Rendering Large Terrains in Real-Time

Bojan Rupnik

Faculty of Electrical Engineering and Computer Science
University of Maribor
Slovenia

Abstract

This paper presents a method for visualisation of large ter-
rains in real-time. The amount of data when handling large
terrains can exceed video memory, the result is a low frame
rate. Our method uses a quadtree-based approach to ex-
clude unnecessary data from the rendering process and re-
duce the level of detail at need. Another aim is to let the
GPU perform as much of processing as possible, leaving
the CPU available for other tasks.

Keywords: Terrain Rendering, GPU, Quadtree, Real-
Time Rendering

1 Introduction

Terrain visualisation is an important element in virtual re-
ality, GIS, computer games, simulations, etc. When deal-
ing with large terrains, our main concern is the amount of
available memory. In real-time rendering the data is best
stored in the video memory of graphic cards. Large ter-
rains can be made of hundreds of millions of points, mak-
ing them impossible to fit into the video memory, or with
very large terrains, even in working memory.

Along with the memory limitations, another important
factor is the graphic processing unit (GPU). Despite the
high throughput of modern GPUs, it is still necessary to
limit the number of drawn triangles. This is achieved by
eliminating parts of the terrain from the rendering process,
and by lowering the level of detail (LOD).

There are many different methods addressing the level
of detail. In this section we will briefly describe some of
them. Most of the methods operate on height fields.

Lindstrom et al. [1] use a two-step algorithm for terrain
refinement. The terrain is represented as a height field,
that first uses a coarse grained simplification, and later fine
grained. At the coarse grained simplification the algorithm
groups the height field in blocks of size (2" +1) x (2" +1),
that overlap each other at the borders. At the fine grained
simplification their algorithm uses edge bisection to merge
several smaller triangles into fewer larger ones. The trian-
gles are merged until a screen error tolerance is reached.
The simplification and refinement of triangles are view-
dependent.

Hoppe [2] uses a view-dependent refinement of progres-
sive meshes to control the level of detail, adapted to terrain

rendering. Progressive meshes use operations that split or
merge vertices and edges to the triangle mesh, based on
the position and orientation of the viewer. Splitting and
merging the vertices is performed as long as an acceptable
screen error is reached. Another interesting algorithm is
ROAM [3] - Real-time Optimally Adapting Meshes. The
algorithm is based on edge bisection, which is performed
on triangles, instead of vertices. The algorithm uses a bi-
nary triangle tree to represent the triangles. The edge bi-
section is performed by traversing the tree. It uses an error
metric to decide whether to simplify the terrain or not.

DeBoer’s method [4], geometrical mipmapping, is one
that takes the advantage of graphic hardware. The al-
gorithm partitions the terrain into square blocks - ge-
omipmaps. Like in Lindstrom’s [1] algorithm, the simpli-
fication is performed by removing every second column
and every second row. Each geomipmap is assigned an er-
ror value, which depends on the removed vertices. If the
error of the geomipmap is too large, the level of detail is
increased, otherwise it is decreased. Another important
aspect of the algorithm is the avoidance of gaps, which is
solved by a special triangulation.

In 2004, Losasso and Hoppe introduced geometry
clipmaps [5]. Geometry clipmaps cache the terrain in
pyramid of nested regular grids, which are centred around
the viewer. The grids are stored in video memory and
change as the viewer moves. Their method uses a real-
time decompression and synthesis of height maps, allow-
ing rendering of large height maps. The authors rendered
a 40 GB height map, which was compressed enough to fit
into memory. The method was further improved in 2005
in [6], where the authors put most of the work from the
CPU to the GPU.

In the next sections we will describe an own method
for dealing with large terrains. The method uses similar
approaches as described in [1] and [4]. In section 2 we
will describe the data structure our method uses, section 3
will cover memory management. Section 4 will describe
the rendering process and level of detail selection in detail,
and section 5 will reveal the results of our application.

2 Building the Quadtree

To define our terrain we use a a height field. A height field
is a two dimensional array of height values. All height val-

ues are equally distanced in both coordinate direction. A
simple height field consists only of height values. For ren-
dering purposes, however, this is not sufficient. We need
to add information about the exact position in the world
space (the space where all objects in the scene are dis-
played), this is the x and z value (y being the height value)
for each vertex - we create a detailed height field. The
detailed height field is stored into a vertex buffer.

Along with the detailed height field, we also need to de-
fine a rule how to triangulate the height field. We create
an index buffer in which each vertex is presented by an in-
dex. The index buffer is an array of indices, which specify
which vertices in the vertex buffer make triangles.

