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Abstract

In this paper we present a method for simulating physi-

cal behaviour and rendering of water drops in real-time.

Our algorithm is based on processing water information

stored into a texture resembling a height map. Thus calcu-

lation on the Graphics Processing Unit is possible. Texels

on the height map retrieve how much of their current wa-

ter amount remains and how much water is provided from

texels above. The height map is smoothed with a blur filter

before a normal map is created to perform lighting with a

Fresnel-model.
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1 Introduction

Water with its many different forms of appearance de-

mands different approaches for simulation. While ren-

dering of water and other weather phenomena becomes

increasingly realistic ([Fer04, cha. 1] [CdVLHM97]),

there is still need for realistic water drops because small

amounts of water behave strongly different to large ones.

This can be ascribed to the physical forces of surface ten-

sion and viscosity [Dem03]. As the amount of water de-

creases, the impact of surface tension increases and results

in the emergence of drops. These characteristics need to

be reproduced by a simulation of water drops.

To find the crucial properties of water drops to cre-

ate a credible simulation, a look at real drops has to be

taken.Observing drops running down a surface, random-

ness seems to guide their movements on most occasions.

But given a closer look many physical influences may be

revealed.

Figure 1 shows pictures taken from real water drops dis-

playing the most important characteristics of the drops.

• Movement. A drop only starts moving if it has a cer-

tain mass and size. Small drops usually just stay in

place, but they may be swept along with moving ones.

During the movement small droplets are emitted and

thus the mass of the drop is reduced. As a result the
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Figure 1: Pictures of water drops on a mirror showing

characteristic features. (a) A remaining drop is formed.

(b) A fast drop with a long tail. (c) A lensflare of the suns

reflection.

motion slows down. Figure 1(a) shows the creation

of such a small, remaining droplet at the end of the

drop.

• Behaviour of flow. The remainder of a fluid on the

surface can be helpful to identify it. This denotes the

viscosity [Dem03]. While water leaves only small

droplets, sirup has a thick and viscous tail.

• Shape. The velocity of the drops movement influ-

ences its form. The faster a drop moves, the longer

is its shape (cf. figure 1(b)). Due to surface tension

small drops look like hemispheres [Dem03].

The drops shape is also influenced by the adhesion

of water on the surface. On hydrophilic surfaces the

drops are flatter than on hydrophobic ones (cf. fig-

ure 2).

• Reflexion and refraction. Of course, the drops inherit

the characteristics of water regarding lighting. They

appear transparent because only very little light is ab-

sorbed by water.

Due to the their shape drops act like convex lenses,

with according minification and magnification in the

refractions (cf. figure 1(a)).



(a) (b)

Figure 2: Drop on (a) hydrophilic and on (b) hydrophobic

surface.

• Glow and lens flares. Reflections of the sun contain a

vast amount of light. Hence a glow around it is pro-

duced due to the optics of the camera and/or the film

(or CCD-chip). An example is visible in figure 1(c).

Finally a lot of information can be retrieved from the

mass of a water drop. In connection with the affinity of

the surface it is possible to determine radius, height and

shape of the drop. Furthermore movement and velocity

may be assigned.

The aim of our work is to introduce a new approach

for realistic simulation of water drops in real-time. More-

over the implementation is done on the Graphics Process-

ing Unit (GPU). The drops are limited to running down

on a flat surface. Nevertheless the presented algorithm is

extendible for application on arbitrary surfaces. Our goal

was to create a credible simulation - not a physically cor-

rect one. We present an approach for application in real-

time that may be extended in various ways.

In the next section we describe the related work. In sec-

tion 3 the method to store water is discussed. Afterwards

the algorithm and its implementation are introduced (sec-

tion 4 and 5) followed by a presentation of its results (sec-

tion 6). The last section summarizes our approach and

future work.

2 Related Work

While a lot of research in the simulation of realistic water

drops is available, real-time approaches are hard to find.

Wang et al. describe in [WMT05] a physically based

simulation of water drops on arbitrary surfaces based on

fluid simulations. Although the rendered droplets are

very impressive and realistic, the proposed algorithm takes

more than seven days to render an animation of 500

frames.

Other methods use metaballs or particles to achieve fast

rendering. Despite this physically correct movement is

hard to simulate with these approaches. Kaneda et al.

show in [KZYN96] a way to render drops with particles.

