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Abstract

Rendering of terrain meshes has been an active field of
research for several years. Real-time, out-of-core ter-
rain rendering systems based on hierarchical level of de-
tail representations created by continuously simplifying
the terrain geometry are available today. Although pro-
viding good results at close view distances, these tech-
niques are not well suited to the rendering of distant views
of urban models. Once the error-threshold exceeds the
building size, they are removed by the simplifier and only
represented in the terrain texture. This results in a loss
of viewing-direction dependent information and thus a
change of the appearance of the city. To overcome this
problem, we propose the use of surface light fields as a
view-dependent, image based level of detail representa-
tion for far distances. We compare two compression tech-
niques, the Per Cluster Factorization and the Linear Mode-
3 Tensor Approximation, and we show that the surface
light fields are more compact, can be rendered at higher
frame rates, and show less aliasing artifacts than the ge-
ometry they represent.

Keywords: city rendering, surface light fields, level of
detail, out-of-core rendering

1 Introduction

The rendering of digital terrain data has been an active
field of research with applications in areas like visualiza-
tion of scientific data and urban planning but also in com-
puter games and navigation systems. Furthermore, in re-
cent years programs allowing the user to interactively view
3D terrain models, obtained from aerial photography and
satellite images, have gained high popularity.

These terrain renderers often have to deal with a large
range of different scales, possibly reaching from views of
the whole planet on the one hand to close-ups of single ob-
jects like cars, trees, or buildings, on the other hand. This
requires a lot of storage space making it impossible to keep
the whole dataset in memory at the same time. Thus, it is
necessary to use level of detail techniques to reduce the
amount of data that has to be processed for every single
view. Furthermore, out-of-core renderers, which are capa-
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ble of loading the new data in real-time if the point of view
changes, are mandatory in this domain.

Most terrain rendering systems in use today are based
on static, hierarchical level of detail techniques (HLOD).
These create a tree in which each node contains a repre-
sentation of all of its sub nodes at a coarser level of detail.
During rendering the nodes to be rendered are then chosen
based on the screen space error. Only a small subset of
all nodes, the graphical working set [4], is thus needed to
render the scene from a certain point of view. This work-
ing set usually changes only slowly between two frames.
Therefore, it is possible to keep the working set within the
RAM and only load missing nodes from secondary stor-
age. Using this technique, interactive rendering of scenes
of nearly arbitrary size is possible as long as all nodes can
be sufficiently simplified. This is usually done by geomet-
ric simplification and subsampling of the textures.

However, in the context of city rendering this approach
is no longer feasible for distant points of view. Once each
building is represented by a box, further simplification of
individual buildings is not possible any longer as a box is
already the simplest reasonable representation for a build-
ing. When the error threshold finally exceeds the size of
the buildings, they are removed all together.

When the geometry is removed, the appearance of the
city can change considerably, though. On the other hand,
when it is kept, strong aliasing problems occur.

In contrast to other objects commonly drawn by terrain
renderers, for instance mountains or vegetation, the visual
impression of buildings is strongly dependent on the view-
ing direction. From above, primarily the roofs of the build-
ings are seen, but from points of view closer to the ground
the colors of the facades dominate the appearance. This
effect is lost if the geometry of the buildings is removed
and thus, even if the individual buildings are smaller than
a pixel, the visual impression of the city can be changed
considerably by this simplification step.

Further simplification is not only necessary to maintain
scalability and thus allow for out-of-core rendering but
also to avoid aliasing. When a view of the whole city is
drawn, each building only occupies a few pixels on the
screen, and thus the individual triangles are often smaller
than one pixel. Furthermore, the contrast between the fa-
cades, which often have bright colors, and the dark colors
of the roofs is very high. Together, this causes severe alias-
ing artifacts, which even the full-scene anti-aliasing of-



fered by modern 3D hardware cannot completely remove.