The vertex and index buffers are used to store the data
directly into the video memory. This way the graphic card
does not need to wait for the data to be transferred, and the
GPU has all the data ready to be rendered.

The problem with large terrains is the memory limit.
The video memory is not sufficient to store the whole ter-
rain. Also, graphic cards have a limited size for a single
vertex buffer. We need to divide our terrain into smaller
segments. Our method uses the quadtree structure to sub-
divide the terrain.

The quadtree is a data structure where each node has up
to four children. Before the subdivision a simple height
field is stored in the root. We use simple height fields to
minimise memory usage during preprocessing. To create
detailed height fields, each node carries information about
its position and size in the world space.

With all the necessary data in the root node, we sub-
divide the height field into four equally-sized segments.
Height values that are on the borders of the segments are
multiplied and assigned to the new segments (see figure
1). Each new segment becomes a child, which is also
given the information about its position and size. The sub-
division continues, until we have reasonably-sized height
fields, our desired size is under 2!° vertices per node. Af-
ter the subdivision is complete, the height fields exist only
in the leaves of the quadtree.

Figure 1: Terrain data subdivided into four equally-sized
segments.

Having the position and the size of the nodes, we can
calculate the bounding box of each node. The bounding
box of the root covers the whole terrain, each child only a
quarter of its parent. The leaves cover the smallest height
fields.

After completing the subdivision, each leaf contains a

simple height field. However, we need a detailed height
field to render the nodes. We can calculate the position of
each vertex in the height field using the position and size
of the node. For lighting purposes we also need to com-
pute normals for each vertex, as well as texture coordinates
for texturing. With normals needing 3 values and texture
coordinates 2 more, we need up to 8 values to describe
each vertex. Using the float data type we need 32 bytes
per vertex for a detailed height field. This means eightfold
memory consumption compared to the simple height field.

3 Memory management

We want to put as much of the data into the video memory
as possible to ensure fast rendering. Using 32 bytes per
vertex we can reach the limit of the video memory rather
quickly. Table 1 shows memory consumption for differ-
ent terrain sizes (terrain size is the number of vertices in
our height field) . A terrain consisting of about one mil-
lion points does not pose a problem, but doubling the di-
mensions we already hit the memory limit of most graphic
cards in use today, doubling the dimensions again we ex-
ceed it. A terrain consisting of 8192 x 8192 vertices would
exceed the memory an application can address under Win-
dows XP.

1024 x 1024 | 32 MB
2048 x 2048 | 128 MB
4096 x 4096 | 512 MB
8192 x 8192 2GB

Table 1: Terrain size and memory consumption.

Working with large terrains, we cannot put all the data
into the video memory. Consequently we cannot render
the whole terrain in real-time. Instead we choose which
nodes can be rendered and which not. Those to be ren-
dered are stored in the video memory as vertex buffers, the
rest remains in RAM. If there isn’t sufficient RAM avail-
able, nodes can also be stored on the hard drive and their
height fields removed from memory.

In our memory hierarchy (see figure 2) the quadtree
nodes move between video memory and RAM, and if nec-
essary between RAM and the hard drive. Which nodes are
loaded/unloaded depends on the camera movement (see
figure 3). The camera is positioned in the centre of the
inner square. The nodes that are the closest to the cam-
era remain in the video memory (innermost layer) and are
rendered. The nodes in the vicinity of the camera (just out-
side the view) are stored in RAM as detailed height fields
or vertex buffers (second layer). The rest of the nodes are
stored in RAM as simple height fields (third layer) and if
necessary on the hard disk (outer layer).

Memory management is used when the camera leaves a
region (a region being space covered by a quadtree leaf).
When the camera leaves one region and enters a new one,

Hard drive
RAM
|:| Video Memory

Figure 2: The memory hierarchy.

vertex buffers that are now outside the visible field of the
camera (see the innermost layer in figure 3) are released
from video memory, but remain in RAM. The free space is
then occupied by vertex buffers that are inside the camera
View.

Figure 3: Data stored in the video memory (inner square),
RAM (second and third layer), and on the hard disk (outer
layer).

4 Rendering and Level of Detail

With the quadtree built, we have created the vertex buffers,
however, the vertex buffers must be associated with index
buffers. Our subdivision method ensures that each vertex
buffer is of the same size. In this way we can use the same
index buffer for all vertex buffers. As index buffers are
also stored in video memory, we have gained additional
space.

