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Abstract

The goal of this paper is to contribute to the solution of handwritten text writer verification. Hav-
ing two scanned images with handwritten text as input, our task is to create methods which determine
whether the documents were written by the same person or not. We have proposed our approach
consisting of preprocessing, feature vector extraction and combination with graphemes clustering.
We made a set of experiments using the IAM Handwriting Database. A working implementation is
presented together with experimental results.
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1 Introduction
We contribute to the solution of a following problem. Having two scanned images with handwritten text
as input, our task is to create methods which determine whether the documents were written by the
same person or not. In our work we report on preprocessing of images with handwritten text, various
handwriting features and writer verification. We introduce our implementation which is inspired by recent
research about preprocessing and writer verification. We made our experiments on 100 images from 40
different writers. These images were taken from the IAM Handwriting Database which contains 1539
pages of scanned text from 657 writers. In our experiments we achieved 96,5 % accuracy.
The paper is structured as follows. Section 2 gives the survey of related work. Section 3 describes our
approach. Section 4 surveys results. Section 5 describes conclusions and discusses future work.

2 Recent research
Several widely acknowledged efforts have been presented in recent years in the writer verification problem.
Cha and Srihari [4] model the problem as a two class classification problem: authorship or non-authorship.
Feature distance is computed and the dichotomizer takes this feature distance vector as an input and
outputs the authorship. They use 12 feature distances and achieved 97% accuracy on 1000 writers with
3 sample documents per writer.
Bensefia et al. [5] use sample set of 88 writers and extract the set of graphemes in two input handwritten
documents. A grapheme feature set G is extracted thanks to a particular sequential clustering technique:
G = { g1 , g2 , g3 ,..., gN }. Some of these features may occur on the two documents while the others
may occur specifically on one single document. Writer verification is based on the mutual information
between the grapheme distributions in the two handwritings that are compared.
Schlapbach and Bunke [6] use HMM based recognizers. For each writer, they build an individual rec-
ognizer and train it on text lines of that writer. This gives their recognizers that are experts on the
handwriting of exactly one writer. In the identification or verification phase, a text line of unknown
origin is presented to each of these recognizers and each one returns a transcription that includes the
log-likelihood score for the considered input. Using over 8,600 text lines from 120 writers an Equal Error
Rate(EER) of about 2.5% is achieved (EER quantifies in a single number the writer verification perfor-
mance).
A statistical model of the task and a large number of features divided into two categories: macro-features
which capture the global characteristics of the writers individual writing habit and style and micro-
features which capture finer details at the character/word level are proposed by Srihari et al. [7]. Same
writer accuracy was 94.6% and different writer accuracy was 97.6%.
Bulacu and Schomaker 2007 [8] developed new and very effective techniques for automatic writer identifi-
cation and verification that use probability distribution functions (PDFs) extracted from the handwriting



images to characterize writer individuality. Their methods operate at two levels of analysis: the texture
level and the character-shape (allograph) level. The probability distribution of grapheme usage is com-
puted using a common codebook of shapes obtained by clustering. Combining multiple features yields
increased writer identification and verification performance. They use data sets from 3 databases Fire-
maker, IAM and ImUnipen.

3 Our approach
In this section we describe the whole method. First step is preprocessing of input images. Next, the
handwriting features are extracted from the images. For each image we create feature vector consisting
of the set of numbers which represent features. Then a new vector is created by the subtraction of two
feature vectors and its coordinates are changed into absolute values. Result is given by the comparation
of this new vector and vector of our thresholds (obtained from experiments). The first system, solving
our task, is based on this feature vector.
Next, graphemes which were obtained from preprocessing are clustered using multiple algorithmic so-
lutions, namely Kohonen’s Self-Organizing Map (SOM) and hierarchical clustering. Result from each
clustering is a measure which determines how input images are similar. This measure is realized by
amount of clusters which contain graphemes coming from the same image. We join results from the
first system and results from SOM to the second system. The third system is based on results from first
system and results from hierarchical clustering. Result of 2nd and 3rd system is given by the comparation
of measure and two thresholds. These three systems are compared experimentally.
All mentioned steps are described in detail in the following subsections. We also introduce the IAM
Handwriting Database which is used for our experiments.

