the
needle can be recovered.

For the reconstruction of a line we need to know two
points on that line in every image. If these point pairs hap-
pen to correspond to every other pair of the other images,
we can easily recover the line by reconstruction of each
point with the method described above and compute the
line vector with basic vector algebra.

We already have obtained one point in every image and
its reconstructed 3D-point so far, but finding a second
point could turn out difficult. One could say, that the guid-
ance of the needle is thicker than the needle and detecting
the obviously characteristic positions of where the needle



Figure 5: Assembled values beneath the needle ridge with marked extrema and backward-differences The square indicates
the estimated needle tip.

Algorithm 4.1 Direct Linear Transform triangulation for
one point
Require:

image coordinates
{

x1 = (u1v1)T , . . . ,xn = (unvn)T
}

,
projection matrices {P1, . . . ,Pn}
for i = 1, ..,n do
• compute the point normalizing transform matrices

Ti =

 1 0 −ui
0 1 −vi
0 0 1


• transform and normalize the projection matrices

P̃i = T Pi, P̂i = P̃i√
tr(P̃T

i P̃i)
end for
• stack each normalized projection matrix’ first and sec-
ond row vector in a 2n×4-dimensional matrix

A =−(p̂1,1 p̂1,2 . . . p̂n,1 p̂n,2)T

• compute the singular value decomposition of A
A = UDV T

return with D = diag(d1 . . .dn) and di ≥ di+1

X = V (0 . . .1)T

leaves the guidance leads to several other point correspon-
dences that would be sufficient for the task.

However, this approach seems far too vulnerable to mis-
detections, and there exists an easier way, which is only
subject to wrong output, if the previous stages fail. This
again utilizes the SVD and computes the optimal orienta-
tion of the needle in a least-squares sense:

• Extend the calibration matrix to a homogeneous 4×
4-matrix and recompute the projection matrix - which
will now be invertible - for each image.

• Compute the camera center for each image.

• Compute the 3D-coordinates for the two points of the
needle’s line crossing the border of their respective
image with the inverted projection matrix. An arbi-
trary z-value can be chosen.

• Compute the normals of the planes that are spanned
by these two vectors and the camera projection center.

• Stack the normals into a new matrix and compute the
SVD of this matrix.

• The column of V that corresponds to the smallest
eigenvalue of the matrix will be the best fit to the nor-
mals.



Figure 6: Final output visualized

Figure 7: Back-projection of 3D-point of the computed
needle tip

4.6 Improving robustness

After reconstructing the three dimensional point of the
needle tip, it is easy to project this point back onto the
images, so we are able to compute the distance between
the initially detected needle tip in an image and the back
projected needle tip. If we only let for images with this
distance below a previously specified upper limit and re-
ject groups of images, where this value is outside on at
least one image, this makes the procedure very robust to-
wards outliers. If needle detection fails at any stage, it
does not seem very likely that it fails on all three images
in a very similar way, i.e., detecting an entirely different
corespondence. Furthermore, this did not happen during
the experiments at any time, so this assumption is consid-
ered safe.

5 Experimental results

Following the development of the pipeline described in the
previous section, it was implemented in MATLAB. After
obtaining the results from the detection and reconstruc-
tion steps, an intermediate visualization was made with
Coin3D (Figure 6) to get an impression thereof. A very
approximate model of the biopsy needle is placed with its
tip at the point and orientation reconstructed. As shown in
Figure 6, the values obtained seem very promising at a first
glance. Designed as a proof-of-concept application, it was
not supposed to perform fast. Nevertheless, the process-
ing time of about ten seconds per image triplet is already
considered sufficient for surgery assistance purposes.

The data available to test consisted of 87 images of three
patients with shots from three different views. To get a
more meaningful evaluation the tip of the needle has been
marked by hand on every image. The three available coor-
dinates are shown in Figure 7. For evaluating the accuracy

d(x, x̂) d(x, ˆ̂x) d(x̂, ˆ̂x)
minimum 0 0.846 0.582
maximum 10.438 12.416 8.464
mean 3.509 4.227 3.638
std deviation 2.506 2.449 2.146

Table 1: Distances between the hand labelled needle tip
the initial detection in the first column and the back pro-
jection of the reconstructed needle tip in the second. The
third column shows the difference between first detection
and backprojection. All values are measured in pixels.

Figure 8: Needle occluded by the ultrasonic device

it is interesting to look at the distances between these co-
ordinates in the images, as the ground truth is not available
in 3D-coordinates. Following the initial needle tip detec-
tion, the distance can be computed between the detected
coordinate x̂ and the labelled coordinate x. To evaluate
the results of the reconstructional step backprojection of
the reconstructed needle tip from 3D-space coordinate X
to the respective image coordinates ˆ̂x is performed and the
distance to the labelled coordinate is computed again. As
we have already mentioned, the distance between x̂ and ˆ̂x
is crucial to the robustness of the algorithm. It is used as
an estimate of the confidence in the reconstructed data.

In Table 5 the underlying values are already restricted
to results that passed outlier rejection. Although the max-
imum deviation of the reconstructed tip is very high, Ap-
proximately 68% of the reconstructed data lies within five
pixels of the needle tip, which is roughly the thickness of
the needle, which is most probably accurate enough for
many applications.

As shown in Figure 8, it is possible, that the ultra sonic
device overlaps the needle in a way that makes needle de-
tection and thus reconstruction impossible. At the moment
this case is not handled separately and simply rejected.

6 Conclusions

This paper presents the design and implementation of the
processing pipeline of a needle detection and reconstruc-
tion system intended to be used as one component in a



framework for computer aided biopsy. It takes several es-
tablished techniques to accomplish this task, such as the
Radon transform to detect line features in the image and
the application of the Hessian matrix that enhances the in-
put to the former with respect to ridge detection, making it
more robust. The parts involved to reconstruct the needle’s
tip and orientation are well known nowadays and a lot of
research has already been put into it, so it can be said that
the methods are very reliable.

Although experimental results show very good accuracy
in reconstruction and robustness to noise and clutter there
are still many problems to solve, involving making the de-
tection of the needle’s line and the probe head more inde-
pendent of scale and further improve the detection of the
needle’s tip, so that the reconstruction can be done with
higher accuracy. However, the system is supposed to be
running in a closed loop, i.e., the results are available very
shortly after taking the X-rays, so it would be possible to
take another set of X-rays if the results are not convincing
due to a lack of accuracy because of e.g. the needle tip
being occluded by a bead in one of the images.

Clearly, the most considerable result would be the exact
and standardized extraction of prostate tissue samples and
the precise re-localization of that tissue during surgery.

Future work is planned to deal in more detail with ro-
bustness against occlusion and blurred images, which at
the moment is handled by simply rejecting the entire im-
ageset that caused the backprojection to differ from the
detected needle tips too much.

Further refinement of the needle-tip-detection algorithm
is needed, as it is neceessary to detect it within sub-
millimeter accuracy, as well as the incorporation of ad-
ditional data from the ultrasound device that would be al-
ready available during biopsy.
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