To avoid these problems, a level of detail representation
which on the one hand is capable of reproducing the view-
ing direction dependent effects but on the other hand is
also compact and can be rendered fast enough to be useful
for out-of-core terrain rendering systems is needed. We
propose the use surface light fields (SLFs) in this context.

A surface light field is a texture which stores the color
in dependence on the viewing-direction. SLFs are already
commonly used for the rendering of materials, but they can
also be used for rendering terrain as both problems are re-
lated. The appearance of a material is strongly influenced
by a thin layer of high geometric complexity. For exam-
ple, rendering fabric is prohibitively expensive if every sin-
gle thread of the material is rendered. Still, the geometry
cannot be ignored becuase the viewing-direction depen-
dent effects caused by this meso-structure give the fabric
its distinct appearance, which simple texture mapping can
not reproduce. Rendering of cities is nearly the same prob-
lem, only on a much larger scale. It is very expensive to
render geometry for each house, but on the other hand the
buildings cannot be ignored or rendered as texture.

The viewing direction dependent effects of the build-
ings can be represented in the terrain texture and thus their
geometry has not to be rendered any more. For this, ter-
rain textures which contain the buildings from different
viewing-directions are created in a preprocessing step by
projecting the buildings onto the terrain. From these tex-
tures a surface light field is generated. This SLF is then
used during runtime to render the terrain with a texture,
which contains the buildings as they would appear to a
viewer at the current position.

Since the amount of storage needed for the surface light
fields is rather high, they have to be stored on the graphics
card in compressed form. Therefore, compression tech-
niques which on the one hand achieve high compression
ratios but on the other hand allow for real-time rendering
are necessary. We have adapted two techniques, the Per
Cluster Factorization (PCF) [17] and the Linear Mode-3
Tensor Approximation (LTA) [10], which both originally
have been developed for the compression of bidirectional
texture functions (BTFs), which also store light-dependent
information, to surface light fields and we compare their
performance in this context.

Our contribution is the development of the techniques
necessary to use surface light fields as a level of detail
representation in a terrain renderer. For this, we create
the surface light fields from the geometry, adapt two BTF
compression techniques to surface light fields and com-
pare their compression performance. Then, the surface
light fields are integrated into an existing hierarchical level
of detail terrain renderer, where they are used to represent
the distant points of view. Finally we evaluate the perfor-
mance improvement obtained with surface light fields.

2 Related Work

The concept of hierarchical level of detail representations
was introduced by James H. Clark in [4]. Since then, a lot
of different HLOD techniques have been proposed. These
use a number of different representations for the levels of
detail, different hierarchical structures, and differ in the
strategy used for fetching new data. A high level overview
on level of detail techniques for meshes is given in [11],
and in [8] the use of hierarchical level of detail is explained
in more detail.

In this paper, the SCARPED terrain renderer described
in [20] is used. This renderer is based on a static, out-
of core, hierarchical level of detail system, which uses a
quadtree to represent the scene. The lowest nodes of the
quadtree contain the terrain geometry, that has been cre-
ated from elevation data. The other nodes are generated
by successively simplifying geometry using the Hausdorff
distance to guarantee an upper bound for the error. This
threshold is doubled for each level of the quadtree. The
buildings have been generated from land register data and
are stored in a separate quadtree.

It is possible to mix different representations within the
level of detail hierarchy, and thus for example image based
representation can be used for distant objects. A lot of dif-
ferent level-of-detail representations exist, which replace
the objects with a proxy that is rendered using an im-
age based representation of the original geometry. An
overview of these techniques is given in [12].

However, most image based LOD techniques do not
store viewing-direction dependent information and thus
suffer from similar problems as rendering geometry. In
[21] the use of billboards with viewing-direction depen-
dent textures stored using a modified video codec has
been proposed, in [22] and [9] point clouds with viewing-
direction dependent colors were used and in [15] billboard
clouds with BTF textures. A technique similar to the one
described in this paper has been introduced in [1], which
uses viewing-direction dependent textures in a terrain ren-
derer. In contrast to the surface light fields, these textures
are generated at run-time and have to be updated every
time the point of view changes. A recent work in the con-
text of city rendering are Blockmaps [3], which use a vol-
umetric representation of the buildings which is rendered
with ray-casting.

