
A new core-based morphing algorithm for polygons

Martina Málková∗†

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

Morphing is a process of shape transformation between
two objects. This paper focuses on morphing of simple
polygons. In general, the key part of most morphing meth-
ods is to find correspondence between vertices of both ob-
jects. We present a new algorithm trying to avoid this step.
Using an idea of intersection of two polygons (called core)
the problem of morphing polygons is decomposed to sev-
eral sub-problems of morphing polylines. We describe a
solution of morphing problem for the case when the core
consists of one polygon. The proposed solution of mor-
phing two polylines does not bring results smooth enough
for all polygons, but it has satisfying results for polygons
of spiral type which are usually problematic for correspon-
dence based approaches. The algorithm is designed in a
way keeping the doors open for other methods of morph-
ing two polylines.

Keywords: morphing, polygon, computer graphics

1 Introduction

Morphing can be understood as a process when one shape
continuously transforms into another one. In this context,
we can find morphing everywhere in the nature: plants and
animals are growing, clouds are moving on the sky, rocks
change their shape because of erosion etc. Also movement
can be described as morphing, if we set key positions of
the moving object as the morphed objects and the interme-
diate positions can be computed by morphing.

In its electronic form, morphing is used mainly for com-
puter animation. But there are many other applications
such as special effects in movies, design, image compres-
sion and data visualisation.

Papers concerned with morphing range from morphing
images and polygons [7, 9] to morphing meshes [5] and
volume data [8] in 3D.

Most morphing methods need to find correspondence
between vertices of both objects. Effort to avoid this step
resulted in [8], where a new algorithm based on intersec-
tion of two objects is introduced.

∗tina.malkova@centrum.cz
†This work was supported by Ministry of Education – project No.

LC06008

Most algorithms have problems with morphing poly-
gons that are not star-shaped or monotonous, or with mor-
phing of considerably different polygons. We concen-
trated on this problem trying to find an algorithm deal-
ing with these configurations. Our effort ended up in an
algorithm based on the idea of object intersection from
[8]. While [8] concerns volumetric data, we concentrate
on morphing polygons. Our approach was inspired by [8]
but the technical solution is different, see Section 3 in de-
tail. Our algorithm does not compute the correspondence
between the two given polygons, so its output is dependent
on their mutual position. This concept has advantages as
well as disadvantages - the user is free to specify any mu-
tual position of polygons and in this way to influence the
results. On the other hand, the correspondence approach
is able to find the best mutual position without user inter-
action.

Our approach divides the problem of morphing poly-
gons to morphing polylines with the advantage that poly-
lines start and end at the same point and do not intersect.
Other advantages and disadvantages of the whole method
depend on the actual process used to morph these poly-
lines. Here we present a simple method, where points are
moving towards their neighbours and then towards their
neighbours’ neighbours, etc.

Section 2 describes existing techniques for polygon
morphing, their advantages and disadvantages. Our algo-
rithm is outlined in Section 3. Section 4 provides a com-
parison between our algorithm and two of the methods de-
scribed in Section 2. Possible improvements and future
work are proposed in Section 5.

2 State of the art

As was already outlined in Section 1, most morphing tech-
niques consist of two main steps. The first of them is find-
ing correspondence between vertices of the source and the
target polygon. The source and the target polygon usually
do not have the same number of vertices, so the algorithms
usually add new vertices to polygons at this step. The sec-
ond step is to find trajectories between corresponding ver-
tices. A simple choise is to use linear interpolation, but
it is usually not very useful, because it does not perform
well in computing rotational morphing. Figure 1 provides
an example where linear interpolation is not a good choice.



Figure 1: An expected morphing sequence (a) and a mor-
phing sequence using linear interpolation (b), from [3]

First approach worth mentioning is Sederberg’s algo-
rithm [7]. The main idea there is that the polygon is con-
structed of some type of wire (the parameters of the wire
can be changed by the user). To get the resulting polygon,
we need to bend or stretch the wire. The goal is to mini-
mize the amount of work needed to create the target poly-
gon. This algorithm is suitable for morphing between sim-
ilar polygons, where one of them is rotated or translated.
For the case of a rotated polygon, it does not preserve its
shape during the process, because it uses linear interpo-
lation between the corresponding vertices, but it still has
sufficient outputs. It has problems with highly dissimilar
shapes, where intersections usually occur.

