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Abstract

This paper is dedicated to the problem of face images

matching in passive stereoscopic photogrammetry. The

aim of the presented work was to develop a method for

correspondence search in a pair of high-resolution im-

ages which allows a reconstruction of high-quality 3D face

model. The proposed technique combines global approach

to the construction of a disparity map based on a graph

cut with fast local method. The initial estimate of solu-

tion by local approach is used for reduction of a disparity

space. Final disparity map is determined by single min-

imum cut in the reduced graph with 3D grid topology.

The reconstructed 3D model of the face has good quality

similar to the result by purely global approach. However,

the computational time and memory consumption are sig-

nificantly smaller in the proposed technique comparing to

purely global approach.

Keywords: 3D face capture, passive stereoscopic pho-

togrammetry, stereoscopic matching, window-based cor-

respondence, graph cut, maximum flow, disparity range

reduction

1 Introduction

This work belongs to the field of 3D capture. The 3D

capture of face has specific constraints and requirements

with respect to a character of examined object. The is-

sues connected with a safety, speed and natural behaviour

of a person make the face capture system more complex

than general-purpose capture systems. Because of these

requirements, the structured light techniques or the tech-

niques based on a stereoscopic photogrammetry are usu-

ally used. The majority of methods from both groups

project some kind of pattern on the captured face. A

pattern projection is crucial for a calculation of depth in

structured light techniques. Active photogrammetry tech-

niques use the projection of random pattern to improve the

quality of matching between the views. Main disadvan-

tage of using patterns is the acquisition of shape without

an appearance. This problem has been overcome by pro-

jecting pattern in the IR part of electromagnetic spectrum

[14]. However, this implies complex capture rig with spe-
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cialised equipment. Another limitation is strict regulation

of scene illumination to avoid contamination of a pattern.

A research challenge is to develop a capture system

without active lighting components which has same ac-

curacy and efficiency as the systems using pattern projec-

tion. The advantages of such system are simpler capture

rig and less restrictive constraints on an illumination in a

scene. This step would lead to the transition of 3D face

capture systems from laboratory conditions to real envi-

ronment. The challenge is pursued by passive stereoscopic

photogrammetry techniques. The matching is performed

on usual images of captured object. Therefore, the algo-

rithms have to be more sophisticated to achieve the quality

of result similar to previously mentioned groups of tech-

niques.
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Figure 1: The scheme of the 3D face capture.

This paper addresses a problem of face images match-

ing in the passive stereoscopic photogrammetry. The goal

was to develop the correspondence method which allows

the reconstruction of high-quality 3D face models. Input

images provided by the built capture rig have high reso-

lution (8.2 megapixels). This offered an opportunity to

investigate whether such resolution can bring enough skin

details to overcome traditional difficulties with matching

pattern-free images of the face.

Figure 1 schematically illustrates a processing in the 3D



capture. The processing pipeline has same stages regard-

less of captured object. However, the algorithms can ex-

ploit a priori knowledge that the application is a human

face. The input images obtained by calibrated capture

rig are pre-processed to simplify following computation.

A correspondence search finds the pairs of correspond-

ing pixels in the images. It can be divided into two main

phases - a construction of disparity space and a construc-

tion of disparity map. The first phase records a matching

score for all relevant pairs of pixels in images to a dis-

parity space. The second phase extracts correct matching

between pixels from the disparity space in a form of dis-

parity map. The textured 3D model is reconstructed from

the disparity map which can also be seen as a range image.

The correspondence search, which is crucial task in the

3D capture, can be solved by large number of methods.

