Implementing and Analyzing a GPU Ray Tracer

Kristof Ralovich™

Budapest University of Technology and Economics

Abstract

In this paper we discuss the implementation of a GPU ray
tracer. Our ray tracer is inspired by Purcell’s recursive
GPU ray tracer using regular grid space subdivision and
is improved with “proximity cloud” information. This
kind of ray tracer implementation is capable of rendering
static triangular meshes with dynamic camera and dy-
namic abstract point light sources. Having presented the
implementation and our experiences gained during the
implementation process, the performance and scalability
of the algorithm are also considered. Scalability is defined
in terms of the number of objects in the scene and the
resolution of the screen.

Keywords: ray tracing, GPU, uniform grid

1 Introduction

Nowadays the parallel architecture of commodity graphics
hardware (GPU) has evolved far beyond just accelerating
rasterization, but it is capable of posing a threat on
comparable software implementations in various assorted
computing problems. Such a problem is ray shooting,
one core concept of ray tracing. Ray shooting basically
constitutes of finding the closest intersection along a ray
spanning through a scene.

Ray tracing is a way of creating computer generated
images usually accounted for superior visual quality.
Producing realistic images is achieved by mimicking the
nature by modeling the bounces of the rays of light. On
the other hand, this quality is not coming for free and
we are facing the major drawback of ray tracing: its high
computational requirement is cutting it mostly out of
widespread utilization in interactive graphics systems.

Achieving realtime image rendering performance
requires relaxation of the problem either by approximated
ray tracing or by accelerated ray tracing. Corresponding to
Whitted [25] 95% of the rendering time is spent in finding
the closest intersection of individual rays (however, this is
not true anymore if quality shading models are used). So it
is obvious that improving the ray shooting algorithm will
likely to yield in overall speedup. Numerous attempts,

*kristof.ralovich@eestec.hu

such as (hierarchical) bounding volumes or spatial data
structures have been invented to accelerate the process
of ray tracing. Since finding the closest intersection of a
ray does not influence the calculation of other rays, ray
shooting is massively parallel task too.

Since the popularity and importance of triangular
meshes outweigh other polygonal based and functional
model representations in the field of realtime rendering,
throughout this document the term object refers to trian-
gles.

2 Related Work

The roots of recursive ray tracing are dating back to
1980 [25], while the first publication on ray intersection
applicability to the GPU was done by Carr et al. [2],
but their method still used the CPU for the rest of the
rendering process.

Purcell reported a ray tracer implemented entirely on
the GPU [16] making use of the uniform grid data struc-
ture. This is known to be the first ray shooting method
using a spatial subdivision acceleration scheme on the
GPU. Several attempts [4, 22] are known to exist sharing
a common history of the stackless Purcell style streaming
GPU ray tracing. For example, Karlsson and Ljungst-
edt [9] incorporated the “proximity cloud” improvement
in grid traversing, an idea originally developed by Cohen
and Sheffer [5] letting empty voxels being skipped.

Kd trees on the GPU were first introduced by Foley and
Sugerman [6], Thrane and Simonsen mapped a threaded
traversing approach of bounding volume hierarchies to the
streaming ray tracer and compared it with the uniform grid
and kd tree constructs [22]. While these techniques only
enabled handling of static scenes and required often costly
offline preprocessing, in 2006 Carr et al. [3] introduced
ray tracing of dynamic meshes of static topology using
geometry images, requiring careful parametrization.

Examination of ray shooting performance had been
discussed in many papers.

Havran et al. [7, 8] had developed fair comparison
methodology for ray shooting algorithms, and proposed

testing procedures to find the best efficiency scheme.

Szirmay-Kalos et al. [21] investigated the asymptotic
behavior and efficiency of different ray shooting acceler-
ation schemes characterized by the terms of the expected
number of ray-object intersections needed to identify the
firstly intersected object, and the expected number of steps
made on the space partitioning data structure. Introduc-
ing a simple probabilistic computational model of an infi-
nite number of spheres of the same radius uniformly dis-
tributed in infinite large space, they concluded that both the
expected number of intersections and the expected num-
ber of visited voxels are constant (does not depend on the
number of objects) yielding their complexity to be in O(1).

3 Streaming ray tracing

traversing
+

intersecting

ray
generator

Figure 1: Recursive ray tracing decomposed to a series of
computation kernels. Kernels are realized with GPU frag-
ment shader programs.