3.1 Input images
Input data are scanned images in PNG from the IAM Handwriting Database [1]. We decided for this
database because it’s a huge database suitable for our experiments. It contains forms of handwritten
English text which can be used to train and test handwritten text recognizers and to perform writer
identification and verification experiments. The database contains forms of unconstrained handwritten
text, which were scanned at a resolution of 300 dpi and saved as PNG images with 256 gray levels.

3.2 Preprocessing
The whole process is preceded by several preprocessing steps. Our goal is to get input images into the
form which is suitable for future work and for obtaining graphemes which are inputs for grapheme clus-
tering. Preprocessing steps contain:

• Thresholding (binarization of image)

• Line segmentation

• Slant correction

• Word segmentation

• Grapheme segmentation and normalization

Thresholding
We use Otsu’s thresholding algorithm [2], which chooses the optimal threshold value by maximizing
the between-class variance. If the gray level of pixels on an image ranges in L [1, 2,..., L] and the
number of pixels at level i is denoted ni, the total number of pixel can be calculated by equation:
N=n1+n2+n3+. . .+ni+. . .+nL. For bi-level thresholding, the pixels sets [1, 2,..., L] are divided into
two classes; C1 = [1, 2,..., t] and C2= [t+1,..., L]. Otsu algorithm determines the optimal threshold value
(t) that maximizes the between-class variance, σ2

B = ω1ω2(µ2 − µ1)2

where ω1(t) =
∑t

i=1(pi), ω2(t) =
∑L

i=t+1(pi), µ1(t) =
∑t

i=1(ipi/ω1(t)), µ1(t) =
∑t

i=1(ipi/ω2(t)), and
pi = ni/N [10].
This method has been often used for images with handwritten text in recent research (see Figure 1).

Line segmentation
The document is divided across its width into chunks, each represents 5%. Then the projection profile



Figure 1: Otsu’s thresholding: on the left side is an input greyscale image and on the right side is result
of Otsu’s thresholding - a binary image. Background has white color and foreground has black color.
Result is good if background doesn’t contain black pixels and foreground doesn’t contain white pixels.

(which counts number of black pixels for every row) and averaging filter are applied for every chunk. The
averaging filter smooths projection profile. This filter performs spatial filtering on each individual pixel
in an image using the grey level values in a square or rectangular window surrounding each pixel. After-
wards the image is converted to binary form. Algorithm sequentially traverses the chunks in horizontal
direction and the result are red dashes which separate single lines (see Figure 2). We inspired by the
article [3].

Figure 2: Line Segmentation: on the left side is figured image with chunks after applying projection profile,
averaging filter and thresholding on the image. Coloured lines are the result of sequential scanning (one
color for one chunk).

Slant detection and correction
Handwriting has tendency to slant to the right or left side or it can be vertical, too. Our algorithm works
on lines of handwriting. We determine 20 different slants. For every slant, line is corrected. Then the
vertical projection profile (which counts number of black pixels for every column) is applied. From these
20 tries, one is chosen as the best slant for particular line. The choosing criteria involves the fact that
the projection profile has to contain the largest amount of the highest peaks and also maximum gaps (see
Figure 3).

Word segmentation
Word segmentation is based on the idea that distances between words are bigger than distances between
characters. We extract contours from image (Moore’s algorithm [11]) and then we count distances be-
tween horizontally neighbouring contours for every line. If the distance between contours is bigger than



Figure 3: Slant correction: on the left side is input image and on the right side is the result of slant
correction.

threshold (which is obtained by analyzing all distances), we get a gap between words.

Grapheme segmentation and normalization
We extract lower and upper contours from the image (see Figure 4). Then we find local minimums which
occur in places where the upper contour is close to the lower contour. It means that the distance between
lower and upper contour is width of line of handwriting. Words are segmented into graphemes at these
local minimums by vertical lines (see Figure 5). After segmentation, graphemes are normalized to 30x30
pixels. We inspired by the article [8].