In [6] they use an interpolation of intrinsic parametres
(e.g. edge lengths or internal angles) instead of inter-
polating vertices. This avoids edge collapsing and non-
monotonic angle changes. This idea was further used for
morphing of planar triangulations in [10] and [11].

Another optimization-based algorithm was presented in
[12]. It uses a similarity function to obtain the vertex cor-
respondence.

In [9] morphing using the star skeleton was outlined.
The algorithm first decomposes the source and the target
polygons into star-shaped polygons. Then constructs the
skeletons of the decompositions. To get the actual shape,
it first interpolates the skeletons and then reconstructs the
shape according to those skeletons. This technique does
not include finding correspondence between vertices, so it
needs to be found by using some other method or manually
specified. The decomposition into star-shaped polygons
is useful because these polygons can be morphed without
self-intersections.

Topology merging technique [4, 1] is used in 3D to ob-
tain isomorphic meshes from two input meshes with dif-
ferent connectivity. This method can be easily adapted in
2D for polygons [3] (so called ”2D merging algorithm”).
Input polygons are mapped to the unit disc. Then both
mappings are merged, the vertices of the first polygon are
mapped on the second polygon and vice versa using in-
verse mapping. This results in polygons with the same
number of vertices. A linear interpolation is used to obtain
the resulting morphing transition. This technique is suit-
able for convex, star-shaped or slightly non-convex poly-

gons. For highly non-convex polygons (spirals etc.) it pro-
duces self-intersections during the morphing transition.

[8] introduced an algorithm based on a volume inter-
section of two objects, called core. During the morph-
ing process, the core is left untouched and the other object
parts grow out of or disappear into it. Necessary changes
to achieve this effect are computed according to the neigh-
bourhood of voxels.

3 The proposed solution

Brief description of the proposed solution is as follows:
First, the core is computed as the intersection of both in-
put polygons. The parts of polygons which are not in the
core will either grow up or disappear in the core. Then it
is necessary to compute for each vertex the so-called topo-
logical distance. Next step is to compute trajectories for
those particular vertices, which are not part of the core,
according to their topological distance.

Main novelty of our method in comparison with [8] is
a different approach for vertices trajectory computation,
which is in [8] based on neighbourhood of voxels, not on
topological distances.

Let us now describe our algorithm in detail. The core is
an intersection of the source polygon and the target poly-
gon. It can consist of several parts (Fig.2). In this text,
we will suppose that the core has only one part. As our
algorithm does not compute correspondence between the
source polygon and the target polygon, its output is depen-
dent on the mutual position of these polygons. Therefore it
is not able to solve the case with no core (Fig.2a). The case
of more than one intersection (Fig.2c) is more complicated
and our algorithm is not able to solve it yet.

Figure 2: Different number of core parts
(Continuous line: source polygon, dotted: target polygon,

grey: core)

The core is considered to be a morph base - part which
does not change during the morphing process. The other
parts of objects are either growing from the core or disap-
pearing in it. If A is the source polygon, and B the target
polygon, the parts growing from the core are gained by
computing B−A and the parts disappearing in the core are
gained by computing A−B and the core is computed as
A∩B. One way to compute B−A, A−B and A∩B is to



use Weiler Atherton algorithm [2]. In our implementation,
we use GPC library [13].

As growing from the core is an inverse process to disap-
pearing, we will describe only disappearing. All the non-
core parts of the polygon are treated in the same way, so
the rest of this section focuses only on one part.

There are many possible solutions how to make the parts
disappear in the core. But most of them use so called
“topological distance” of vertices.

Topological distance of the vertex vi is the number of
vertices on the boundary between vi and the nearest inter-
section vertex (vertex, that was not on the original poly-
gons, but arised from the intersection of the polygons).
Topological distance is an integer number.

Each part consists of vertices lying outside or inside the
core. To distinguish between those two sequences of ver-
tices, we will use so called “negative topological distance”
for the vertices lying on the core. It has the same meaning
as the positive one but it has a negative sign.