The use of view-dependent texture mapping has been
proposed in [7]. Whereas this technique works by project-
ing images from different points of view onto the geome-
try, surface light fields [16] instead store one texture with
viewing direction dependent information for each texel. In
[16] a DCT based block coding scheme was used to com-
press the surface light field data, but also techniques based
on vector quantization [23] and on the approximation of
the surface light field with a lower dimensional subspace
[23, 2, 5] have been proposed.

A representation even more general than SLFs are BTFs
which also store the dependence on the light direction.



Figure 1: Sampled (center) and interpolated (right) lumi-
sphere corresponding to a point on the surface light field.

However, surface light fields are sufficient in our case
since the terrain engine we used renders the scene without
dynamic lighting. Several techniques for the compression
of BTFs can also be used for SLFs. An overview is given
in [18]. In this paper the Per Cluster Factorization (PCF)
[17] and the Linear Mode-3 Tensor Approximation (LTA)
[10] are used.

3 Surface Light Fields

A surface light field is a texture map that stores the ap-
pearance of an object in dependence on the viewing direc-
tion. For each texel of the texture, thus a lumisphere [23] is
stored, which contains for each of a set of discrete viewing
directions d1, . . . ,dn the color that should be visible from
this direction. The surface light field can be interpreted as
a collection of lumispheres

L = {lm ∈ R3n}m∈M⊂N2

where each li is a vector containing a RGB sample for
each viewing-direction and M is a grid of texel positions.
During rendering, intermediate viewing-directions are in-
terpolated bilinearly between the four nearest stored sam-
ples. Figure 1 shows an illustration of a lumisphere.

The viewing directions are all parameterized relative to
the bounding box of the terrain quadtree cell and are cho-
sen on a hemisphere over the cell in such a way that they
later can be stored in a texture map using a parabolic pa-
rameterization. For the PCF compressed SLFs, 11× 11
sized texture patches were used, resulting in 97 valid view-
ing directions. The remaining points of the texture are not
used for this parameterization. In contrast, for the LTA
compressed SLFs the use of more viewing directions is
cheaper, as they have to be stored only once and not for
each cluseter. Therefore, here 16× 16 sized patches, pa-
rameterized as described in [10], were used.

4 Creation

The surface light fields are created in a preprocessing step
for those quadtree cells that contain buildings and belong
to a sufficiently coarse level of detail. For this, first the ter-
rain cell is rendered together with all buildings within the
cell and the eight adjacent cells from each of the viewing

directions d1, . . . ,dn. The resulting images are then pro-
jected onto the terrain geometry to create a texture con-
taining the buildings as they would appear if seen from the
direction di.

It is necessary to render the eight adjacent cells together
with the cell itself because it can happen that from cer-
tain viewing directions buildings are projected into adja-
cent cells and thus have to be represented in their textures.
For the rendering, an orthographic projection is used since
the same viewing direction has to be sampled for all pix-
els. This projection is scaled along the vertical axis to use
the available rendering area as efficient as possible, which
is especially necessary for very shallow viewing angles.
In these cases, the cell would otherwise be projected into
a rectangle of very low height, and thus it would not be
possible to sample at least one point on the terrain surface
for each texel of the texture.

To project the buildings into the terrain texture, the
same cell is rendered again but this time without buildings.
Then, the depth buffer is read back and used to calculate
for each pixel of the rendered view the 3D position of the
point on the terrain geometry that would be visible when
no buildings were rendered. From this position, the tex-
ture coordinates of the point are determined and the color
of the pixel is stored for the texel corresponding to these
coordinates.

