
Multi-CPU Video Processing
Igor Jánoš*

Faculty of Informatics and Information Technology

Slovak University of Technology

Bratislava / Slovakia

Abstract

Graphic processors have developed significantly over the
last few years allowing programmers to utilize their
astonishing power for general purpose computation
leaving classic CPUs behind. Much higher computational
complexity, large picture dimensions and memory
requirements of high definition video have made pure
software real-time video processing impossible. Latest
trend in CPU development is to provide more CPU cores
in one chip providing higher performance for parallel
applications. In this paper we would like to find out how
thread-parallel video processing performed on multi-core
CPUs can be used to accelerate processing of high
definition video.

Keywords: High definition, Parallel, Video Processing,
Thread, Dual-core CPU

1 Introduction

Video processing is a very important phenomenon
nowadays. Many processing methods are widely used
either in television systems, video postproduction or even
in common life. Despite the fact that professional
hardware video processing solutions exist, software
video processing is very popular mainly because of the
great flexibility it offers.
In the past few years there has been a tremendous
development in powerful graphic processors (GPU) that
have made very difficult computations possible.
Statistical results show that GPU development nearly
doubles the Moore’s law by doubling the performance
every six months. Now even mid-class GPUs can easily
outperform latest CPU processors in various applications
such as vector algebra, physics or particle systems.
There has also been a quite dramatic development in
classic CPU processors during the last year and two
major CPU vendors have entered the multi-core race
announcing dual-, quad- and even eight-core CPUs.
These multi-core CPUs offer a thread-level parallelism
that may bring additional performance gain if used
properly by software.
In this paper we would like to explore how thread-level
parallelism may accelerate video processing algorithms
on a multi-core CPU.

* janos@creeo.net

1.1 Video sequence and common
issues

Basically a video sequence is a set of successive pictures
changing in time. The inertia of human visual system
makes pictures shown at discrete time intervals appear
like a fluid video sequence. The minimal required frame
rate for a video sequence to look fluid is somewhere
around 25 frames per second. In the era of analog
television interlacing was introduced as a sort of
compression effectively doubling the frame rate while
preserving the bandwidth necessary for transmission. In
an interlaced frame the odd and even lines represent
different instances of pictures in time thus their vertical
resolution is reduced. Even though interlacing was
invented in analog times it is still popular and widely
used in modern compression methods that offer both
interlaced and progressive coding. In order to convert an
interlaced coded video into progressive special
deinterlace algorithms must be performed to reduce the
comb effect in high-motion areas. Figure 1 shows an
interlaced frame processed by a motion blur deinterlace
algorithm.

Figure 1: Interlaced (left) and motion blur deinterlaced
(right) picture

Another example of a common video issue is camera
noise. Noise usually tends to follow something like a
normal distribution both in time and space. Many noise
reduction methods have been proposed taking advantage
of both spatial and temporal noise properties.
Many existing compression methods use block based
motion compensation to reduce temporal redundancy in
encoded video. Depending on the quality parameter
visible discontinuities may appear on the edges of motion
blocks. In the latest H.264 codec an in-loop deblocking
filter is a mandatory part of the encoding/decoding
process [2] but most of the existing codecs do not
possess such a feature. Therefore deblocking is a very
useful quality increasing post-processing method.

1.2 High definition video

In order to process high definition video much higher
computational power is required as well as higher
memory transfer capability. High definition frame with
dimensions of 1920 x 1080 pixels in planar YUV 4:2:0
format needs 4 MB of memory. When compared to a
standard resolution frame with dimensions of 720 x 576
the amount of memory to keep and process is five times
larger.
The structure of this paper is following. In section 2 we
present research that has been done in the field of parallel
software-only video processing. Section 3 provides an
overview of algorithms used in this paper and describes
the logic of proposed parallel processing algorithm. In
section 4 we summarize results and display them in table
and graph. Section 5 gives us some hints what the next
subject of research may be.