Figure 3 shows topological distances for one part of the
polygon.

Figure 3: Topological distances of vertices
(White: vertices outside the core, black: intersection

vertices, grey: vertices inside the core, light grey: part of
the core)

According to the topological distance of vertex vi, we
can compute its ”vertex path”. Vertex path is a list of co-
ordinates describing the key positions of the vertex during
the whole morphing process. The list starts with the coor-
dinates of vertex vi and ends with its last position (which
for the case of disappearing in the core lies on the core).
Having only the list of key positions gives us a possibility
to choose if the final path will be linear or if the points will
be used to compute some kind of curved path.

Vertex path is computed only for such vertices in the
part that have positive topological distance. There are
many ways how to compute path for a vertex vi using its
topological distance. We propose the so-called perimeter
algorithm for this work.

This algorithm is called perimeter, because the points
travel along the perimeter – each point travels to its neigh-
bour and then to its ”neighbours’ neighbour” and so on
until they reach the point with “minimal” topological dis-
tance (signed distance is considered). The process is out-
lined in Figure 4. The vertices are numbered according to
their topological distance, for our purpose it does not mat-
ter that there can be two vertices with the same number.

For the polygon in Figure 3, the algorithm consists of four
main steps: first, the vertices with the highest topological
distance (in this case, there is only one such vertex: 3)
travel to their neighbours. Because there is an odd num-
ber of vertices, the vertex 3 is duplicated, so there are two
vertices (with the same starting position) that travel to ver-
tices with the topological distance of 2. After the vertices
3 reach their neighbours, they both travel to their neigh-
bours’ neighbours - vertices with topological distance 1.
And so on it goes until all the vertices reach the vertex
with topological distance -1.

Figure 4: The perimeter algorithm

In Figure 4 we recall two important facts: first and more
general is that only the vertices outside the core travel (that
results from the fact that the core does not change during
the morphing process). Second, if there is an odd number
of vertices outside the core, the one with maximum topo-
logical distance is duplicated.

The vertex path is used for computation of a time plan.
Time plan represents the used treatment with the ver-

tex path. For a given time t ∈ 〈0,1〉, it computes the ac-
tual position of the point. Here we describe only the dis-
appearence in the core, the growth from the core can be
gained by reversing the time plan.

There are two main possibilities of representing how the
points travel during the morphing process. The first one is
that all the points are traveling for all the time. It means
that the points do not travel with the same velocity, their
velocity depends on their topological distance (points with
bigger topological distance will have bigger velocity). We
will call such variant “constant time”.

The second one is that all the points do not travel all the
time, only the point(s) with the highest topological dis-
tance travel during the whole process. The time amount
for the other points depends on their topological distance.
This variant will be called “constant velocity”.

There are two possible outputs of this algorithm accord-
ing to a used time plan variant. For the “constant velocity”
plan, the result is as was shown in Figure 3: points with
topological distance k wait until the points with topologi-
cal distance k′ > k arrive to their position. For the “con-



stant time” plan, all the points are travelling during the
whole process. This plan has slightly better results. The
difference is shown in Figures 5, 6. In both Figures 5 and
6, there are only the first two steps of the process. Figure
5 shows the constant time variant. In Figure 5a, the vertex
number 3 is duplicated and both it an its copy are in the
first third of their journey - on the coordinates of vertices
2. But because this is the constant time variant, the vertices
2 travel at the same and they are in the first third of their
journey as well (their position is marked by a small circle).
Also vertices number 1 travel towards vertices number 0
and they are in the first third of their journey - here their
journey consists only of one edge (from 1 to 0).

Figure 5b shows the second step of the process - all the
vertices are in the second third of their journey - vertices
number 3 are on the coordinates of vertices number 1, ver-
tices number 2 are in the first third of the edge from 1 to 0
and vertices number 1 are in the second third of the same
edge.

Figure 5: The perimeter algorithm with constant time
(Grey: the current polygon and positions of the vertices)

Figure 6 shows the first two steps of constant velocity
variant - this is exactly the algorithm shown above (along
with the description of the perimeter algorithm).