For each texel of the created texture all samples are av-
eraged to anti-alias the resulting image. Because of the
scaled projection and the fact that the views are rendered
at eight times the texture resolution, texels that were not
occluded by the terrain will always receive enough sam-
ples. On the other hand, if texels have been occluded, it is
necessary to use the colors from neighboring texels to fill
the resulting holes.

5 Compression

When stored uncompressed, the 128× 128 surface light
field for one terrain cell, sampled from 97 viewing direc-
tions, would need about 4.7 MB, making it prohibitively
expensive to store. Therefore, efficient compression tech-
niques which reduce the size of each cell considerably but
at the same time allow for real time rendering are needed.

5.1 Per Cluster Factorization

Several works [23, 2, 5] compress surface light fields by
finding a lower dimensional affine linear subspace that ap-
proximates the data best in a least squares sense, and then
representing the data in this subspace. Further improve-
ments of the compression ratio can be achieved by per-
forming an additional clustering step and then determining
an independent affine subspace for each cluster, instead of
approximating all lumispheres with one subspace. This
technique was introduced in [13] for machine learning pur-
poses. Its application to compression was suggested inde-



Figure 2: The operations performed by the PCF Shader

pendently in [19], where it is called clustered PCA and
used to compress precomputed radiance transfer matrices,
and in [17], where the term local PCA is used and the tech-
nique is applied to the compression of BTFs.

The local PCA algorithm is a modified version of the
k-means algorithm. It starts by choosing k random, c-
dimensional, affine linear subspaces, each defined by an
origin r j and a set of c basis-vectors ei, j. Each vector is
assigned to the cluster with the smallest squared recon-
struction error:

ε(x, j) =

∥∥∥∥∥x− r j−
c

∑
i=0

< x− r j,ei, j > ei, j

∥∥∥∥∥
2

Then, for each cluster the center r j is recalculated as the
mean of the vectors belonging to the cluster, and a set of
new basis-vectors ei, j is determined by performing a PCA
on these vectors. This is iterated until the change in recon-
struction error between two iterations falls below a given
threshold.

For the compression of surface light fields, the local
PCA is performed with the set L of all lumispheres as
input. Each lumisphere lm can then be represented by a
cluster index jm and c weights wi,m. Analogous to the
terms Eigen-Texture and Eigen-BRDF, we will use the
term Eigen-Lumisphere for the basis-vectors ei, j.

To improve the perceived visual quality of the PCF com-
pressed surface light fields, the elements of the lumisphere
vectors can be weighted before performing the local PCA.
This is done by multiplying the colors for each viewing di-
rection by the cosine of the angle between the normal and
the viewing direction before the local PCA and dividing
the elements of the basis vectors by this value afterwards.
This weighting was chosen because it is proportional to
the size of the projection of the cell onto the screen.

We used three basis vectors to represent the lumisphere.
This way, during rendering the indices and weights can
be stored in one RGBA texture map. The cluster centers
and the Eigen-Lumisphere are arranged in 11×11 blocks,
which are all stored together in a second texture map. Each
block contains one hemisphere of viewing directions. This
way the bilinear texture filtering of the graphics hardware
can be used to interpolate viewing directions.

For real-time rendering of the PCA compressed tex-
tures, GLSL shaders are used. In Figure 2 the opera-

tions performed by the shader are illustrated. In the ver-
tex shader, the viewing direction d in the local coordinate
system of the terrain cell is calculated and passed to the
fragment shader in a varying variable.