Figure 4: Lower and upper contours: on the left side is the original image and on the right side are
extracted contours. Upper contours are illustrated by red curves and lower contours by blue curves.

Figure 5: Grapheme segmentation: upper contours are illustrated by green curves and lower contours by
red curves. Word ’veile’ is divided into graphemes by vertical blue lines. Original figure comes from [8].

3.3 Extraction of features
Individuality of handwriting is based on the idea that the variation within a person’s handwriting is less
than the variation between the handwriting of two different people [12]. We use the following features:

Proportion
Four baselines are computed for every line (see Figure 6) [9]:

• Ascender line passes through the topmost point of the line (Asc)

• Descender line passes through the bottom point of the line (Des)

• Upper baseline goes through the top of the lower case characters (Upp)

• Lower baseline goes through the bottom of the lower case characters (Low)

Figure 6: Four baselines



Then the following ratio is computed: ( Upp - Asc ) : ( Low - Upp) : ( Des - Low)
Children in the elementary schools are taught to write in a way that yields a 1:1:1 proportion. But later
on, when each of us forms his/hers writing, the proportion is changed and that is characteristic for our
handwriting. Baselines are a basic feature in handwriting and more of them can be found in [9].

Height of handwriting and distance between lines
Height is computed for every line as absolute value of (Des - Asc). Distances between lines are obtained
by line segmentation. Next, the ratio of distance between lines to height is computed for each couple and
the result is an average value of all ratios (see Figure 7).

Figure 7: Image figures distance between lines (DBL) and height of handwriting.

Slant
Slant is obtained by slant detection which is part of preprocessing.

Density
Number of black pixels is computed for every line and the result is average of the numbers.

Block letters
Nowadays people often use block letters because of its readibility. They sometimes mix both types, block
letters and court hand. We define so-called ’measure of using block letters’. This measure is determined
by the next criteria: the more gaps are in the words the more block letters writer use. Result is again an
average value of measures of all lines.

Additional features
Design of our system enables us to add another features or to change actual features (e.g. addition of
distances between words).

3.4 Feature vector
Each feature is represented by a number (apart from proportion which has 3 numbers). So we obtain a
vector of numbers for every image. We have two images as an input. For every image a feature vector
is computed. Then a new vector is created by the subtraction of two vectors and its coordinates are
changed into absolute values. Then each coordinate is compared with a threshold which was obtained
from our experiments (we have unique threshold for each coordinate - for proportion 10, 10, 10, ratio of
distance between lines to height 0.5, slant 0.2, density 300, block letters 0.6). If coordinate is smaller
than threshold, it’s a sign of similarity, if it is bigger, it’s a sign of dissimilarity. If we have at least
one coordinate bigger than threshold, two input images are marked as written by the different writers.
Otherwise the images are marked as written by the same writer. It means that the only one dissimilar
feature is enough to determine different writers.

3.5 Graphemes clustering
The features mentioned above represent only a half of the whole solution. An important role is played by
the individual graphemes and their clustering. Graphemes are segmented from each image and clustered
afterwards.

The second system
Inspired by [8], we use Kohonen’s Self-Organizing Map (SOM). SOM groups graphemes from both im-
ages according to their similarity into the clusters. Similarity of two graphemes is determined by their



Euclidean distance (see Figure 8 a 9). We look at each cluster and find out whether it contains graphemes
from both images or only from one image. Result is a number which determines how input images are
similar. The more clusters with ’mixed’ graphemes exist, the more similar images are. The second system
is based on results from first system and results from SOM.
The third system
The second clustering method which we use is hierarchical clustering (HC). As the input we use graphemes
from both images. First step is finding for each grapheme the ’closest’ pair (using Euclidean distance).
Hence we have grapheme pairs (clusters). Second step is analogue with the first, for each cluster we
search the closest pair. We produce 2 numbers representing amount of clusters which contain graphemes
coming from the same image. First number is obtained after the first step and second after the second
step. The third system is based on results from first system and results from HC.