This sections gives a brief overview of the Purcell style
streaming ray tracing, from the point of view of the imple-
mentation used for testing.

As stated before uniform grid and proximity cloud in-
formation is used for accelerating ray shooting. Since only
static scenes are used, these data structures need to be pre-
computed offline on the main processor.

In order to apply to the GPU, recursive ray tracing must
be decomposed into computational stages (in the stream
computing notation: kernels) realized by fragment pro-
grams. Since the GPU does not feature a stack, all state
information that would have been stored on the stack be-
tween recursive calls must be accommodated in memory
(textures). Redirecting the results of a fragment program
to framebuffer attachable images is called using multiple
render targets [14].

The major computational stages are shown in figure 1
and are implemented by separate fragment programs.
Fragment shaders operate on individual pixels, meaning
rays are represented by fragments. The input stream and
execution of all the fragment programs is initialized in the
same way, by rasterizing a viewport sized quadrilateral.
Furthermore this makes it possible use interpolated texture
coordinates to identify rays.

The first kernel is responsible for generating either
primary, shadow or reflection rays. Rays are characterized
by their origin and direction, this output stream of data is
written into two textures.

texture 0
ax.x
ax.y
RGBA|RGBA|RGBA|RGBA|RGBA|RGBA|RGBA ax.z

no. processed tris|

texture 1
cell_index.i
cell index.
cell index.k
ray finished?

™~ texiure 2
viewport width hit.u
hit.
hit.
hit.idx

RGBA[RGBA(RGBA|RGBA|RGBA|RGBA|RGBA

RGBA[RGBA[(RGBA|RGBA|RGBA|RGBA|RGBA

viewport height

RGBA|RGBA[RGBA|

Figure 2: State information storage layout in textures.
Traversal state is travelling in textures between successive
calls of the traverse and intersect kernel.

The next computational stage is dealing with finding the
closest intersection along a ray shot through the scene.
This implies traversing the grid until a voxel with a non
empty reference list is encountered and then intersecting
the ray with all the enlisted triangles. If no intersection
was found, this process is repeated. The actual grid traver-
sal is accomplished with the fast 3D-DDA algorithm as
described by Amanatides and Woo [1].

Hardware used for measurement purposes raised two
important limits on compiled fragment shaders: limited in-
struction count and limited number of iterations of a loop.
Satisfying these constraint, this kernel is designed not to
be too long and must be called multiple times. Regarding
the number of kernel calls depend on runtime parameters
(eg. camera position), instead of constructing a worst-case
heuristic limit of this count, an occlusion query [14] is pro-
viding the halting condition — in other words, we loop this
kernel until no pixels (rays) are updated.

As shown on figure 2, traversal state between succes-
sive calls of this kernel is stored in three textures. The
state includes tMax vector (for the 3D-DDA algorithm)
and ray state, current cell indices and the number of trian-
gles processed, and hit record (barycentric triangle coordi-
nates (u,v), ray parameter ¢ and triangle ID) of the closest
intersection so far.

In order to enable the GPU accessing the scene data,
texture memory is employed in a read only manner. The
applied memory layout is shown in figure 3. Using a uni-
form space subdivision scheme requires storing the list of
referenced objects for each voxel of the grid. This is stored
in a RGB 3D texture, where each grid cell is encoded in
one texel as follows: the R component is a pointer to the
first referenced object (in the voxel) in the list of objects,
G holds the number of the referenced objects while the

grid in
a3D
texture

referenced
triangle
listina 2D
texture

I'gb|rgb|rgb|rgb‘ ‘padding‘

in23D

Figure 3: Grid data layout with two levels of indirection
for storing the scene encoded in texture memory.

value in the third (B) channel gives the distance in vox-
els to the closest cell containing objects (for a non empty
voxel, this distance is zero), this is used for skipping empty
cells during traversing the grid (“proximity cloud”). The
list of referenced objects is stored tightly packed and each
texel corresponds to a pointer to actual triangle data. After
two levels of indirection, actual triangle data is stored in
two other 3D textures both featuring 4 depth slices. Texels
with the same (X,Y) coordinates in different Z slices are
storing vertex, normal and material information belonging
to the same single triangle.