They are considered as local or global according to an ex-

tent of data used for matching one pixel [10]. The local

techniques [14] are fast but inaccurate for the materials

with weak texture such as human skin. The global tech-

niques treat the construction of disparity map as an optimi-

sation problem. Therefore, they achieve better quality of

disparity map but computational demands are high. The

main representatives are simulated annealing, probabilis-

tic diffusion, dynamic programming [11] and graph cuts

while the methods based on graph cuts achieve the best

results [10]. The part of them use the alpha-expansion al-

gorithm which iteratively applies the graph cut on the 2D

grid graph to minimise an energy function [6]. The energy

function can define complex smoothness term but the al-

gorithm does not quarantee global minimum. On the other

hand, the techniques such as [8, 5] compute optimal so-

lution by single cut on the 3D grid graph which allows

only linear smoothness term. To cope with long compu-

tational time and huge memory consumption of the men-

tioned graph cut techniques, several approaches were pro-

posed [9, 13]. They reduce a search space through hierar-

chical computation of graph cut, initial rough estimate of

the solution, or the set of best matches for each pixel.

The technique presented in this paper exploits the global

optimisation by graph cut to achieve high quality of match-

ing between images. The disparity map is computed by

one cut of the graph with 3D grid topology. To decrease

the computational complexity, the estimate of disparity

map created by fast local method is used to reduce the dis-

parity space.

2 Acquisition and pre-processing of

images

The face capture rig for the passive stereoscopic pho-

togrammetry consists of two digital still cameras and a

system of lights. The scheme of capture rig is drawn in

Figure 2. Images are taken simultaneously and have res-

olution 3504× 2336 pixels. The purpose of lights is to

provide a uniform illumination of the whole face without

effects such as shadows or reflections occurring. It is bene-

ficial for the consequent processing and the quality of final

model.
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Figure 2: The configuration of face capture rig.

During a camera calibration a world coordinate system

is established and projection matrices are determined for

each camera. The exploited camera model [15] consists

of intrinsic and extrinsic parameters. The extrinsic param-

eters define a relationship between the camera coordinate

system and the world coordinate system. The intrinsic pa-

rameters describe focal length, sampling of sensor array,

position of principal point, radial and tangential lens dis-

tortion.

The first stage of image pre-processing is a removal of

lens distortion according to the calibration data. The pair

of images is then rectified [3]. New rectified projection

matrices are found for both cameras. A rectification sim-

plifies the traverse along an epipolar line during the corre-

spondence search because it is aligned to pixel row. The

last stage is an extraction of face regions in the image pair.

The following matching is performed only within these

regions. The images are segmented according to a skin

model described by Gaussian functions in the RGB colour

space. The result of segmentation is closed by binary di-

latation and erosion at the end.

3 Construction of disparity space

Amatching stereoscopic pair of images means to recognise

the pairs of projections of same 3D points. A matching im-

age is searched along the epipolar line which corresponds

to a processed point in a reference image to find a corre-

sponding point. A relationship between matching points

can be described by a disparity. When input images are

rectified, the disparity is simply expressed as a difference

of horizontal coordinates of corresponding points. Be-

cause of this fact, a disparity space can be easily defined

as a three-dimensional system with the axes U,V,D. The
axes U and V are aligned with rows and columns of the

reference image and the axis D represents the disparity.

The disparity space has a discrete nature for purposes of

this work. Therefore, the integer coordinates [uR,vR] ad-
dress a pixel in the reference image and the disparity d is



measured in whole pixels. A point in the disparity space

represents one pair of pixels - [uR,vR] in the reference im-
age and [uM,vM] in the matching image (Equation 1).

uM = uR−d vM = vR (1)

A disparity space image (DSI) is a function over dispar-

ity space. It defines a measure of confidence that a pair of

pixels is corresponding to each other [10]. An assumption

that the neighbourhoods of matching pixels in the images

are similar is exploited to define this measure. Square win-

dows with fixed size around examined pixels are compared

to determine this similarity. The comparison of windows

with identical shape implicitly assumes that a projection

of same surface patch covers same area in each image (a

window similarity constraint [14]).