The fragment shader then reconstructs the color C(x,d)
of the texel at the texture coordinates x for the viewing di-
rection d. First, the index j(x) and the weights wi(x) are
fetched. Then, the direction is renormalized, and mapped
into the Eigen-Lumisphere texture. These texture coordi-
nates are used to fetch the value of the cluster center and
the Eigen-Lumispheres at the position x that corresponds
to the viewing-direction d. If R j(x)(d) is the color of the
cluster center and Ei, j(x)(d) are the colors of the Eigen-
Lumispheres, the following sum has to be evaluated to re-
construct the color of the texel:

C(x,d) = R j(x)(d)+
c

∑
i=1

wi(x) ·Ei, j(x)(d)

For each additional Eigen-Lumisphere used during
compression, thus an additional texture lookup is needed.
In contrast, increasing the number of clusters does not in-
crease the number of texture lookups. Therefore, it is de-
sirable to use a high number of clusters. As an 8-bit tex-
ture is used to store the cluster index, it is possible to use
up to 256 clusters, but storing the Eigen-Lumispheres for
such a high number of clusters for each terrain cell re-
quires too much storage. Instead, the surface light fields
of nine terrain cells are grouped and use together one set
of 256 shared clusters, which is stored in one 512× 512
sized DXT5 compressed texture. If the alpha channel is
additionally used, it is possible to store four Lumispheres
in the space otherwise needed for three Lumispheres. This
way, the number of texture lookups can be reduced further.
With this representation, the 128× 128 surface light field
for one terrain cell requires about 90 KB.

The use of clustering to increase the compression per-
formance has one serious disadvantage, though. The tex-
ture filtering hardware cannot be used any more on the
clustered textures as it would interpolate between weights
belonging to different clusters. Therefore, the filtering
has to be done in the fragment shader, instead. For this,
a simple 5-tap anisotropic filtering is used and thus the
lumisphere color has to be evaluated five times for each
rendered pixel, increasing the number of texture accesses
needed to 20. The rendering of PCF compressed surface
light fields is thus rather expensive.

5.2 Linear Mode-3 tensor Approximation

A second technique which avoids the clustering and thus
can utilize the filtering hardware is the Linear Mode-3
Tensor Approximation introduced in [10]. Here the lu-
mispheres are not represented by a matrix but instead by a
tensor P ∈ Rk×t×v, where k is the number of color chan-
nel, t is the number of texels and v is the number of view-
ing directions. To compress this tensor, it is approximated
by a sum of rank-1 tensors:



P =
r

∑
j=1

σ j · c j ◦ i j ◦w j (1)

where {σ j} j=1...r is a set of scalar weighting coeffi-
cients, {c j} j=1...r a set of base colors, {i j} j=1...r a set
of weights textures and {w j} j=1...r a set of scalar Eigen-
Lumispheres. This sum is called Tensor Product Expan-
sion (TPE). The first summand is determined by finding
the best rank-1 approximation of P using an alternating
least squares algorithm [14, 6]. This approximation is then
subtracted from P to calculate the remainder, from which
then the next summand can be calculated. This is iterated
until the first c rank-1 tensors have been determined.

To achieve a better perceptual quality, the visual model
described in [10], is used. This performs, additionally to
the viewing direction weighting described above, a trans-
form into the YCbCr color space to weight the luminance
and chroma channels independently and a wavelet trans-
form to weight components of different frequency accord-
ing to the contrast sensitivity function of the human visual
system. This way, a better visual quality can be achieved
with the same number of Eigen-Lumispheres.

Since, in contrast to the PCF, no clustering is used for
the LTA, the anisotropic filtering can be performed in the
texture units of the graphics hardware for each of the
weight textures independently. Therefore, the shader used
to render LTA compressed surface light fields is far sim-
pler as it neither needs to look up the cluster indices nor
has to perform texture filtering.

Assuming wi(x) is the weighting coefficient at position
x on the surface light field corresponding to the ith Eigen-
Lumisphere, ei(d) is the scalar value of the ith Eigen-
Lumisphere in viewing direction d and ci is its base color
premultiplied with the coefficient σ j, the shader has to cal-
culate the following sum:

C(x,v) =
c

∑
i=1

wi(x) · ei(v) · ci

To calculate this efficiently, four weights textures are
packed in the RGBA channels of one texture. Thus, when
using 24 Eigen-Lumispheres, 6 RGBA weight textures are
needed. Similarly, four scalar Eigen-Lumispheres at a
time are combined into the RGBA channels of a second
texture. The base colors of four lumispheres are stored in
three vec4 in the constant registers of the shader, each
containing the values of one color channel. Both the
weights- and the lumispheres textures use 8 bit precision
and thus require scaling and shifting of the values into the
range [0,1]. Since the base colors are stored in float regis-
ters, it is possible to divide these by the scale factors, and
thus it is not necessary to reverse the scaling of the weight
and lumisphere textures in the shader.