Each resulting number from clustering is compared with two unique thresholds. We got thresholds
experimentally, for SOM the thresholds are 55 and 70, for HC 55 and 65 for the first resulting number
and 20 and 30 for the second number. If the result is smaller than the first threshold, it’s a sign of
similarity, if it is bigger than the second threshold, it’s a sign of dissimilarity and if it fits between first
and second threshold, it’s uncertain and we rely on another method. Therefore SOM resp. hierarchical
clustering is combined with the first system (which is based on features). If the result of clustering fits
between first and second threshold, we take the result from the first system. Otherwise, result from SOM
resp. hierarchical clustering is taken.

Figure 8: Two different images from the same author

4 Results

4.1 Experiments
We performed our experiments on 100 images from 40 different writers. We made 100 experiments on
2 different images from the same writer and 100 experiments on 2 images from 2 different writers. We
tested 3 mentioned systems (see Table 1).

System writer NOE NOCR NOIR accuracy average
1. same 100 85 15 85% 91%

different 100 97 3 97%
2. same 100 86 14 86% 92%

different 100 98 2 98%
3. same 100 93 7 93% 96,5%

different 100 100 0 100%

Table 1: Results of our experiments: signification of shortcuts - NOE (number of experiments), NOCR
(number of correct results), NOIR (number of incorrect results). As seen in the table, the best results
gives the third system. The first system gives good results in respect of its complexity. However the
second system doesn’t bring expected enhancement.



Figure 9: The result of SOM of two images on previous figure. The red graphemes come from grapheme
segmentation from the first input image and the blue graphemes come from the second input image.
SOM grouped the similar graphemes to the same cluster. All clusters are placed abreast on the image.
You can see that SOM places similar graphemes abreast.

4.2 Sources of errors
Results strongly depend on preprocessing. In some cases preprocessing can give incorrect output. For
example line segmentation fails if lines are too close and touch each other. Also word segmentation has
problem with image where distances between words and distances between characters are similar. If the
slant has more directions in the line, for example at the beginning of the line handwriting has tendency
to slant to left and at the end to right, it can be problem for our algorithm. Now we explain source of
errors for each system:

1. the first system
errors in experiments on images from 2 different writers: system marked images as written by the
same writer because it didn’t find any dissimilarity. It is not available to detect differences. We
can solve it by adding another features.
errors in experiments on images from 2 same writers: this errors are more serious because of their
quantity. It can be caused by choosing an unsuitable threshold. Another problem is failure of some
algorithms (slant detection, proportion of handwriting) which give bad result for particular input.

2. the second and third system
SOM and hierarchical clustering tend to cluster some particular graphemes that are not significantly
similar with respect to the goals of our effort. Errors can be also caused by choosing unsuitable
thresholds. When result of SOM resp. hierarchical clustering fits between these thresholds, systems
take the results from the first system. So in this case the second resp. third system takes over
errors from the first system. We have no errors in experiments on images from 2 different writers
in the third system, but we should do more experiments to detect defection of the system.

4.3 Performance
We made experiments using Intel Core 2 CPU 1,66 GHz with 1 GB RAM. Average elapsed times:
preprocessing 5 seconds, extraction of features less than 1 second, hierarchical clustering 14 seconds and
SOM 52 seconds. Average elapsed times of three systems is shown in table 2 and compared in respect of
average accuracy.

5 Conclusions and future work
We presented a combination of particular steps that creates a workflow for identifying and deciding
whether two documents were written by the same author or not. Our experiments were made on 100
samples from the IAM database. We tested 3 systems described above and the best result was achieved by
the third system (96,5 % accuracy). The presented results show the efficiency of our method. Our future



System average elapsed time average accuracy
1. 13 sec 91%
2. 67 sec 92%
3. 27 sec 96,5%

Table 2: Elapsed time vs. accuracy: Experiments show that the second system (with SOM) computes
5 times slower than the first and it brings only 1 % enhancement. Therefore it seems to be the least
appropriate. The third system computes 2 times slower than the first and it brings 5,5 % enhancement.
So this is our winning system.

tasks are: to bring a better preprocessing, include more handwriting features, accelerate our systems,
implement another clustering techniques, compare the results for different thresholds in each system and
make more experiments. This process can be utilised into the problem with more than two input images.
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