The value DSIuR,vR(d) is a normalised cross-correlation
nCC between the windows centered around the pixel

[uR,vR] in the reference image and the pixel [uM,vM] in
the matching image (Figure 3). The pair of pixels is con-

nected by Equation 1. The formulation of nCC is shown in

Equations 2, 3, 4 [11].

nCC =
cov

√

var(R)
√

var(M)
(2)

cov=
w

∑
i=−w

w

∑
j=−w

(RuR+i,vR+ j−R̄uR,vR)(MuM+i,vM+ j−M̄uM ,vM )

(3)

var(R) =
w

∑
i=−w

w

∑
j=−w

(RuR+i,vR+ j− R̄uR,vR)
2 (4)

The function RuR+i,vR+ j represents an intensity in the ref-

erence image at the pixel [uR+ i,vR+ j] and R̄uR,vR is an
average intensity over (2w+1)×(2w+1)window (equiv-
alently for matching image). Higher value of nCC means

stronger similarity between compared windows hence big-

ger confidence that the centres of windows are matching

pixels. The nCC is invariant to an affine transformation be-

tween intensities in the windows in comparison to SSD or

SAD. It brings bigger robustness against reflections or dif-

ferent camera gain. The computation ofDSI for a compact

part of the disparity space can be significantly accelerated

[11]. The windows around close pixels are overlapping,

therefore many calculations in the nCC are repeated. Equa-

tions 3, 4 for a covariance and a variance are rewritten to

use only the basic operations between the means of in-

tensity and squared intensity. The means over the over-

lapping windows arranged in regular array are effectively

calculated by box-filtering technique. The speed of the

DSI computation is then almost invariant with respect to

the window size.

A face captured in the stereoscopic image pair has a re-

sponse inside the DSI. It has a form of surface marked by

high correlation values. Because a disparity can be seen

as an inverse depth, the surface is similar to the real sur-

face of face. Its position in the disparity space is ambigu-

ous in some areas because the course of DSI is rugged.
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Figure 3: The disparity space with marked entry in the

DSI for the pair of pixels in images. A slice through the

disparity space along row vR shows that the DSI is defined

only within the face region.

Main reason for the articulation of DSI is that a human

skin does not provide strong texture. Secondly, the areas

which have view-dependent appearance have problematic

matching (in the case of a human face e.g. eyebrows). Fi-

nally, the parts which are more oriented to one of the views

or completely occluded have an ambiguous response in the

DSI, because the windows similarity constraint is violated

(e.g. sides of nose). The DSI is becoming less rugged with

increasing size of the correlation window but the present

surface is losing details.

The disparity space is large in the case of high-

resolution input images, hence it is reduced in several

ways in this work. Figure 3 shows that the DSI is deter-

mined for the pairs of pixels which are inside the face re-

gions in both views. A disparity range is shrunk according

to the estimated positions of the nearest and furthest 3D

point on the face surface. The reference image is sampled

with a scanning step and the DSI is computed only for

these pixels (nCC is calculated from full image resolution).

4 Construction of disparity map

The most complex task in a chain of face capture is an ex-

traction of disparity map from the DSI. A disparity map

DM is a function which assigns to a pixel in the reference

image a disparity to its matching pixel. The goal of the

correspondence search is to find the DM which precisely

describes the surface present in the DSI. A priori knowl-

edge of reconstructed object gives beneficial constraints

on the searched DM. A human face has a compact, con-

tinuous, and smooth surface. Therefore, a neighbourhood

consistency constraint [14] can be exploited for the ex-

traction of DM. It assumes that neighbouring pixels in a



picture are projections of adjacent spatial points, so their

disparity values should be similar. To reflect the reduction

of a disparity space, the DM is determined only for the

sampled pixels within face region in the reference image.

4.1 Local approach

Local techniques determine an entry in the DM for partic-

ular pixel using its own correlation function along the dis-

parity range and optionally the functions of pixels in the

neighbourhood. The straightforward method is to assign

the disparity value of global maximum in the correlation

function to every pixel. However, it leads to the noisy re-

sult for a human face because the DSI is ambiguous. A

concept from [14] was adopted instead but the method is

changed to be more reliable for the less-quality DSI.

A pixel with strong correspondence can be recognised

by a high global maximum in its correlation function and

a small ratio between the second highest and highest nCC.

