
Natural Water Shader

Andrej Mihálik

Comenius University in Bratislava

Abstract

This work describes an implementation of optical
phenomena on water surfaces. Despite high perfor-
mance of current graphics hardware, shaders need es-
sential simpli�cations and numerical approximation.
Here we propose the implementation of common ef-
fects such as re�ection, refraction and caustics. In
order to have a simple and elegant implementation
we have done coarse approximations to achieve real
time animation, while still having a realistic appear-
ance, which is important in real time simulation and
games.

Categories: [Computer graphics]: Three-
Dimensional Graphics and Realism

Keywords: refraction, re�ection, caustics

1 Introduction

Ray tracing is fundamental problem that makes
the photorealistic rendering of water surfaces so
di�cult. Particularly, to achieve real time frame
rates. There are still some programming constrains
in graphics hardware that need to be overrun. Com-
putation of �nal color of our surface is performed in
a shader program. We will use the OpenGL Shading
Language to write the shaders, because it is a stan-
dard high level shading language in OpenGL. A �uid
represented as a triangular mesh serves as an input to
our shader that can be generated by the known �uid
dynamic methods. Additional input data is the en-
vironment consisting of mesh and textures of objects
(e.g. plants, shore, skybox). Generally, the object
can be under the water surface, above the water or
�owing on the surface. To handle all these cases we

should focus on the known solution based on the en-
vironmental textures. The primary goal is to achieve
realistic appearance using a simple straightforward
procedure and deal with constrains. Our focus on
photorealism may a�ect the frame rate.

2 Previous work

Several works in the past were focused on realis-
tic rendering of water surfaces. Previous approaches
mostly based on the ray tracing are computationally
intensive and can not be used in real time. For this
purpose we propose a simpli�ed model of the opti-
cal phenomena. Authors in [1] and [2] use two pass
rendering to achieve the phenomena like the re�ec-
tion and the refraction. The essential problem is the
color calculation described in [6]. Caustic rendering
and additional e�ects are discussed in [3], and [5].
Paper [7] introduces environment mapping. Physical
simulation of waves is proposed in [4] and [1] is out
of scope of this research.

3 Refraction and Re�ection texture

The e�ect of re�ection and refraction is achieved
by two pass rendering algorithm. In the �rst pass,
we split the whole scene into the a�oat part and the
underwater part by the horizontal clipping plane.

Refraction texture. To obtain refraction tex-
ture we keep the camera in its original position and
render just underwater part of environment, see Fig-
ure 1. Finally, we copy frame bu�er into our refrac-
tion texture resulting in refraction texture consisting
the image of lake bottom.

Figure 1. Refraction camera.

Consider the solid objects that are intersected by
the plane. After splitting them and removing their
a�oat part, we may see back faces inside them, see
Figure 2.

Figure 2. Back face culling

Note that appearance of back faces is not suit-
able. To avoid this artifact, we should enable back
face culling. For future computation (e.g. deep) we
may need depth texture of lake bottom. Therefore,
it is time to store the depth bu�er to a texture at
this step.

Once we have �nished generating refraction
texture, we can start to generate re�ection texture
in the second pass.

Re�ection texture. To obtain this texture we
must put the camera upside-down to its mirror posi-
tion. We render upper part of split environment, as
shown in Figure 3. After the rendering it we store
the frame bu�er to the re�ection texture.

Figure 3. Re�ection camera

This approach has the problem of missed tex-
els because rays changed their direction on the water
surface due to refraction. This causes that on the
surface we see larger area than is actually stored in
our refraction and re�ection textures, see Figure 4.
To restore the missing texture parts we extend �eld
of view before rendering of the re�ection and the re-
fraction texture. In our case extending the �eld of
view about 50% was appropriate.

Figure 4. Missing texture parts.

4 Coloring

Let us suppose a lake under the blue sky dur-
ing daylight. What attributes determine the ambient
color of the water surface? It is the illumination and
the water mixture. We simplify the outdoor scene to
sunlight and sky illumination. The water consists of
particles like green algae or other impurities giving

the water its inherent coloring, such as the commonly
encountered blue and greenish tone. Once we have
obtained the global color of our water, we should deal
with its transparency. Density of the mentioned par-
ticles a�ects dirty appearance of the water volume.
Scattering of the light in water volume causes its at-
tenuation. Note the visibility of underwater objects
is dependent on the amount of water between the
object and the viewer. As a result the lake bottom
is visible in shallow water but not in deep water, see
Figure 5.

Figure 5. Color of the water.