Having all the data in the video memory, we can pro-
ceed with the rendering process. However the memory is
not the only bottleneck. The GPU can only render a cer-
tain amount of triangles per frame. We need to keep the
number of rendered triangles as low as possible, while the
quality of the rendered terrain remains as high as possible.
We use different levels of detail, to limit the number of
rendered triangles.

Level of Detail

The index buffer defines the triangulation of our height
field. Our method uses different index buffers to change
level of detail of rendered quadtree nodes. We create 5 dif-
ferent index buffers at 5 levels of detail. The highest level
displays a node at full resolution. Each next level displays
a node at a quarter resolution of the previous level.

Our level of detail is a small integer (between 0 and
4). We use this number to calculate the step with which
the neighbouring vertices are defined: step = 2L0P. With
LOD set at 0, the step equals 1, resulting in a mesh, where
all the vertices are connected with their neighbours. With
a LOD of 1 and the step of 2, we ignore every second
row an column of the height field, reducing the number of
vertices. With each increase of LOD, we reduce the reso-
lution by three quarters. Figure 4 shows the basic idea of
changing the levels of detail.

Van\
N

Figure 4: Parts of the terrain at different levels of detail -
black vertices form triangles, white vertices are excluded.

Excluding vertices can cause gaps on the borders where
terrain parts at different levels of detail meet. To avoid
gaps we use a method that triangulates the borders of the
height field at the highest level of detail, the rest is triangu-
lated at the desired level of detail. This way we get some
additional triangles at the borders, but the decrease of ver-
tices inside of the vertex buffer is still significant. Figure
5 shows an example triangulation at the third level of de-
tail. Additional triangles are needed to connect the border
triangulation and the LOD triangulation.

The vertex buffers (height fields) do not change in the

Figure 5: Triangulation of a vertex buffer at third level of
detail.

process. We only operate on index buffers to change the
level of detail. So we only use a different index buffer to
create another triangulation.

As mentioned before, we can use a single index buffer
to render all vertex buffers. Now that we are using level of
detail, we use up to 5 different index buffers, all of which
are created during preprocessing.

Figures 6 and 7 show the same terrain rendered at the
highest level of detail (0) and at a lower level (2). The
original terrain is the size of 1024 x 1024. At LOD of 0 the
height field is formed from all 1048576 vertices, at LOD
of 2, however, only about 70000 vertices are used. Despite
the radical decrease in the number of triangles, the quality
of the terrain remains relatively good, as figure 7 shows.
In table 2 we can see how the level of detail reduces the
number of vertices.

Figure 6: Terrain of the size 1024 x 1024 vertices, ren-
dered at full resolution.

We choose the level of detail depending on the position
of the camera. The further a node is positioned from the
camera, the lower its level of detail is. The node in which
the camera is positioned is always rendered at full resolu-

Figure 7: Terrain of the size 1024 x 1024 vertices, ren-
dered at 1/16 of the original resolution.

LOD | Resolution
0 100%
1 25%
2 6.25 %
3 1.56%.
4 0.4%.

Table 2: Approximate reduction of the original resolution
at different levels of detail.

tion, as are its neighbours. The outer nodes are rendered
at a lower level of detail. Nodes rendered at different lev-
els of detail form rings around the camera (see figure 8).
Rings that are further away from the camera are thicker
than those close by, the outer ring is rendered at the lowest
level of detail and covers all outer nodes. In the figure 9
we can see the quadtree nodes (which can be recognised
by thick borders) rendered at different levels of detail, with
the camera in the centre of the terrain.

Frustum Culling

As the viewer (camera) has a limited viewing angle,
he can never see the whole terrain at once. He can only
see the part that is in his viewing frustum. Therefore, we
can exclude the nodes that are outside the viewing frustum
from rendering. In average we never need to render more
than half of the quadtree. Figure 10 shows visible nodes
(orange) and those not rendered (white).

Frustum culling is being processed from the root down-
wards. Each node is tested, whether it is inside the frus-
tum, or outside. If the node is inside the frustum, all of
its children need to be tested as well. As soon as a node
appears outside the frustum, it is no longer necessary to
test its children, as they are definitely outside the frustum
as well. Frustum culling must be performed every time the
camera moves or rotates.

We use our quadtree structure to combine level of de-
tail selection and frustum culling. We only need to set the
level of detail for the visible nodes, ignoring the rest of the
quadtree. Also, we only change the level of detail after the
camera has moved from one node to another.

camera

Figure 8: Levels of detail - lower number means higher
level.

Figure 9: Terrain grid at different levels of detail.

camera

Figure 10: Frustum culling - orange nodes are rendered,
the others are excluded.