This method was upgraded by ATI in the ”Toyshop” demo

[Tat06]. The approach presented in this work is also based

upon Kanedas work and thus resembles ATIs algorithm.

In contrast to the algorithm of Kaneda et al. ours performs

in real-time.

The research of Yang et al. in [YZZ04] concentrates

only on the rendering of water drops on glass in real-time,

movement is not simulated. They assume that a drop re-

sembles a lense. Everything behind the drop is distorted

accordingly.

Rathner describes in [Rat02] an erosion simulation stor-

ing water amounts in a grid. The calculation of the cells

water height depends on its neighbours values.

3 Water Model

The drops of the presented algorithm are restricted to

movement on a surface. Thus their data can be reduced

to their position on the surface (x,y) and their height h (cf.

figure 3).

Figure 3: Drops on a surface can be characterised with

their position (x,y) and their height h.

As the required data are the same for all drops and are

used similarly to process the behaviour of the drops, a par-

ticle system would be appropriate to handle it [AMH02,

cha. 8.5]. Those systems are particularly suitable to ad-

minister phenomena consisting of many small components

behaving in the same manner. Latta shows in [Lat04] a

particle system implemented on the GPU.

We chose to assemble a drop out of many small droplets.

These droplets are atomic and therefore the smallest

amount of water that may occur in the system. How

much water a drop contains is identified by the amount

of droplets forming it. The final shape of the drop is de-

termined by the arrangement of the small droplets. The

more droplets stick together (the greater the water mass),

the sooner they start to move. Remaining water is created

as some droplets move more slowly and are left behind.

But as the water particles are to be computed on the

GPU their data has to be stored appropriately. As a drop

is influenced by its neighbours, it needs a possibility to ac-

cess those. Hence a 2d-grid describing the surface is cre-

ated. It is saved as a texture on which the water drops flow.

The idea of saving the surface into a grid and calculating

the water drops with it has been introduced by [KZYN96],



whereas Kaneda et al. used Bezier-patches. Each texel in

the created texture stores the amount of water currently

being located upon it. Thus it matches a height map (cf.

figure 4). Black areas indicate no water, whereas white ar-

eas state large amounts of water and therefore an according

height. A grey value represents water, the lighter the color

the more water is stored in the texel.

(a) (b)

Figure 4: (a) Height map indicating water drops. (b)

Sketch of a single drop in the texture.

Figure 5 depicts how a water drop is converted into such

a height map. The drop is rasterized due to the resolution

of the texture. With a big texture the single drops may

consist of many droplets. Also accordingly small drops

may be processed and displayed. Each cell determines

how much water it contains. The values are quantised to

create numerical values as seen in figure 5(d). Actually the

values are stored as floating-point values as heights greater

than 1.0 f may occur, that could not be stored with fixed-

point textures. So in the end a texture is created where

each cell contains the amount of water upon it and thus its

height.

(a) (b) (c) (d)

Figure 5: (a) The water drop. (b) A 2d-grid is laid on

the drop. (c) The rasterized drop. (d) Numerical values

resembling the droplets heights.

This technique enables each water particle to access its

neighbours in a fragment shader. Thus it is able to retrieve

how much water is provided from its neighbours to com-

pute the water movement. The following section explains

the details of the algorithm.

4 The Algorithm

By using the texture storing the water amounts the bulk of

the algorithm can be processed on the GPU using fragment

shaders. The CPU is left with storage and preparation of

parameters.

4.1 The Pipeline

The simulation of water drops can be organized into two

parts: the physical simulation of the water movement on

one hand and the lighting of the resulting drops on the

other hand. The pipeline of the proposed algorithm is dis-

played in figure 6.

Figure 6: The algorithms pipeline can be divided into the

two main parts physics and lighting.

The physics part needs a gravitation vector as input

to know the direction of gravitation in world coordinates.

This is necessary to move the drops downwards even if the

object is rotated. The texture with the ”old water drops”

from the last frame (old waterMap) is also needed to cal-

culate the new water amounts and thus the movement. The

remainderMap determines how much of an amount of wa-

ter flows down. Using the noiseMap this ratio is diver-

sified. With these textures the movement of the drops is

created, resulting in the new waterMap.