5 Pixel shading

In this section we discuss how to obtain color of
certain pixel on water surface. We assume the water
surface represented by mesh as an input. Let's sum-
marize that we have available surface refraction tex-
ture, depth texture of the bottom, surface re�ection
texture and global color of the water, at this moment.
First, we render whole scene without water using the
�xed pipeline. Then we render the surface and com-
pute the color of pixels in fragment shader. Note
that we have all the needed stu� is in the shader,
now.

Refracted color from texel. When we are
treating a certain pixel, we have got coordinates of
its corresponding point on surface in camera coordi-
nate system. We also have got surface normal N in

this point. We can easily compute normalized eye
vector E, because camera is in the origin of cam-
era coordinate system. Once we have the eye and
the normal vector, we can compute the normalized
refraction vector R using air-water refraction index,
see Figure 6. Direction of this refraction vector is
conclusive for determining which part of the bottom
is mapped to current fragment of the surface. Note
that the functions computing re�ection and refrac-
tion vector are de�ned in the OpenGL Shading Lan-
guage. Since, we do not perform the ray casting, we
are unable to �nd where the ray with direction R

hits the bottom. We propose to estimate the hitting
point by following formula:

W = U + dv*R (1)

where U is point on the surface corresponding
to current fragment in eye space and dv is length of
bold line from the surface to the bottom in Figure
6. The length dv is obtained by comparing Z coor-
dinate of the surface and our depth texture. Large
values of dv may cause some artifacts. Therefore, we
should clamp and scale the value of dv.

Figure 6. Refraction vector

Then we transform the coordinates of W to the
texture coordinates of our refraction texture. Finally,
we obtain the refracted color Crefract from texel of the
refraction texture at this coordinates. This transfor-
mation transforms coordinates of points in camera
coordinate system to texture coordinates of corre-
spondent points in the texture rendered from same
camera. It just determines where the speci�c object
with certain camera coordinates lies within the tex-
ture.

To achieve more foggy appearance of water we
must mix in the global color of water. First we de�ne
the attenuation coe�cient :

a := e(-d * k) (5)

where k is a suitable constant which determines
transparency and d is length of the ray from bottom
to surface which is computed from our depth texture
by comparing distance of surface from camera in Z
direction and distance from bottom to camera. Now
the new refraction color is updated by :

Cnewrefract := Cwater + a*(Crefract - Cwater) (6)

where Cwater is global color of water. Figure 5
shows variance of the color in the dependence of the
deep.

Re�ected color from texel. Let us consider
re�ection case. In this case we have to compute
re�ection vector, see Figure 7. Let R is normal-
ized re�ection vector. We determine re�ection color
Cre�ect by obtaining a texel form re�ection texture.
This texel lies at the texture coordinates obtained by
transformation from coordinates of following point:

W = U + c*R (2)

where U is point on the surface corespondents to
current fragment in camera coordinate system and c

is a suitable scaling factor.

Figure 7. Re�ection vector

This approach is very coarse approximation,
however, visual result is plausible, see Figure 8.

Figure 8. Re�ection.

Final color of the fragment is combination of
new refraction color Cnewrefract computed above and
re�ection color Crefract obtained from texel in the
re�ection texture. To add Fresnel phenomenon we
evaluate coe�cient F.

F := (1 - (E.N)) q (3)

Where q is suitable positive constant and E.N is
dot product of normal and eye vector. Final color is
calculated by the following formula :

C := Cnewrefract + F*(Cre�ect - Cnewrefract) (4)

where C is �nal color, Cnewrefract is new refraction
color and Cre�ect is re�ection color.

6 Caustics mapping

Caustics are observed as brightness, increase due
to many light paths hitting a bottom at the same
position. We will map caustics to the bottom during
rendering the refraction texture. For this reason we

create the caustics texture and then we map this tex-
ture using shadow mapping technique to the bottom.
First, we set up orthogonal camera in to the light
direction, see Figure 9. We use orthogonal projec-
tion because the sun rays are almost parallel. Then
we render bottom from light position and store the
z bu�er to the depth texture. Creating the caustics
texture is performed by casting of the photons to the
surface. We just render the water surface from our
orthogonal camera with speci�c shader program. In
this shader we compute dv from our depth texture in
the same way as in the refraction case. We approxi-
mate position where the photon hits the bottom by
position of the pointW. Position of this point is com-
puted by (1), where R and U have same meaning as
in the refraction case. Then we transform coordi-
nates of W in camera space to texture coordinates
and store this coordinates to the fragment color in
RG components. Next we estimate photon contribu-
tion, based on Fresnel transmittance and the trav-
eled distance. This contribution is obtained in same
way as color was obtained, just refraction color is
white and others are black. We store the result into
B component of the fragment color. Then we store
the frame bu�er obtained by this shader to array in
main memory. Finally, we create the caustics tex-
ture by searching this array on CPU and adding the
stored amount of light (B component) to stored co-
ordinates (RG components). The algorithm outline
of searching is the following:

for x = 0 to frustum_width

for y = 0 to frustum_height

u_coord = array[x][y].r;

v_coord = array[x][y].g;

illum = array[x][y].b;

caustics_texture(u_coord,v_coord) += illum;

Thus the caustics texture consists the values of
light that reach a bottom from light position. We
map the caustics texture to the lake bottom.