Figure 6: The perimeter algorithm with constant velocity
(Grey: The current polygon and positions of the vertices)

Notice that the second step appears to be the same, but
the points are on different positions.

4 Experiments

The results of our algorithm1 were compared with the re-
sults of [7] and 2D merging algorithm [3].

1Implemented in Microsoft Visual Studio 2005, C#, .NET Frame-
work 2.0. Using configuration Mobile AMD Sempron 3100+, 1800MHz,
512MB RAM

4.1 A rectangle & a spiral polygon

As an example of behaviour of our algorithm, let us
present a rectangle and a spiral polygon.

Our algorithm usually gives satisfying results for poly-
gons of such a type, but it depends on how the points are
organized. There are two cases shown in Figure 7: in
7a, the polygon contains only points needed to preserve
its shape. However in 7b, there is one extra point, which
has a significant impact on the output. Let us clarify the
reason: For each part of the polygon (either disappearing
in the core or growing from the core), there is always one
line not lying on the perimeter. This line is connecting the
points with the highest topological distance. If the points
with the same topological distance lie within the bends of
the polygon, the line can never intersect the edges. But if
there exists an extra point with only slight impact on the
shape of the polygon, this point causes that points at the
bends will not have the same topological distance and in-
tersections may occur. Figure 7 shows how this influences
the output – if there is one point more, the side contain-
ing this point is “one point slower” than the other one, and
intersections may occur.

Figure 7: Self-intersection
(Bottom: extra point added; grey: the current polygon)

In Figures 8 and 9, there are results of our algorithm
used with the constant velocity plan. In Figure 9, one extra
point is added, which results in local self-intersections of
resulting polygon. In Figures 10 and 11, there are results
of our algorithm used with constant time plan.

Figure 8: The perimeter algorithm with the const. velocity
(Grey: the current polygon, black: source and target

polygons)



Figure 9: The perimeter algorithm with the const. velocity
- an extra point added

Figure 10: The perimeter algorithm with the const. time

Figure 11: The perimeter algorithm with the const. time -
an extra point added

The comparative methods give similar results for both
described cases (with and without the extra point), so we
show only the case with one extra point (to show they are
not influenced) in Figures 12 and 13.

Figure 12: Sederberg’s algorithm

Figure 13: 2D merging algorithm

Both other methods experience self-intersection, result
of our method depends on the distribution of the points
on polygons. Points that do not influence the polygon
shape can be deleted in a preprocessing part. To deal with
points that do influence the polygon shape needs to make
few changes in the algorithm and so belongs to our future
work.

4.2 A cross & a lamp

Our algorithm is suitable not only for polygons of spiral
shape, but also for other polygons where one would expect
the growth-like process, such as thin non-convex polygons
with only a small intersection part. One example of such
pair of polygons is “a cross” and “a lamp” (shown in Fig-
ures 14-17). The part where the cross is disappearing in
the core is still not satisfactory, but we want to improve it
in the future by using some more sophisticated algorithm
than the perimeter.

Figure 14: The perimeter algorithm with the const. veloc-
ity

Figure 15: The perimeter algorithm with the const. time



Figure 16: Sederberg’s algorithm

Figure 17: 2D merging algorithm

As we can see, both Sederberg’s and 2D merging algo-
rithms experience intersections, while the perimeter algo-
rithm does not.

4.3 A flower & leaves

This example is to show that our algorithm is not very suit-
able for polygons with serrated edges. The problem is that
the algorithm follows only topological distances, and it is
not influenced by vertices’ distance from the core. That
is why we can observe a straight line going up and down
within the bloom in Figure 18. Use of the constant time
does not deal successfully with this configuration either
(see Fig.19).

Figure 18: The perimeter algorithm with the const. veloc-
ity

Figure 19: The perimeter algorithm with the const. time

Figure 20: Sederberg’s algorithm

Figure 21: 2D merging algorithm

4.4 An arc & a translated arc

This example shows objects of a similar but translated
shape. The Figures 22-25 show the difference between the
behaviour of the two already mentioned concepts of mor-
phing. The first one (represented by our algorithm) does
not compute the correspondence and depends on the mu-
tual position of the input polygons (Figures 22, 23). The
second one does compute the correspondence and so uti-
lizes similarity of the shape of polygons (Figures 24,25).