One expensive operation of ray shooting besides
traversal is evaluating the ray-triangle intersection test.
Moller and Trumbore [10] introduced the fastest known
single sided algorithm working with barycentric triangle
coordinates that is commonly used on the GPU.

The last kernel on figure 1 is shading. Due to focusing
on ray shooting acceleration, this part of ray tracing is
somewhat eclipsed. The implemented method is a sim-
ple per-pixel diffuse lighting with shadows and reflections.

Finally let us have the used optimizations enumerated at
a glance:

e During the execution of an additional kernel (right
after the ray generator, but suppressed in figure 1)
rays that are known not needing further processing
(eg. rays missed the scene AABB, shadow rays for
rays not intersecting any objects) are “masked” out
as soon as possible, and excluded from further calcu-
lations.

e Early Z culling can be exploited, to skip a costly frag-
ment program (esp. traverse and intersect) being ex-
ecuted on rays already terminated, this requires and
additional pass initializing the Z buffer with proper

depth values prior to executing the kernel.

e In the case of shadow rays determining any (instead
of closest) intersection closer than the given light
source is sufficient.

e Instead of storing the first two vertices (v1 and v2) of
atriangle, the corresponding edges (edgel and edge?2)
are stored in order to save the GPU two vector sub-
tractions every ray-triangle intersection test.

e Utilizing non power of two sized textures yields in
the minimal usage of data padding.

4 Performance and evaluation

Assuring decent numerical precision during computation
and for texture memory, 32-bit per channel floating point
numbers are used. Evidently storage space might be a bot-
tleneck for large scenes, so we have to look at this limita-
tion.

Each grid cell is stored in a RBG texel occupying 12
bytes, the triangles vertices, normals and material proper-
ties are sparsely encoded in 8 texels resulting in 96 bytes.
The total length of the triangle list depends on the distri-
bution of objects among the grid cells, realistic values are
supposed to be in the magnitude of 1 (average number of
referenced triangles per voxel), this is meaning 4 bytes (1
component texel) on average per grid cells. So storing the
scene data requires M bytes that may be expressed as:

M:n'96+gx'gy'gz'(12+4)

where n is the number of triangles in the scene, while
&x, 8y, & are the dimensions of the grid.

The test system GPU is equipped with 256 MB of mem-
ory making possible to accommodate scenes with as many
as 2.3 million triangles (using the heuristic of g, . = /n).
But this is a theoretical result since shader programs and
traversing state requires additional space too.

The asynchronous operation of the GPU pipeline makes
CPU timers unfeasible for accurate measuring of GPU
computation time, but the GL_EXT_timer_query [14]
OpenGL extension fills this gap by providing a 64-bit pre-
cision, nanosecond resolution timing information on the
GPU. Throughout the measurements this timing mecha-
nism is used. Parameters of the machine used for testing
are as follows:

e GPU: Geforce 6800GT 400 MHz
e GPU memory: 256 MB 1100 MHz
CPU: AthlonXP 3200+ 2200 MHz

e CPU memory: 512 MB 400 MHz

OS: GNU/Linux 2.6.16.29
GPU driver: NVIDIA-Linux-x86 1.0-9746

Knight scene Bunny scene (including a simplified low poly-
gon version of the Stanford Bunny model)

Figure 4: The Knight scene, image ray traced using the

presented implementation (shadows and reflective mate- Figure 6: Image was ray traced using the presented imple-

rial properties are enabled). mentation (shadows and reflective material properties are
in use). Note the reflected ear on the back of the rabbit.

Torus Knot scene
Stanford Bunny scene

Figure 5: The Torus Knot scene. Image was ray traced via

the presented implementation using diffuse material prop- ~ Figure 7: The original Stanford Bunny model. Image is

erties and shadows. produced with the presented implementation using ray-
casting.

Figures 4, 5, 6 and 7 are visualizing the evaluated
test scenes. Measurements were conducted using grid di-
mensions our experiments showed to be the most efficient:
14 x 16 x 14,16 x 16 x 16, 20 x 20 x 20 and 128 x 128 x
128 for the four scenes respectively.

Taking in consideration that the deployed OS utilizes
time sharing preemptive scheduling, all the presented mea-
surement results are best values of multiple test runs.

The measurement results are summarized in tables 1, 2
and 3.