Statistics over the face region are gathered to gain gen-

eral knowledge about these characteristics. The combina-

tion of mean and a multiple of variance sets a threshold

for each characteristic. A matching score threshold ts and

a ratio threshold tr are used to extract the set of pixels

with strong matching. The disparity with maximal nCC is

recorded into the DM for these pixels. There is a possibil-

ity that pixels with incorrect disparity (outliers) are added

to the DM as well because of the statistical approach. The

pixels with strong correspondence form a starting point for

incremental filling the rest ofDM using the neighbourhood

consistency constraint. The pixels which are on the edge

of already resolved area are found in every iteration. An

average disparity is computed for each of them from the

resolved pixels in 8-pixel neighbourhood. The disparity

of the closest local maxima in the correlation function to

the average value is recorded to the DM. To enforce the

smoothness of DM and reduce an influence of the outliers

in initial set of pixels, a disparity difference threshold td is

established. The disparity of processed pixel is compared

to the values of resolved pixels within 8-pixel neighbour-

hood. The pixel is resolved in certain iteration only if all

differences are below td in that iteration.

The surface in the DSI becomes stronger with enlarging

window, especially for the areas of face which are fronto-

parallel to the camera pair. Consequently, the set of pix-

els with a strong correspondence covers larger area and

contains less outliers. Larger windows (e.g. 31× 31 pix-
els) and ts, tr set around mean values lead to better DM

for the face. The td creates ’worm-like’ holes which mark

rapid depth changes in the DM. The local approach is fast

but resulting DM suffers from imperfections. The slanted

parts of surface contain many large regions with incorrect

disparity (e.g. the sides of face or nose). Even the areas

which are reconstructed better contain steps, although they

should be smooth.

4.2 Global approach

Global techniques determine a DM in one step using the

whole DSI simultaneously. Many of them define an opti-

misation of DM as an energy minimisation problem. An

energy function describes a quality of current shape of the

DM. A minimum of energy function can be found by var-

ious methods such as simulated annealing, mean-field an-

nealing, belief propagation, or graph cut. The global ap-

proach in this paper is a representative from the family

of graph cut techniques. They transform the energy min-

imisation to a minimum cut problem from a graph theory

[7]. A minimum cut in a graph is found using a minimum

cut - maximum flow theorem. The graph cut techniques

produce better results for the stereoscopic correspondence

than other global methods [10]. Their main disadvantage

is, however, higher computational complexity.

The energy function typically consists of two terms [7]

as shown in Equation 5. A data term is responsible for

choosing the best match for each desired pixel in the ref-

erence image. A smoothness term aggregates assumptions

about the shape of surface.

E(DM) = ∑
p∈P

DSI′p(DMp)+ ∑
(p,q)∈N

λ |DMp−DMq| (5)

P is a set of processed pixels in the reference image and N

is a relation between adjacent pixels (4-pixel neighbour-

hood). λ is a smoothness coefficient. DMp returns a dis-

parity for the pixel p. DSI′p(d) accesses nCC for the dis-
parity d in the pixel p and transforms it to a ’cost’: c =
1− ((nCC+1)/2) (high correlation means small matching
cost). The smoothness term in Equation 5 is linearly de-

pendent on a disparity difference. It enforces everywhere

smooth model for the DM which is suitable for a human

face. The minimisation of this type of energy function can

be directly mapped on the computation of one minimum

cut in a graph. The 3D grid graph is embedded into the dis-

parity space and the minimum cut is equivalent to searched

DM. Edge capacities in the graph are set in a way that the

cost of minimum cut exactly conforms to the energy func-

tion in Equation 5. It is guaranteed that the resulting DM

corresponds to a global minimum of energy function [12].