We cannot say which outputs are better, both approaches
are interesting.

Figure 22: The perimeter algorithm with the const. veloc-
ity

Figure 23: The perimeter algorithm with the const. time

Figure 24: Sederberg’s algorithm

Figure 25: 2D merging algorithm

4.5 Influence of mutual position of polygons

To illustrate that completely different results can be ob-
tained if the mutual position of polygons is changed, we
introduce Fig.26 and Fig.27 (compare also to Fig.14). This
behaviour can be understood as a disadvantage because
our method does not compute the best mutual position, but

also as an advantage because many different interesting ef-
fects can be achieved.

Figure 26: The perimeter algorithm with the const. veloc-
ity

Figure 27: The perimeter algorithm with the const. veloc-
ity

5 Conclusion and Future work

We presented a method for polygons based on the idea of
their intersection. It produces satisfactory results for poly-
gons that are usually problematic for other methods, such
as polygons of a spiral type or a source polygon with a
large part far from the target polygon.

The presented method is only the first step in this direc-
tion of core-based morphing algorithms. There is a pos-
sibility to use some other more sophisticated methods in-
stead of the perimeter algorithm, such as to project points
of each part to the core, try other types of the vertex path
– not round the perimeter, but through the inner part of
the polygon etc. Another option to enhance our algorithm
could be adding an information about total pathlength to
each vertex. It would then move with a speed inversely
proportional to this length. This could probably solve the
problem with an extra point (Fig. 9,11).

Another future work area will be to enhance our algo-
rithm to work when the core consists of more or less than
one part. We also plan to extend our algorithm to 3D.



Acknowledgement

This work was done in cooperation with Jindřich Parus, to
whom I would like to thank for his ideas that gave birth
to the algorithm and for his help with the whole work.
The same big thanks belong to Dr. I. Kolingerová from
the University of West Bohemia, Pilsen, Czech Republic,
for help with the paper preparation and advices during the
work. I would also like to thank to Jindřich Parus and
Pavel Celba for providing their programs that were used to
compare our method with others.

References

[1] M. Alexa. Recent advances in mesh morphing. Com-
puter Graphics Forum, 21(2):173–197, 2002.

[2] P. Comninos. Mathematical and computer program-
ming techniques for computer graphics. Springer,
2006.

[3] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping
and morphing of graphical objects. Morgan Kauf-
mann Publishers, Inc., 1999.

[4] J.R. Kent, W.E. Carlson, and R.E. Parent. Shape
transformation for polyhedral objects. Computer
Graphics (SIGGRAPH’92 Proceedings), 26:25–34,
1996.

[5] J. Parus. Morphing of meshes. Technical Report No.
DCSE/TR-2005-02, University of West Bohemia in
Pilsen, April 2005.

[6] T. W. Sederberg, P. Gao, and G. Mu H. Wang. 2-d
shape blending: An intrinsic solution to the vertex
path problem. Computer Graphics, 27:15–18, 1993.

[7] T. W. Sederberg and E. Greenwood. A physically
based approach to 2-d shape blending. ACM SIG-
GRAPH, 26:25–34, 1992.

[8] S. K. Semwal and K. Chandrashekhar. Cellular au-
tomata for 3d morphing of volume data. WSCG Con-
ference Proceedings, pages 195–202, 2005.

[9] M. Shapira and A. Rappoport. Shape blending us-
ing the star-skeleton representation. IEEE Computer
Graphics and Applications, 15:44–50, 1995.

[10] V. Surazhsky and C. Gotsman. Controllable morph-
ing of compatible planar triangulations. ACM Trans-
actions on Graphics, 20:203–231, 2001.

[11] V. Surazhsky and C. Gotsman. Intrinsic morphing of
compatible triangulations. International Journal of
Shape Modeling, 9:191–201, 2003.

[12] Y. Zhang. A fuzzy approach to digital image warp-
ing. IEEE Computer Graphics and Applications,
16(4):34–41, 1996.

[13] http://www.cs.man.ac.uk/ toby/alan/software.