The three color channels are processed independently
because this way four terms of the sum can be evalu-
ated at a time. First, the four weight values and the four

Figure 3: The operations performed by the LTA Shader.
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Figure 4: Comparison of the S-CIELab difference in units
of just noticeable difference (JND) between PCF and LTA
in dependence on the size of the compressed surface light
field.

scalar Eigen-Lumisphere values corresponding to the po-
sition on the surface and the viewing direction are fetched
and then multiplied component-wise. Then, for each of
the color channel the scalar product between this value
and the register containing the four base-color values is
calculated and added to the final color. This way, only
two texture lookups, one component-wise multiplication,
three dot products, and six additions are needed to calcu-
late four terms of the sum1. Thus, 12 texture lookups are
needed when 24 Eigen-Lumispheres are used. In contrast,
the PCF compressed surface light fields needs 20 texture
lookups when 3 components are used and texture filtering
is performed in the shader. In Figure 3 the operations per-
formed by the shader are illustrated.

The rendering performance can be further improved by
assuming a constant viewing direction for the whole cell
because Ei(d) · ci can then be evaluated on the CPU and
the result stored in the constant registers of the shader.
This reduces the number of texture lookups to six, and
avoids the component-wise multiplication and two addi-
tions. The assumption of constant viewing directions for
all texels within one cell is only a good approximation if
the viewer is far enough away from the cell, though. How-
ever, surface light fields are only used for levels of detail
which are seen from distant points of view. In the dataset
used for this paper, the angular error in the viewing direc-
tion does not exceed 4.5◦.

The weights textures are further compressed by per-
forming a vector quantization (VQ), using a codebook
shared between four cells. This vector quantization is de-

1One of the additions is necessary to calculate the new texture coor-
dinates and two are used to shift the values fetched from the textures into
the range [0.5,0.5]



compressed on the CPU before uploading the cells to the
GPU and thus only reduces IO times and quadtree cache
efficiency but not the amount of graphics memory needed.
However, decompressing the weights textures on the CPU
has the advantage that the texture filtering hardware can
be fully used and therefore LTA compressed SLFs render
faster than PCF compressed ones. When the first 24 terms
of the the TPE are kept and the error threshold during vec-
tor quantization is chosen as ε = 0.0125, about 140 KB
are needed for each cell of the quadtree.

5.3 Comparison of Compression Results

It is difficult to measure the quality of images which were
compressed using a perceptive visual model objectively
since it is necessary to use a model of the human vi-
sual system for the measurement itself. In [10], a system
which uses the S-CIELAB quality metric [24] to assess
BTF compression techniques is proposed. In Figure 4, the
reconstruction errors for PCF and the LTA, as measured
by this system, are compared.

For the measurement a 21 inch display with a resolu-
tion of 1280×1024 and a distance from the viewer to the
screen of about 60 cm was assumed. Furthermore, the
measurement was done for a one-to-one mapping between
texels and pixels.

For the measurements, four sample terrain cells from
the dataset, which all contained a high number of build-
ings, were used. The PCF and LTA compression was done
with different numbers of components. The results for
LTA with Vector Quantization were obtained by first per-
forming LTA compression with 24 components, and then
using VQ with different error thresholds. For the LTA, a
codebook shared among the four cells was used, and the
PCF compression was done with 32 shared Clusters.

The measurements have shown that the additional vec-
tor quantization does in fact offer a better visual quality at
the same compressed size than can be obtained with the
LTA alone, and that for very high compression ratios, the
PCF performs better than both LTA based techniques.