The construction of the graph in the disparity space is

similar to one proposed in [8]. Figure 4 shows that nodes

are created within a disparity range for every desired pixel

in the reference image. There is a 6-connectivity between

adjacent nodes. Chains of nodes along the axis D are

linked by data edges. The capacity of data edge is the

matching cost c belonging to the node with higher dispar-

ity. When the DSI is not defined for some node, the ca-

pacity is set to an infinity. One auxiliary layer of nodes

is added under the layer with minimal disparity because

of the ’shift’ of matching costs from nodes to edges. The

nodes in each disparity layer are interconnected by the reg-

ular 2D grid of smoothness edges with capacity λ . Special

edges with infinite capacity connect a source node with all

nodes in auxiliary layer and all nodes in the layer with



maximal disparity to a sink node. Moreover, every data

edge has a dual infinite edge oriented in an opposite direc-

tion.
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source
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d
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λ
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infinite edge
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Figure 4: The graph constructed in a disparity space by

global approach. The reference image has a resolution 4×
3 pixels and the disparity range contains 4 values.

A graph cut can be depicted as a surface which divides

nodes into a group with source node and a group with sink

node. A set of data edges severed by the cut corresponds to

the data term in Equation 5. Identically, an overall capac-

ity of severed smoothness edges is equal to the smoothness

term. The linearity of smoothness term is implicitly given

by a topology of graph where bigger change of surface is

penalised by splitting more smoothness edges. The min-

imal cut is equivalent to the searched surface in the DSI.

The resulting DM is simply determined by the disparity

values corresponding to the severed data edges (one per

pixel). A correctness and completeness of DM is ensured

by the infinity edges which prevent incorrect cuts on the

graph. Practically, the minimum cut is found by a maxi-

mum flow algorithm because the edges severed by the cut

are saturated by a maximum flow. The chosen algorithm

is based on a principle of augmenting paths but it is opti-

mised for the graphs with grid topology [2].

The quality of DM can be adjusted by the size of corre-

lation window and λ . The fronto-parallel areas are over-

smoothed and the slanted areas contain steps in the case of

large windows. Decreasing size of window improves the

shape of face, the face details appear, but a noise is becom-

ing apparent as well. The increment of λ smooths the sur-

face, however small face details are destroyed. The λ has

an influence on a local scale in contrast to the window size.

Smaller windows (e.g. 11×11 pixels) and λ set to approx-

imately one eighth of the average matching cost bring the

best results for a face. The resulting DM describes rea-

sonably the shape of surface including details. The DM is

smooth with only few outlying regions in strongly slanted

areas. It is a significant improvement with respect to the

local approach. On the other hand, the constructed graph is

huge for high-resolution pictures what implies high mem-

ory demands and long computational time.

4.3 Global approach with an estimate by lo-

cal technique

The high-quality results of global approach are overshad-

owed by its computational and memory demands. To

address this problem, a technique combining the local

and global approach was developed. The DM produced

by the local technique is used for a reduction of search

space. Consequently, the global method computes final

solution from smaller graph. The comparison with other

approaches to the search space reduction such as hierar-

chical or best-candidate showed that the initialisation by

fast local technique brings the biggest memory and time

savings [13].

The time of the estimate computation is negligible with

respect to following global optimisation. Only significant

overhead is computing extra DSI using bigger matching

windows for better quality of estimate. Initial DM is a ba-

sis for modelling a volume of interest in a disparity space

for the global optimisation. The first step is the creation of

thin layer with a thickness set by an offset ol around the

estimate as it is shown in Figure 5. The disparity range

determined by the layer for each pixel is then expanded

according to pixel’s neighbourhood to eliminate an influ-

ence of outliers in the initial DM. The minimal bound-

ary of range is updated if lower minimal boundary exists

within an expansion region (equivalently for the maximal

boundary). The expansion region has a square shape with

size (2wer+ 1)× (2wer+ 1). Figure 5 depicts a situation
when the layer contains correct DM after the expansion in

spite of the outlier region in the centre of estimate. Finally,

the volume of interest is trimmed by the volume where the

DSI is defined.