Figure 9. Mapping the photons from the orthogonal camera.

7 Implementation

As we mentioned earlier, we have decided to use
OpenGL Shading Language. Let us describe the key
parts of our fragment shader. Let E is normalized
eye vector, N is surface normal and dv is length of
bold line from surface to bottom in Figure 6. Selec-
tion of color of texel in our refraction texture noted
by refraTex is given by the following code.

vec3 refr = refract(-E,N,0.75)*clamp(dv,0.0,2.0)/3.0;

vec4 refrvec = vec4(u+refr,1.0);

vec4 refrpos = gl_ProjectionMatrix * refrvec;

float tx2 = (refrpos.x/refrpos.w)/(2.0*FOV_ext)+0.5;

float ty2 = (refrpos.y/refrpos.w)/(2.0*FOV_ext)+0.5;

vec4 refrcol = texture2D(refraTex, vec2(tx2,ty2));

First, we compute the refraction vector and mul-
tiply by dv. Because dv is length of straight ray and
not refracted ray, value dv is not suitable �as is�. To
minimize amount of artifacts we must decrease this
value. We add this refraction vector to point u. Note
that u is current point on the surface in camera co-
ordinates. As a result the point is supposed to be
on bottom, where refracted ray hit it. However, this
is just a rough approximation. Next we convert co-
ordinates of hit point to texture coordinates of our
refraction texture. Note that FOV_ext is coe�cient
of extension of �eld of view. In our case its value is
1.5, because we found suitable the 50% extension.
The rendering pass for re�ection is simpli�cation of
above approach, and is described by the following
code.

vec3 refl = c*reflect(-reflect(-E,N),-wn);
vec4 reflpos = gl_ProjectionMatrix * vec4(u+refl,1.0);
float tx = (reflpos.x/reflpos.w)/(2.0*FOV_ext)+0.5;
float ty = (reflpos.y/reflpos.w)/(2.0*FOV_ext)+0.5;
vec4 reflcol = texture2D(refleTex, vec2(tx,ty));

Here we consider the re�ection texture noted by
re�eTex and determine the texture coordinates using
re�ection vector. Constant c is suitable scaling fac-
tor and should be 1. Note that wn is normal to our
clipping plane. Once we have obtained color of both
texels, we should mix them to create �nal fragment
color. First, we add color of water to refracted color.
We compute d, the length from u to bottom (length
of tiny line in Figure 6).

float t = depth/refrvec.z;
float tmp = depth - u.z;
vec3 dvv = vec3(t*refrvec.x-u.x, t*refrvec.y-u.y, tmp);
float d = length(dvv); //length from surface to bottom

The variable depth stores the Z value of estimated
point of bottom in camera coordinates. This variable
is computed from depth texture.

Now we update the refracted color as we ex-
plained earlier. We write this in OpenGL Shading
Language notation as

float a = exp(-d*k);
newrefrcol = watercol + a*(refrcol-watercol);

Following code will mix it with the re�ected
color.

float F= pow(1.0-max(dot(N,E),0.0), q);
vec4 col = newrefrcol + F*(newreflcol-refrcol);

This adds Fresnel phenomena to �nal appear-
ance of our surface. To add the caustics we map
caustics texture to bottom while we render the re-
fraction texture using shader which works similar to
the shadow mapping. To create caustics texture we
perform technique similar to photon mapping. Note
that sun produces the directional light, for this rea-
son we set up orthogonal projection. We put the
orthogonal camera above the water surface, to ren-
der the bottom from light position. Now we render
depth texture. This texture is used to compute dv
(length of bold line in Figure 6) in following fragment
shader.

vec3 refr = refract(-E,N,0.75)*dv;
vec4 refrvec = vec4(u+refr,1.0);
vec4 refrpos = gl_ProjectionMatrix * refrvec;
float tx2 = (refrpos.x/refrpos.w)/2.0+0.5;
float ty2 = (refrpos.y/refrpos.w)/2.0+0.5;

if (tx2>=0.0 && tx2<=1.0 && ty2>=0.0 && ty2<=1.0 && dv>=0.0){
float fFresnel= pow(1.0-max(dot(N,E),0.0), 4.5);
float blend = exp(-dv*k); // depends on water transparency
float illum = 1.0 - fFresnel;
illum = blend * illum;
gl_FragColor = vec4(tx2, ty2, illum, 1.0);