2 Previous work

The idea of dividing a larger task into several smaller
steps that can be executed in parallel is not new. Many
studies have been conducted on the topic of the video
processing.
A Parallel Software-Only Video Effects Processing
System [8] (PVPS) project adopts the parallel approach
to the video processing and demonstrates how networked
workstations can replace a professional and expensive
video production switcher. The PVPS represents a
distributed approach that has been very popular in the
past few decades where all subtasks have been performed
on separate standalone nodes. Each node used in the
PVPS was a standalone PC with its own resources.
Nodes were connected using a limited-bandwidth
network. Since the nodes had not shared a common
memory, lossless compression methods had to be
introduced to reduce the number of bits transmitted over
network.

Figure 2: PVPS system overview

Main PVPS entity (Application) requires video
processing by passing frames to Effects Server which is
responsible for subsequent Effects Processors’ calls.
Finally a resulting picture is again encoded and sent to
output. The PVPS system was capable of processing
QVGA video using a 10Mbps LAN.

Later on a more advanced system [9] Gigabit Ethernet-
based Video Processing system (VP) was designed on
the basis of the PVPS to process the full D-1 resolution
video with the dimensions of 720 x 576 pixels using a
gigabit Ethernet to connect the processing nodes. Among
other things the VP project has confirmed that the
network bandwidth requirements have risen significantly
with the increase of video dimensions and the number of
processing nodes and that more efficient compression
method for transferred data had to be used.
In general parallel and distributed computations on a
larger scale using networked clusters of independent
computers provide significantly larger performance gain
when compared to single CPU system [7] however the
transfer speed may turn out to be a big problem when
processing images in very high resolution.
Architecture of a PC with a multi-core CPU offers
analogous means of parallel processing. Threads can take
place of independent processor entities and the system
bus makes the system memory accessible to the CPUs.
When processing high definition video the memory
transfer requirements are at such a high level that
memory performance is probably the most crucial factor
in overall video processing performance.
Another form of parallelism that may be utilized to
maximize performance is data parallelism at instruction
level [6]. SIMD instruction sets are integral part of
modern CPUs and are widely used nowadays.

3 Performed algorithms

This section provides an overview of implemented
algorithms used in this paper as well as IDCT experiment
results using multiple threads. Later in this section the
details of a proposed parallel algorithm are explained.

3.1 Performance gain on IDCT

Inverse discrete cosine transform is a typical example of
an algorithm with low memory transfer and high
computational power demands. A study [1] from 2005
has proposed several methods to perform an inverse
discrete cosine transform using a generic GPU that were
able to outperform an MMX optimized CPU algorithm
but were significantly slower than SSE optimized IDCT.
We have written a simple application that performs
IDCT on an 8x8 matrix of 16-bit integers in one, two and
four threads on several processors using either MMX or
SSE instruction sets if available.
The graph displayed in figure 3 shows nearly a 2x
speedup for dual-core CPUs.

void idct_thread(void *param)

{

 int16 block[64];

 while (GetTickCount() < stoptime) {

 for (int j=0; j<1000; j++)

 idct_8x8(block);

 InterlockedIncrement(&count);

 }

}

Figure 2: IDCT thread code snippet

Figure 3: IDCT performance for several tested CPUs

An Intel corporation microprocessor research labs study
[4] indicates that there is some space left for optimizing
for processors with Hyper-Threading technology that can
produce a speedup up to 17% for IDCT calculation.

3.2 Gradual denoise filter

The gradual noise reduction filter was introduced in a
DScaler project [5]. We have decided to use it in this
paper because it offers good visual quality and can be
performed in separate threads.
This filter calculates the sum of absolute differences
between a four pixel horizontal block in the current
frame and the same block in the preceding frame. This
difference measure is used to determine the kind of
averaging which will be conducted. If it is more than the
noise reduction parameter, motion is inferred. In that
case new pixel values are used. If it is less than the noise
reduction parameter, we use the ratio of difference /
noise reduction to determine the weighting of the old and
new values.

� � ∑ |���	
���
 � ���	
���
|�
�� (1)
 � � ��
�� ������
�� 	��������

� �
��
�
� 1; #

$ % 1.2
0.999; 1.2 * #

$ % 1
#
$; ��+���
��

, (2)

������ 	
��� � ���	
��� - .1 � �/ 0 ���	
��� - � (3)

Other commonly used noise reduction filters such as
mean filter or median filter reduce spatial noise and may
reduce picture details much more than this gradual
algorithm. Gradual denoise algorithm can also be
efficiently computed using SSE extension set and
threads.