To smooth the output of the physics calculation a blur

filter is used. The lighting is done by creating a normal

map from this smoothed height map. Using these nor-

mals reflections and refractions are calculated and com-

bined with a Fresnel term. The reflectionMap resembles

a cube map used to retrieve the reflection color values.

For rendering of refractions the method of Sousa described

in [Pha05, cha. 19] is used. Here an environment map is

created including all non-refractive objects. As these are

common techniques, this article will not go into great de-

tail about the lighting part of the pipeline.

In the following sections the parts of the pipeline are

explained in more detail.



4.2 Water Movement

As already discussed the water particles are stored and

processed as a 2d texture. Thus all calculations have to

be done in tangent space [ZDA04, p. 400]. Accordingly

all necessary vectors have to be transformed from world

space to object space and finally to tangent space.

4.2.1 Direction

As a texel needs to know where ”upwards” is located to

query the amount of water it receives from there, a grav-

itation vector ~G is created in the application. This vector

describes the direction of gravitation in world space. If an

object is rotated, the direction of ~G changes relatively to

the object spaces centre (cf. figure 7). As all calculations

have to be done in tangent space, ~G has to be transformed

into it with the matrix

T =





Tx Ty Tz

Bx By Bz

Nx Ny Ny



 , (1)

where T is the tangent, B is the binormal and N is the nor-

mal of the current vertex. Now all other directions may

also be computed using the transformed vector (cf. fig-

ure 8).

(a) (b)

Figure 7: The upper row shows the scene in world space

while to lower row shows it in object space. The direction

of the gravitation vector ~G is changed in object space as

the object is rotated.

Figure 8: All eight neighbour directions can be calculated

using the gravitation vector ~G=(Gx,Gy)
T .

4.2.2 Speed

The speed of the drops is influenced by the inclination of

the surface. The more inclined the surface, the faster the

movement. The inclination of the surface is described rel-

ative to the gravitation vector ~G (cf. figure 9) and given by

the magnitude of the angle α between ~G and the surface.

cos(α) may then be used to weight the speed of the drops

movement by multiplying the gravitation vector with it
(

G′

x

G′

y

)

=

(

Gx

Gy

)

· cos(α), (2)

where cos(α) describes the angle between ~G and the sur-

face.

(a) (b)

Figure 9: If the angle α between surface and gravitation

vector ~G is small, the water moves faster.

4.2.3 Water Amount

Section 3 describes that each texel on the height map saves

the amount of water upon it. If this amount is greater than

a threshold L, the water starts moving. Hence the current

texel reduces its water amount. But if the water amount

of the above texel is also greater than L some of its wa-

ter flows down to the current texel. Figure 10 shows the

computation with four sample texels.

The percentage flowing down is determined by the

remainderMap. The amount of water is used as tex-

ture coordinates to access this texture. The retrieved



Figure 10: Water amounts of the last frame are on the left

side, while those of the current frame are on the right. At

the beginning the amount of water staying on the texel is

retrieved. Afterwards the water provided from above is

added.

value tells how much water remains on the texel. The

remainderMap, like the one in figure 11, is created with

an image editing program. White indicates that 100% of

the water stay at the current texel. The darker the remain-

der value, the more water flows downwards.

Figure 11: Example of a remainderMap.

To add randomness to the simulation a noise texture

(e.g. Perlin noise), like the one in figure 12, is used. It

is also created with an image editing program and then

fed into the simulation. Of course, it could also be gener-

ated at runtime. Only a part of the texture is used in the

calculation, but this cut-out is shifted across the texture

over time. The retrieved noise values are used to alter-

nate the remainder of the drops. A texel now calculates its

remainder value and multiplies it with the value from the

noiseMap.

Figure 12: Example of a noiseMap.

Thus the formula to compute a texels current amount of

water is created as

newWater(~T ) ← water(~T ) ·

remainder(water(~T )) ·

noise(~T )+

water(~T + ~G′) · (1.0−

remainder(water(~T + ~G′)) ·

noise(~T + ~G′)) (3)

where ~T = (Tx,Ty)
T texture coordinates,

~G′ = (G′

x,G
′

y)
T gravitation vector multiplied

with cos(α),
remainder(water) remaining amount of water,

water(~T ) amount of water at ~T and

noise(~T ) noise value at ~T .