} else {
gl_FragColor = vec4(0.0,0.0,0.0,0.0);

}

First, part of shader code is similar to one where
we choose the texel from the refraction texture. We
are computing the texture coordinates, but they are
not referred to any texture yet. At this point, we
estimate where the photon casted from camera is hit-
ting the bottom, see Figure 9. Second, part of shader
code is similar to computation of a color, but here we
compute just intensity noted by illum. It represents
amount of not scattered or re�ected energy in the
place where the photon hits the bottom. The shader
stores coordinates where photon hits the bottom into
RG component of fragment color. It stores illum in
B component, and A component is allocated for a
binary information if the refracted photon is in or
out of the light frustum. We store the frame bu�er
rendered by this shader to the array in main memory.
Finally, we can create the caustics texture by search-
ing this array and adding illum value into texel in
caustics texture on the corresponding texture coor-
dinates stored in the RG components.

Next table shows values of constants we found
suitable in our example.

c 1.0f

k 0.5f

watercol vec4(0.0, 0.2, 0.1, 1.0)

q 4.5f

Table 1. Constants.

8 Results

We tested the proposed algorithm on multiple
machines. Our lake scene (see Figure 10) consist of
131437 vertices and 85409 faces. The water surface
was represented by the mesh with 2401 vertices and
4608 faces. The animation of the surface was per-
formed using sine function. As the caustics and the
surface mesh are performed on CPU, the framerates
are not very high, see Table 2.

Referenced machine

caustics

on o�

Intel P4 3.0GHz, 1GB ram, nvidia
6600 (256MB)

10fps 19fps

Intel P4 3.0Ghz, 1GB ram, nvidia
7600GT (256MB)

10fps 18fps

AMD Sempron 2600+ (1,6Ghz),
1GB ram, nvidia 7950GT (512MB)

6fps 10fps

Intel Core2Duo 2.6Ghz, 2GB ram,
nvidia 7950GT (512MB)

17fps 25fps

AMD Athlon 64 dual core 4400+
geforce 800GT (512MB)

9fps 14.12fps

Table 2. Framerates.

9 Conclusion

This work insists on the simplicity of implemen-
tation. Although the visual aspect of generated im-
ages are plausible, there are still some performance
issues. The results are obtained from demonstra-
tion application implementing the above procedures
in OpenGL, see Figure 10. For the re�ection and the
refraction textures the resolution is set to 512x512.
Extending the �eld of view we may loose the resolu-
tion, which starts to be notable in case of 512x512.
For caustics texture the resolution of 256x256 with
enabled �ltering was used. Some artifacts may ap-
pear in the water near shore that can be �xed by
putting the clipping plane little bit above and ad-
justing the position of the bottom before the render-
ing of refraction texture. Rendering of the re�ection
texture is done by moving the clipping plane a little
bit under the ware surface.

Currently we are implementing the other ways
to extend this work by adding underwater camera,
see Figure 11. It could be implemented by inversing
the re�ection and the refraction approach. Another
visual improvement could be achieved by adding
HDR e�ects.

Figure 10. Demonstration application.

Acknowledgments

Author wishes to thank his advisor Roman
Durikovic for the help during the course of this
work. Frame rate measurements were done by Michal
�erve¬anský, Filip Zigo on their hardware. This
research was supported by a Marie Curie Interna-
tional Reintegration Grant within the 6th European
Community Framework Programme EU-FP6-MC-
040681-APCOCOS.

References

[1] Belyaev V., Real-time simulation of water
surface. GraphiCon-2003, Conference
Proceedinks, pp. 131-138.

[2] Sousa T., Generic Refraction Simulation.
GPU Gems 2, NVIDIA Corporation 2005,
pp. 295-305. ISBN-10:0321335597.
ISBN-13:978-0321335593.

[3] Galin, E., Chiba, N., Realistic Water Volume
in Real-Time. Eurographics Workshop on
Natural Phenomena (2006), pp. 1-8.

[4] Tessendorf, J., Simulating Ocean Water,
SIGGRAPH 2002 Course Notes #9
(Simulating Nature: Realistic and Interactive
Techniques), ACM Press.

[5] Musawir, S., Konttinen J., Pattaniak, S.,
Caustics Mapping: An Image-space Technique
for Real-time Caustics IEEE Transactions On
Visualization And Computer graphics.

[6] Premoºe, S., Ashikhmin M., Rendering
Natural Waters. Computer Graphics forum.
Volume 20, number 4 (2001), pp189-199.

[7] Blinn, J., Texture and Re�ection In Computer
Generated Imges, CACM, 19(10), October
1976, pp 542-547.

Figure 11. First underwater camera experiments.

Figure 12. Refraction.

Figure 13. Re�ection of the tree.