3.2 Color controls filter

The second applied filter algorithm modifies brightness,
contrast and saturation of an input picture according to
the following equations:

12 � 128 0 456789:;8-.<=>?@/
>?@ A 0 B�
C+����� (4)

D�2 � 128 0 4;:8E9:8
67 -.F$=>?@/
>?@ A (5)

DG2 � 128 0 4;:8E9:8
67 -.FH=>?@/
>?@ A (6)

All values are clipped within range of 0..255. It operates
on one frame only so the memory requirements are lower
when compared to the gradual denoise filter that makes
use of two frames. The color controls filter can also be
computed in parallel threads because there are no
dependencies among resulting pixel values.

3.2 Deinterlace and double rate filter

The last algorithm used in this study is a combined
deinterlace and double frame rate filter. The purpose of
this algorithm is to generate a frame to represent a video
scene at time between two successive frames. A very
cheap way without using any expensive motion
estimation is to combine odd lines from the previous
frame with even lines from the current frame. This will
introduce a comb effect such as in interlaced coding.
Finally both frames (the current frame and generated
one) are shifted in vertical direction by half pixel to
smooth out the comb effect. Pixel values in the
destination frame are computed as an average between
odd and even lines from the source frame.
A real algorithm implementation performs both phases at
the same time. When creating the first output frame it
uses the previous frame as a source for odd lines and the
current frame as a source for even lines. When creating
the second output frame it takes only the current frame as
reference.

Figure 4: Deinterlace and double rate filter

This algorithm can be implemented very efficiently using
the SSE instruction set because of the pavgb instruction.
Its performance depends mostly on the memory transfer

0
10000
20000
30000
40000
50000
60000
70000
80000

In
te
l C

el
er
on

 2
.8

G
H
z

A
M
D
 S
em

pr
on

33

00
+

In
te
l P

en
ti
um

 D
 3
.0

G
H
z

In
te
l C

or
e
2
D
uo

 1
.8

G
H
z

1 Thread

2 Threads

4 Threads

Previous
frame

Current
frame

Combined
interlaced
frame

Half-pixel
shifted
frame 1

Half-pixel
shifted
frame 2

speed because it needs to access three video frames at the
same time.

3.3 Algorithm design

Our proposed approach deals with two worker threads
for each processing filter and two additional threads – the
main decoding thread and the master processing thread.
The actual number of worker threads may be larger when
running on quad-core CPU. Since we only had a dual-
core CPU and the IDCT experiment did not show any
reasonable performance gain with four threads we have
set the number to two. Two synchronization events exist
for each of the worker threads. One event to signal that a
new command for the thread has been issued and a
second event to signal that the worker thread has finished
its job and is now idle and waiting for another command.
The job of the master processing thread is to set proper
source and destination buffers, set the number of lines to
process including starting offset and to activate the
worker threads. When all worker threads of a processing
filter signal completion, the next processing filter is
activated.

Figure 5: Sequence of operations in the experiment

To measure the algorithm performance we have set up a
following experiment illustrated on figure 3. On a dual-

core 3.2 GHz Intel Pentium D CPU we wanted to decode
a 25 Hz high definition MPEG-2 video sequence, adjust
the contrast, apply the gradual denoise filter and
deinterlace using the mentioned deinterlace filter that
produces output frames at a rate of 50 Hz.
Let us consider the video sequence and decoding module
a black box capable of decoding high definition video
frames at 75 frames per second (pure decoding without
any display routines) and utilizing only one CPU core.
The main application is split into two main threads – a
decoding thread and a master processing thread. As soon
as the decoding thread has a frame decompressed it
synchronizes with the master processing thread and
forwards the decompressed frame for processing.
All implemented processing filters operate in packed
YUV 4:2:2 color space so a color space conversion from
the internal decoder format is performed before the
sample is actually forwarded for processing. Packed
YUV 4:2:2 (also known as YUY2) color space can
directly be displayed using a hardware overlay surface so
any additional color space conversion is not necessary
for display routines. The decoding thread immediately
continues with the decoding of another frame.
The master processing thread controls the processing
filter worker threads and once all workers signal
completion it waits for further instructions from the
decoding thread. The gradual denoise filter operates on
one input frame so that each of the two workers process
one half of the frame. The same is true for the color
controls filter. The deinterlace worker threads produce
one full frame each.