Knight Torus knot Bunny Stanford Bunny
rendering n=636 n=1024 | n=1764 n=69451
resolution | g pc g pc g pc g
256256 | 45 | 47 | 55 | 55 | 37 | 37 142
512x512 | 103 | 106 | 119 | 133 | 86 | &9 327
768 x 768 | 177 | 180 | 210 | 229 | 149 | 144 551

Table 1: Ray casting (eye rays only) time: summary of
measurement results of different scenes with different ren-
dering resolutions. Columns g and pc stands for uniform
grid and uniform grid with proximity cloud information,
respectively. Values are in milliseconds.

Knight Torus knot Bunny Stanford Bunny
rendering n=636 n=1024 | n=1764 n=69451
resolution | g pc g pc g pc g
256x256 | 96 | 91 | 169 | 164 | 75 | 75 235
512x512 | 210 | 215 | 365 | 401 | 176 | 181 563
768 x 768 | 349 | 360 | 671 | 734 | 302 | 298 960

Table 2: Shadow casting (eye and shadow rays) time: sum-
mary of measurement results of different scenes with dif-
ferent rendering resolutions. Columns g and pc stands for
uniform grid and uniform grid with proximity cloud infor-
mation, respectively. Values are in milliseconds.

Knight Torus knot Bunny Stanford Bunny
rendering n =636 n=1024 n=1764 n=69451
resolution g pc g pc g pc g
256 x256 | 168 | 164 | 306 | 300 | 129 | 130 482
512x512 | 383 | 390 | 656 | 691 | 299 | 306 1243
768 x 768 | 630 | 643 | 1173 | 1244 | 505 | 501 2188

Table 3: Ray tracing (eye, shadow, and reflection rays)
time: summary of measurement results of different scenes
with different rendering resolutions. Columns g and pc
stands for uniform grid and uniform grid with proxim-
ity cloud information, respectively. Values are in millisec-
onds.

5 Conclusion

Despite the Bunny scene is featuring higher number of tri-
angles, than the Knight and Torus Knot scenes, it is clear
from all the test results presented, that both of these scenes

are rendering slower. According to Havran et al. [8],
the uniform grid subdivision scheme performs well with
scenes of uniformly distributed objects and considering
the triangles are more uniformly distributed in space in
case of the Bunny scene, the results are not contradicting
any more.

In case of the Knight, Bunny and Stanford Bunny scenes
the applied shadow ray optimizations yielded roughly 20%
speedup compared to the naive implementation of shadow
rays.The Torus Knot scene could not benefit of this, be-
cause all shadow rays are originated inside the box, thus
their paths always intersect the walls.

During the ray tracing evaluation two levels of recursion
(resulting in at most three rays per pixel) was used. The
rendering times show that at this level the time spent on
shading computations is not negligible.

Thrane and Simonsen [22] evaluated their GPU ray
tracer using the Stanford Bunny model too (their hardware
and setup approximates our ray casting configuration at
the resolution of 512 x 512, using the uniform grid) and
their results yields comparable performance.

Although Karlsson et al. [9] reported significantly
shorter rendering times using the proximity cloud informa-
tion on dedicated sparse scenes, our test scenes seem to be
dense regarding this question and — except for a few setups
with marginal performance gain — the measured results are
almost always worse than not using proximity clouds.

Our conclusion is that although the GPU performs effi-
ciently on the ray shooting problem, shading computations
still provide a wide field for improvements.

6 Future work

As GPGPU computations are maturing, it would be de-
sirable to conduct a full scale comparison of different ray
shooting acceleration schemes (RAS) as had been done for
software implementations [8].

With the introduction of GPUs capable of Shader Model
4.0, integer operations and geometry shaders are supported
too. For example optimized RAS traversal and texture ad-
dressing might exploit faster integer operations.

Another interesting question is to fine-tune the way tri-
angle data is stored in textures in order to achieve in-
creased cache coherency during data fetch. This is sup-
posed to improve the shading part of this ray tracing im-
plementation.

References

[1] John Amanatides and Andrew Woo: A Fast Voxel
Traversal Algorithm for Ray Tracing. Eurographics
'87, pp 3-10, 1987.

[2] Nathan A. Carr, Jesse D. Hall, John C. Hart: The Ray
Engine. Graphics Hardware, The Eurographics As-
sociation, pp 1-10, 2002.