Collision Detection

To ensure that the camera is always positioned above or
on the terrain, we use a simple collision detection method.
Knowing the plane coordinates of the camera (x and y), we
check whether the z coordinate is above the triangle with
the same planar coordinates. We can identify the triangle
by traversing the quadtree. We start in the root and check
in which child the point (x,y) coordinates are included.
We continue the process for each child, until we reach a
leaf which contains a detailed height field.

With the terrain information contained in the node, we
can calculate which triangle is around the point. When the
triangle is identified, we calculate the exact height value z
atits (x,y) coordinates. If the camera height is below z, we
simply set it at the new value. Depending on the desired
functionality, the camera can either fly above the terrain,
which means we only correct the height when the camera
moves below the terrain, or the camera “walks” over the
terrain, in which case we correct the height every time the
camera moves.

5 Results

The testing was performed in the following environment:

e Procesor: Intel Core 2 Duo E6700 at 2.66 GHz

Memory: 2048 MB

Graphic card: NVidia GeForce 7950 GX2 1024 MB
e Operating system: Windows XP SP2

e Programming language: C++ with DirectX

Lowering the level of detail can play a significant role
in improving performance. Table 3 shows frame rates
achieved with and without changing the level of detail.

Terrain size LOD no LOD
256 x 256 1300 FPS | 795 FPS
512 x 512 1006 FPS | 302 FPS

1024 x 1024 | 779 FPS 90 FPS

2048 x 2048 78 FPS 48 FPS

Table 3: Frame rates of rendering different sized terrains,
with and without LOD.

Frustum culling was disabled during the testing, in or-
der to demonstrate the influence of the LOD algorithm.
As frustum culling depends entirely on the camera posi-
tion, it could boost the frame rate to the maximum in the
best case (entire terrain outside the viewing frustum). The
worst case (entire terrain inside the frustum) would be the
same as seen in the table.

Loading larger terrains than 2048 x 2048 vertices results
in the same frame rates, as our method removes terrain
parts from the video memory and the rendering process.

With large terrains the frame rate decreases slightly when
the camera leaves a region. This is because new height
fields must be computed and loaded into video memory.
Figures 11 and 12 show the output of our application.

6 Summary and future work

Our implementation takes advantage of the modern hard-
ware, especially the graphic card. By transferring most of
the work to the GPU, we leave CPU relatively unburdened
and ready to perform other needed tasks (artificial intelli-
gence, physics, etc.).

Unlike many others, our algorithm is not limited to di-
mensions of form 2" or 2" 4 1, it can deal with any dimen-
sions. It deals with large terrains by simply rendering only
the needed part of the terrain, and storing the rest in the
memory when not needed.

For now, its disadvantage is the visible change of the
geometry during camera movement. When the camera
movement causes a change of the level of detail, we get
pop-up effects, meaning that parts of the terrain suddenly
become more detailed or less detailed than they were be-
fore. In future this will be solved with geomorphing using
vertex shaders. Another feature will be the possibility of
adding objects to the terrain, such as trees, rivers, houses,
etc.

References

[1] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
N. Faust, and G. A. Turner. ”’Real-time, continuous
level of detail rendering of height fields”, 1996. Pro-
ceedings of the ACM SIGGRAPH Conference on
Computer Graphics, pages 109-117, 1996.

[2] Hugues Hoppe, ’View-dependent refinement of pro-
gressive meshes,” in Proceedings of SIGGRAPH 97,
Turner Whitted, Ed., Los Angeles, California, Aug.
1997, Computer Graphics Proceedings, Annual Con-
ference Series, pp. 189-198, ACM Press.

[3] Mark A. Duchaineau, Murray Wolinsky, David E.
Sigeti, Mark C. Miller, Charles Aldrich, and Mark B.
Mineev-Weinstein. ROAMing terrain: realtime opti-
mally adapting meshes. In IEEE Visualization, pages
81-88, 1997.

[4] Willem H. de Boer, E-mersion Project,
http://www.connectii.net/emersion, World Wide
Web, October 2000.

[5] Losasso, Frank, and Hugues Hoppe. 2004. Geometry
Clipmaps: Terrain Rendering Using Nested Regular
Grids. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2004)23(3), pp. 769-776

[6] A. Asirvatham and Hugues Hoppe. 2005. Terrain

Rendering Using GPU-Based Geometry Clipmaps.
GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Compu-
tation. Addison-Wesley Professional.

Figure 11: Terrain of the size 1000 x 1000 vertices, rendered with a texture.

Figure 12: Terrain of the size 1000 x 1000 vertices, rendered with smooth lighting.