6 Rendering

The integration into the terrain renderer is quite similar
for both surface light field compression techniques. The
surface light fields are stored in the quadtree, replacing
the original textures. During rendering, the SLFs are then
used to texture the terrain and the buildings are no longer
rendered at all.

When switching from buildings rendered with SLFs to
geometry, popping artifacts are visible. This is caused, on
the one hand, by the quite high compression used on the
cells. On the other hand, even if an uncompressed surface
light field created for exactly the correct viewing-direction
is used, still a difference is visible as the surface light field

is first resampled to 128× 128 texels and then rendered
using texture filtering, which both creates a blurred image.

Therefore, it is necessary to use blending to hide the
transition from the user. For this, firstly the buildings are
faded-in using alpha blending, and secondly the surface
light fields are crossfaded with the textures of the next finer
level of detail. These two operations are both controlled by
the pixel error ε of the cell. In the terrain engine, this error
is calculated during the traversal of the quadtree for each
cell, and if it is higher than the threshold εmax chosen by
the user, a finer level of detail is displayed.

However, instead of simply switching between levels of
detail, now the transition is done over a certain range of
pixel errors. When the pixel error reaches 0.85εmax the
buildings start to fade in. This is done by linearly in-
creasing their alpha component with the pixel error until
it reaches 1.1εmax. Similarly, the crossfading of the sur-
face light fields starts at a pixel error of εmax and ends at
an error of 1.1εmax.

During the crossfading of the textures, the four cells at
the finer level of detail are rendered instead of the cell con-
taining the surface light field, but these cells are drawn
with the corresponding quarter of the texture of their par-
ent cell linearly interpolated with their own textures. For
this interpolation, the pixel error of the parent cell and not
of the four cells themselves has to be used.

This is necessary to avoid popping artifacts that would
occur otherwise. When the parent cell reaches a pixel er-
ror of εmax, the four child cells are rendered instead. These
four cells have different pixel errors as their centers are
at different distances to the viewer. Thus, it can happen
that the cell nearest to the viewer has a pixel error which is
smaller than the threshold and the cell’s own texture is dis-
played without any fading. This problem can be avoided
if the pixel error of the parent cell is used instead, and all
four cells are thus blended using the same error.

7 Results

For the evaluation of the techniques described in this pa-
per, a dataset of the German city Munich was used. This
dataset contained about 50,000 buildings, which were rep-
resented by more than 1.5 million textured triangles, re-
quiring 170 MB of storage in total on the finest level of
detail. For this dataset, surface light fields were generated
for terrain cells with an extent of about 1.6 km, of which
each requires about 1.6 MB of storage.

In Table 1 the amount of data and the time needed to
load an initial view in which the whole city is represented
by surface light fields is shown for the different represen-
tations. The column size contains the total amount of data
that has to be loaded for this view, including both geome-
try and textures. The time necessary for this is given in the
column I/O time and in instantiation time the time needed
to decode the loaded data and upload these to the graphics
card is shown.



The use of surface light fields reduces the amount of
data that has to be loaded considerably and thus also re-
duces the time necessary to load the data. In comparison
to the I/O time, the time needed for decoding the vector
quantized textures of the LTA compressed SLFs is negli-
gible.

In Figure 6, the frame rates during a flight from a dis-
tant point of view from which the whole visible scene is
rendered with surface light fields to a point from which
nearly all buildings are drawn as geometry is shown. For
all three techniques, all frames were rendered from ex-
actly the same points of view. The measurements were
performed on a computer with an Intel Core 2 Duo T7100
processor, 4 GB RAM, and a NVIDIA GeForce 8600M
GT graphics card.