4 Results

We have performed several test runs with 2 video
sequences. The first one was a high definition trailer
encoded at a data rate of 14 Mbits/s and the second one
was a terrestrial DVB dump of a 4 Mbit/s standard
definition TV show.

 SD
 (720x576)

HD
(1920x1080)

Decoding only
(no color conversion)

304.0 FPS 74.8 FPS

Decoding with color
conversion

262.8 FPS 61.4 FPS

Full processing in 1
thread (original)

98.4 FPS 17.57 FPS

Full processing multi-
threaded

142.6 FPS 25.87 FPS

Performance gain 44.9 % 47.7 %

Table 1: Processing performance results

List of decoded frames
(required by denoise and
deinterlace filters as
reference)

Gradual Denoise

Color Controls

Deinterlace

Color Space
Convertor

MPEG-2 High
Definition Video

MPEG-2 Video
Decoder

Decoding thread

Master processing
thread

Figure 6: HD - time per operation in milliseconds

As seen from table 1 the application was able to decode
and process high definition video in real time using only
means provided by the local CPU. This was not possible
with decoding and processing executed on one CPU core.
Results also show a very similar performance gain for the
standard resolution video sequence as well.
Figure 6 shows that processing time for color controls
and denoise filters were successfully cut nearly at half
while deinterlace time remained the same due to memory
transfer limits.
Experiments with twice the number of processing worker
threads did not show any reasonable performance gain on
the tested processors (Intel Pentium D @ 3.0 GHz, Intel
Core 2 Duo @ 1.8 GHz).
It is also worth mentioning that due to the serial nature of
the decoding module and the decoding-processing thread
synchronization the total CPU utilization was only about
75% which leaves enough space for additional operations
that may need to be performed such as container file
parsing and audio stream decoding.

5 Conclusion and future work

This experiment has proven that thread-parallelism can
make software real-time high definition video processing
possible. With quad- and eight-core CPUs to come the
only bottleneck appears to be the memory performance.
Perhaps a CPU cache large enough to fit several high
definition frames may help to reduce the memory access
time penalty.
Several studies have shown that a generic GPU can be
used to accelerate several parts of a video decoding
process such as the color space conversion and the
motion compensation. It could be interesting to explore a
possibility of implementing a hybrid video decoder that
would utilize both the thread-parallelism and the GPU
acceleration to speed up the video decoding/processing
operation.

6 Acknowledgements

I wish to thank to Martin Šperka for his suggestions on
this paper and to Peter Janičkovič for giving me access to
several PC systems to perform experiments on.

7 References

[1] Bo Fang, Guobin Shen, Shipeng Li, Huifang Chen.
Techniques for Efficient DCT/IDCT Implementation

on Generic GPU. ISCAS 2005

[2] Iain E.G. Richardson. H.264 and MPEG-4 Video
Compression. John Wiley & Sons, England, 2004

[3] Han Chen, Kai Li, Bin Wei. Memory Performance
Optimizations for Real-Time Software HDTV

Decoding. IEEE ICME 2002, August 2002

[4] Yen-Kuang Chan, Eric Debes, Rainer Lienhart,
Mathew Holliman, Minerva Yeung. Evaluating and
Improving Performance of Multimedia Applications

on Simultaneous Multi-Threading. International
Conference on Parallel and Distributed Systems,
Taiwan, 2002

[5] http://deinterlace.sourceforge.net : DScaler project

[6] G. Conte, S. Tommesani, F. Zanichelli. The Long
and Winding Road to High-Performance Image

Processing with MMX/SSE. Fifth IEEE International
Workshop on Computer Architecture, 2000

[7] X. L. Li, B. Veeravalli, C. C. Ko. Distributed Image
Processing on a Network of Workstations.
International Journal of Computers and
Applications, 2003

[8] K. D. Mayer-Patel. A Parallel Software-Only Video
Processing System. Dissertation project, 1999

[9] H. Eidenberger. Gigabit Ethernet-based Parallel
Video Processing. Proceedings of the 11th
International Multimedia Modelling Conference
(MMM05), 2005

0

10

20

30

40

50

60

Serial Parallel

Color controls

Denoise

Deinterlace

Color conversion

Decoding