(3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Nathan A. Carr, Jared Hoberock, Keenan Crane,
John C. Hart: Fast GPU Ray Tracing of Dynamic
Meshes using Geometry Images. Proceedings of
Graphics Interface, pp 203-210, A K Peters, 2006.

Martin Christen: Ray Tracing on GPU. Diploma
Thesis, University of Applied Sciences Basel. 2005.

Daniel Cohen and Zvi Sheffer: Proximity clouds —
an acceleration technique for 3D grid traversal. The
Visual Computer, Volume 11, pp 27-38, Springer-
Verlag, 1994.

Tim Foley and Jeremy Sugerman: KD-Tree Acceler-
ation Structures for GPU Raytracer. Graphics Hard-
ware, The Eurographics Association, 2005.

Vlastimil Havran and Werner Purgathofer: Com-
parison Methodology for Ray Shooting Algorithms.
Technical Report / TR-186-2-00-20, November
2000, 2000.

Vlastimil Havran, Jan Prikryl, Werner Purgathofer:
Statistical Comparison of Ray-Shooting Efficiency
Schemes. Technical Report / TR-186-2-00-14, May
2000, 2000.

Filip Karlsson, Carl Johan Ljungstedt: Ray tracing
fully implemented on programmable graphics hard-
ware. Master’s Thesis, Chalmers University of Tech-
nology, Goteborg, 2004.

Moller, T. and Trumbore, B.: Fast, Minumum Stor-
age Ray-Triangle Intersection. Journal of Graphics
Tools. vol. 2, no. 1, pp 21-28, 1997.

NVIDIA Corporation: GPU Programming Guide.
Version 2.4.0, 2005.

NVIDIA Corporation: NVIDIA OpenGL Extension
Specifications. November 8, 2006. 2006.

OpenGL Architecture Review Board, Dave Shreiner,
Mason Woo, Jackie Neider, Tom Davis: OpenGL
Programming Guide Fifth Edition. Addison-Wesley,
2005.

OpenGL Extension Registry:
GL_ARB_draw_buffers,
GL_ARB_occlusion_query,
GL_ARB_texture_float,
GL_EXT_framebuffer_object,
GL_EXT_timer_query extension specifications.
http://www.opengl.org/registry, 2003,
2004, 2005.

Timothy J. Purcell, Ian Buck, William R. Mark,
and Pat Hanrahan : Ray Tracing on Programmable
Graphics Hardware. ACM Transactions on Graphics.
vol. 21, no. 6, pp 703-712, 2002.

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

Timothy John Purcell: RAY TRACING ON A
STREAM PROCESSOR. Ph. D. Dissertation, Stan-
ford University, 2004.

Randi J. Rost: OpenGL Shading Language, Second
Edition. Addison Wesley Professional, 2006.

Mark Segal, Kurt Akeley: The OpenGL Graphics
System: A Specification. Version 2.1 - December 1,
2006, 2006.

Sudhanshu K. Semwal and Hakan Kvanstrom: Di-
rected safe zones and the dual extent algorithms for
efficient grid traversal during ray tracing. Proceed-
ings of the conference on Graphics interface ’97,
Canadian Information Processing Society, 1997.

Laszl6 Szirmay-Kalos, Gyorgy Antal, Ferenc
Csonka: Haromdimenzidés grafika, animdcié és
jatékfejlesztés. ComputerBooks, 2003.

Laszl6 Szirmay-Kalos, Vlastimil Havran, Benedek
Balédzs, Laszl6 Szécsi: On the Efficency of Ray-
shooting Acceleration Schemes. Spring Conference
of Computer Graphics, pp. 89-98., Budmerice. 2002.

Niels Thrane, Lars Ole Simonsen: A Comparison of
Acceleration Structures for GPU Assisted Ray Trac-
ing. Master’s thesis. 2005.

Ingo Wald and Philipp Slusallek: State of the Art in
Interactive Ray Tracing. Eurographics State of the
Art Reports. 2003.

Ingo Wald and Philipp Slusallek: Afrigraph Tutorial
B: Interactive Ray-Tracing. Afrigraph 2001 Course
on "Interactive Ray Tracing". 2001.

Turner Whitted: An improved illumination model for
shaded display. Communications of the ACM. vol.
23, no. 6, pp 343-349, 1980.