The construction of reduced graph starts by creating the

3D grid of primary nodes for the volume of interest as

it is depicted in Figure 6 (the grey thin grid in the back-

ground shows an extent of full graph). The interconnection

scheme is same as in purely global approach except for the

edges to the terminal nodes. The chains of primary nodes

for adjacent pixels have usually different lengths. It allows

an existence of steps in the DM that are not penalised by

the smoothness term. The solution is to wrap upper and

lower boundary of the graph by the auxiliary nodes. They

provide ending points for missing smoothness edges. The

arrow in Figure 6 marks a situation when valid cut inside

the volume of interest is correctly penalised by additional

smoothness edge. Data edges between the auxiliary nodes

have infinite capacity. The first and the last node of each

chain corresponding to a pixel is linked to the source and

the sink by infinite edges at the end.

The difficulty with the graph in this form is that the

time of graph cut computation is not dependent only on
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Figure 5: Modelling the volume of interest in a disparity

space. A slice along row in the reference image is illus-

trated (10 pixels and 9 disparity layers). (1) the estimate

of DM (2) correct DM (3) the layer created by ol = 1 (4)
the layer expanded by wer = 2.

the number of nodes and edges but also on the shape of

graph. When the shape of the volume of interest is dis-

tant from a cuboid, the computational time does not lin-

early decrease together with the size of reduced graph. It

is consequence of the optimisation of maximum flow al-

gorithm to regular grid topology of a graph. To cope with

this problem, extra infinite edges to the source and the sink

are added to the nodes which are on the boundary of graph

structure but not in the direction of D axis (Figure 6). A

flow is quicker brought into main body of graph through

them. After this modification, the complexity of graph has

smaller influence on a speed of maximum flow algorithm.

A solution identical to the one obtained through the purely

global technique can be found if the searched DM is en-

tirely inside the volume of interest. Otherwise, the bound-

aries of reduced graph force the minimum cut to globally

suboptimal solution.

The effect of window size and λ are the same as in

the purely global approach. The size of reduced graph

grows together with increasing ol and wer. The parame-

ters of local technique have to be adjusted to achieve the

best estimate of DM. The regions with incorrect matching

decrease an extent of graph reduction because ol and wer
have to be enlarged to eliminate their influence. Large out-

liers in the initial DM can even prevent the graph cut from

finding globally optimal solution because the volume of

interest does not contain whole true surface. A tradeoff

between the efficiency and the precision of DM exists. A

price for the solution similar to the purely global approach

are high memory and computational demands. However,

experiments showed that significant speedup and memory

saving with respect to the global technique can be gained

with the reasonable loss of precision (only on the sides of

face).
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Figure 6: The slice of reduced graph along a row in the

reference image (10 pixels and 9 disparity layers). The

depiction of edges is simplified except for the edges to ter-

minal nodes.

5 Surface reconstruction

The last stage of 3D face capture is a transformation ofDM

to a 3D model. An algebraic method involving the projec-

tion matrices of each view and the positions of matching

pixels is used to compute a 3D point [14]. A triangulation

between the 3D points is determined by a neighbourhood

of their projections in the DM. A simple adaptation of the

method in [4] processes independently the square groups

of four positions in the DM. The level of detail of the

model is configured by the scanning step. The resulting

model is stored as textured triangle mesh defined in the

VRML language.

The surface of model reconstructed by any of presented

techniques suffers from local bumpiness which is caused

by a noise in the DSI. A sub-pixel refinement of DM by

fitting a parabola to the correlation function [14] does not

bring a significant improvement. It operates on smaller

scale than the size of present bumps. The DM is explic-

itly smoothed by the Gaussian operator instead. Smooth-

ing enhances visually the quality of surface but the part of

small details is lost.

6 Results

The developed technique for stereoscopic matching was

evaluated for high-resolution images in terms of a compu-

tational time, memory consumption, and quality of recon-

structed model. It was compared to the reference local and

global technique as well.