Usually, the terrain renderer uses asynchronous I/O and
thus has to render a representation at a lower level of de-
tail until the data for the current LOD have been loaded.
This way, smoother rendering is achieved, but if the data
cannot be fetched fast enough, the visual quality degrades.
If asynchronous I/O is used, the frame rates measured for
the different techniques cannot be compared, though, as it
is possible that for the same point of view different LODs
are chosen. Therefore, we used synchronous I/O for these
measurements. However, this results in strongly varying
framerates and thus the framerates shown here are aver-
aged over 25 frames at a time to increase the readability.

The use of surface light fields increases the framerate,
but during the transition of the two representations the
framerate can actually drop below the framerate obtained
by using only geometry because both representations have
to be rendered together.

We also compared our approach based on surface light
fields to a technique similar to the Far Voxels described in
[9]. Here, the buildings are represented by a point cloud
with viewing direction dependent colors. We used the PCF
compression to store the Lumispheres for each point in
this cloud. When the fact that certain viewing directions
will never be visible is considered during compression, a
reasonably compact representation (see Table 1) and fast
rendering (see Figure 6) of the Far Voxels is possible.

However, during our experiments, Far Voxels suffered
from serious sampling artifacts. The points of the cloud
cannot be rendered with sub-pixel accuracy and thus the
problems are even worse than when rendering geometry.
A border of 1-pixel width is created by this effect which
results in the occlusion of fine structures, like the facades

Representation Size I/O Time Inst. Time
Geometry 60.1 MB 1.84 s 0.155 s
PCF 1.7 MB 0.14 s 0.004 s
LTA with VQ 2.6 MB 0.20 s 0.002 s
Far Voxel 3.8 MB 0.346 s 0.026 s

Table 1: Size of the cells needed for an initial view of the
city and the time necessary to fetch them from hard disk

(a) Original (b) Point cloud (c) Difference image

Figure 5: Problems of point cloud rendering
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Figure 6: Comparison of the frame rates for the different
rendering techniques.

of other buildings (See Figure 5). Therefore, it would ac-
tually be necessary to store viewing direction dependent
coverage information for each voxel, and then the points
would have to be rendered using alpha-blending. How-
ever, this would increase the amount of storage needed and
requires different rendering techniques to avoid sorting the
point cloud by depth.

In the color plates, close-ups of the same buildings from
different points of view are compared. For example, the
parallel buildings clearly show view-dependent effects, if
rendered with surface light fields. When seen from above,
only the roofs are visible, but when seen from different
sides, the corresponding facades become visible. Further-
more, views of the whole city rendered with geometry and
with SLFs are compared. The images rendered with SLFs
are less sharp, but also show less aliasing artifacts than the
images rendered with geometry.

8 Conclusion

The use of surface light fields allows to render distant
views of cities with higher frame rates than possible by
rendering geometry. The amount of data that has to be
loaded is reduced considerably and scales linearly with the
texture size. Therefore, SLFs are well suited for out-of-
core renderers. Furthermore, most aliasing artifacts, ge-
ometry suffers from, can be avoided because texture filter-
ing can be used.

Both compression techniques have advantages and dis-
advantages. PCF compression should be preferred if high
compression ratios are more important, like for example if



the cells are transmitted over the Internet, and LTA com-
pression is to be preferred if a high rendering performance
is necessary, especially when slower graphics hardware
should be supported.

The surface light fields have certain limitations, though.
The use of surface light fields results in a loss of details be-
cause of the compression. The technique can only be used
if the distance between the viewer and the object is very
high. As the viewer approaches the objects, the influence
of parallax effects gets stronger and the surface light fields
can no longer be compressed efficiently. Similar problems
occur for very shallow viewing angles. Furthermore, SLFs
can only be used if a geometry on which the surface light
fields can be projected is available and only if fixed light-
ing is used. If dynamic lighting is necessary, BTFs have to
be used instead, increasing the amount of data needed for
each cell.

It can be concluded that surface light fields are certainly
a viable alternative as a level of detail representation for
rendering distant views of cities.
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Comparison of the rendering techniques. For all images 16x full-scene anti-aliasing was used.