Experimental results were obtained using the hardware

configuration: Dual Core 3GHz P4 Xeon EM64T, 32GB

RAM. The camera calibration was accomplished by ex-

ternal calibration toolbox [1]. The software was imple-



mented in C++ language using Recognition and Vision Li-

brary (CVSSP, University of Surrey, UK). Maximum flow

computation is performed by external library [2]. The in-

put images showed in Figure 1 were captured under the

conditions described in Section 2. A view from the left

was chosen as the reference image. The scanning step was

4 pixels and the disparity range was fitted to a face volume

(386 layers). The initial estimate by local technique was

created with following parameters: the matching window

31×31 pixels, the thresholds ts and tr set to the means of
corresponding characteristics and the threshold td = 3 pix-
els. The consequent global optimisation of DM used the

DSI by matching window 11×11 pixels. The smoothness
coefficient λ was equal to 0.025. The volume of interest

was modelled by ol = 10 and wer = 7. Final smoothing
was done by the Gaussian operator with size 13× 13 and
σ = 3.0. Equivalent parameters in the reference local and
global technique were configured with same values.

Computational times of the image pre-processing were:

the optical distortion removal (8.62s), the rectification
(26.49s), the face segmentation (5m51.06s). A calculation
of nCC for the DSI took round 3m15s for each technique.

A time of surface reconstruction was 10−12m depending
on the technique. A time of the construction of DM itself

for each technique is written in Table 1. The time for the

global approach with an estimate includes a time for the

estimate computation (extra DSI + DM construction). The

used memory listed in Table 1 was almost entirely allo-

cated for the data structures of the DSI and the graph. It

can be seen that the reduction of graph led to 2.71 times

quicker computation and 59.6% reduction of memory use
with respect to the purely global technique.

local global global with estimate

time 5s 48m35s 17m56s

memory 992MB 16.96GB 6.85GB

Table 1: The comparison of techniques - the computa-

tional time of DM construction and the maximal memory

consumption during a processing.

Visual quality of face models reconstructed by individ-

ual techniques is illustrated in Figure 7. Although the lo-

cal technique has the least computational complexity, the

model of face contains many holes and outlying patches

disconnected from main body of surface. In contrast, the

construction of DM by a graph cut shows good capabil-

ity to follow correct surface in ambiguous DSI. The re-

sult of global technique is a continuous and compact face

surface. Fronto-parallel areas are well reconstructed and

small details are present (e.g. a shape of eye). A subjec-

tive estimate of accuracy in these areas is ±2mm from the
real shape of face. However, the areas more oriented to

one of the views have worse quality (e.g. sides of nose)

because of a violation of the window similarity constraint.

Occluded parts such as ears are incorrectly reconstructed.

The DM of the model by local technique was used as a

basis for the global approach with an estimate. The degra-

dation of the face model in comparison to the purely global

technique is not high with respect to the decrease of com-

putational complexity. Figure 7(d) is a visualisation of

absolute difference between the disparity maps by purely

global approach and global approach with an estimate.

Maximal difference is 207 disparity layers but 95.6% of
DM is the same. Only the right side of the face is no-

ticeably worse reconstructed because initial estimate con-

tained many strong outliers in this area. in the U

7 Conclusions and future work

In this paper, the hybrid technique merging the local and

global approach is proposed for matching the face images

from passive stereoscopic setup. Initial estimate of dispar-

ity map for the reference image is computed by the fast

local technique. The developed local technique gives bet-

ter results in the case of rugged correlation functions in a

disparity space than traditional local methods. The volume

of interest is built around the estimate in a disparity space.

The global technique based on a graph cut consequently

finds optimal solution within this volume. The graph with

3D grid topology models a disparity map as everywhere

smooth surface which is determined by single minimum

cut. The original algorithm of graph construction from

the purely global approach is modified to enable correct

and quick computation of a maximum flow in the reduced

graph with complex shape.

The proposed technique produces the 3D model of face

in good quality which proves that the human skin provides

enough details in high-resolution images for precise cor-

respondence search. The central part of the face, which

is well visible in both views, is reconstructed on the level

of small face details. The sides of the face are not cor-

rectly reconstructed because one stereoscopic camera pair

with short baseline cannot properly cover whole face. The

quality of the model is significantly better than by the local

technique. The comparison with the purely global tech-

nique shows noticeable degradation of the model caused

by the imperfections in the estimate of disparity map.

However, a computational time and memory consumption

can be significantly smaller with the modest loss of accu-

racy. A drawback of proposed technique is its dependency

on many parameters which have to be adjusted manually

for different capture configurations in order to gain the best

results.

The main limitation of the technique in terms of model

quality is an ambiguity of matching score in a disparity

space. Correlation functions in slanted areas could be im-

proved by adaptation of the matching windows with re-

spect to the local orientation of surface. It is also de-

sirable to cope with a noise present in the functions of

matching score. Explicit smoothing of disparity map could

then be omitted. It is worth to try a hierarchical approach



(a) (b) (c) (d)

Figure 7: Face models reconstructed by local approach (a), global approach (b) and global approach with an estimate by

local technique (c). Absolute difference (d) between DM from (b) and (c) where the maximal difference is marked by

black colour and zero difference by white colour (background is black).

to the construction of disparity map using multiple graph

cuts in terms of computational demands. At last, an auto-

matic setup of parameters from general informations about

a capture configuration would ease practical use of the

method.
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rey) and doc. Zemčı́k (Brno University of Technology)

for their supervision in different phases of the work. I am

also grateful to Dr. Guillemaut and Dr. Starck (University

of Surrey) for discussions about graph cuts.

References

[1] J.-Y. Bouguet. Camera calibration toolbox for

matlab: www.vision.caltech.edu/bouguetj/calib-doc.

Technical report, MRL-INTEL, 2003.

[2] Y. Boykov and V. Kolmogorov. An experimental

comparison of min-cut/max-flow algorithms for en-

ergy minimization in vision. In IEEE Transactions

on PAMI, volume 29, pages 1124–1137, September

2004.

[3] A. Fusiello, E. Trucco, and A. Verri. A compact al-

gorithm for rectification of stereo pairs. In Machine

Vision and Applications, pages 16–22, March 2000.

[4] A. Hilton, A.J. Stoddart, J. Illingworth, and

T. Windeatt. Implicit surface-based geometric fu-

sion. CVIU, 69(3):273–291, March 1998.

[5] H. Ishikawa and D. Geiger. Occlusions, discontinu-

ities, and epipolar lines in stereo. In The Fifth Euro-

pean Conference on Computer Vision, June 1998.

[6] V. Kolmogorov. Graph based algorithms for scene

reconstruction from two and more views. PhD thesis,

Cornell University, January 2004.

[7] N. Paragios, Y. Chen, and O. Faugeras, editors.

Handbook of Mathematical Models in Computer Vi-

sion. Springer, 2006.

[8] S. Roy. Stereo without epipolar lines: A maximum-

flow formulation. International Journal of Computer

Vision, 34(2/3):147–161, 1999.

[9] S. Roy and M.-A. Drouin. Non-uniform hierarchical

pyramid stereo for large images. Vision Modeling

and Visualization, 2002.

[10] D. Scharstein and R. Szeliski. A taxonomy and eval-

uation of dense two-frame stereo correspondence al-

gorithms. Technical Report MSR-TR-2001-81, Mi-

crosoft Research, November 2001.

[11] Ch. Sun. Fast stereo matching using rectangu-

lar subregioning and 3d maximum-surface tech-

niques. International Journal of Computer Vision,

47(1/2/3):99–117, May 2002.

[12] O. Veksler. Efficient graph-based energy minimiza-

tion methods in computer vision. PhD thesis, Cornell

University, August 1999.

[13] O. Veksler. Reducing search space for stereo corre-

spondence with graph cuts. In BMVC06, page II:709,

2006.

[14] I. A. Ypsilos. Capture and Modelling of 3D Face

Dynamics. PhD thesis, CVSSP, University of Surrey,

United Kingdom, September 2004.

[15] Z. Zhang. A flexible new technique for camera

calibration. Technical Report MSR-TR-98-71, Mi-

crosoft Research, December 1998.