Figure 13: Calculation of water movement taking into ac-

count texels two above the current one. Values from the

last frame are on the left side, while the new ones are on

the right side.

As stated in section 1 the velocity of the drops is in-

fluenced by their mass. To be able to move very large

amounts of water the current texel also retrieves water

from the texel above its above texel. If the amount of wa-

ter from the texel two above is greater than the threshold

M it contains much water. Figure 13 shows how the calcu-

lation is changed. To prevent all of the water from moving

directly into the current texel it is weighted with a coeffi-

cient r. Therefore water from Texel A flows to Texel B and

C. The formula 3 has to be extended accordingly. Further

generalizations to calculate with more texels above the ob-

served one have not been implemented.

4.3 Water Lighting

The results of the previous simulation of water movement

depend heavily on the chosen parameter values. Due to the

processing with thresholds bad distributions of the water

amounts may occur. Those have to be smoothed with a

blur filter.

For example a cell being slightly higher than the thresh-

old is processed and afterwards only little water remains

there. A neighbouring cell may be slightly smaller than

the threshold value and thus not processed. Compared

with the processed cell much more water remains in the

unprocessed one. Figure 14(a) shows the resulting lines in

the height map. As these lines lead to unaesthetic normals,

the lighting also looks bad (cf. figure 14(b)).

To compensate for this effect the average of the current

texel and its eight neighbours is calculated and saved into

a new texture. Figure 15 shows the cut-out of figure 14

after application of the blur filter.



(a) (b)

Figure 14: Because of the processing with thresholds (a)

bad distributions of water amounts and thus (b) bad light-

ing may occur.

Figure 15: Height map after blurring.

Using the blurred height texture a normal map can eas-

ily be created [ZDA04, p. 397]. Afterwards lighting is per-

formed with the Fresnel model [FK03, p. 189] combining

reflections and refractions. This actually is a technique of

environment map bump mapping [Eve03]. For reflections

a cube map is used, while for refractions a dynamic 2d

environment map is created. Therefore all non-refractive

objects are rendered in an extra pass and saved to this tex-

ture. Like in [Fer04, cha. 19] refractions are computed

from this texture and the normal map.

5 Implementation

The implementation was done in C++ with OpenGL and

Cg shading language. As water flows from one texel to

the next, values greater than 1.0 f may occur. Thus it is

necessary to use floating-point textures to save the water

amounts.

The implementation of the pipeline (see section 4.1)

was done in five render passes (cf. figure 16). At the be-

ginning all non-refractive objects are rendered as an en-

vironment map for refraction. The second pass includes

the water movement simulation, the generation of the tex-

ture with the new water heights. Afterwards this texture

is blurred. The fourth render pass calculates normals from

the blurred height map. Finally the background scene and

the water drops are displayed in the framebuffer.

Figure 16: The render passes of the algorithm.

6 Results

During rendering different modes may be activated to dis-

play intermediate results. Figure 17 shows the different

steps resembling the render passes of the algorithm.

(a) (b)

(c) (d)

Figure 17: (a) Height map of the water. (b) Blurred height

map. (c) Normal map. (d) Final rendering with 3DS-

model in the background.

The application renders a box with side frames made of

glass or mirror (cf. figure 18). On these sides the water

drops are flowing down. Inside of the cube different 3DS-

models may be displayed. Of course, they are only visible

if the side frames are rendered as glass.

Despite of five render passes the algorithm performs in

real-time on an nVidia GeForce 7800. Table 1 lists the

frame rates with different models displayed. The 3DS-

models are quite detailed and thus influence the frame rate.

Rendering the most complex models the application per-

forms 25% slower.



(a) (b)

Figure 18: In the application water drops may be displayed

on glass or mirrors.

Scene Vertices Faces fps

Mirror 24 6 160

Glass with Dragon 93.044 100.000 120

Glass with Buddha 92.299 100.000 120

Glass with Bunny 36.873 69.666 125

Glass with Planck 25.445 50.801 146

Table 1: Frame rates with different models displayed.

The cube may be rotated around all axes while the drops

still move downwards (cf. figure 19). At the end of the tex-

ture the water amounts get smaller and become invisible.

With the current algorithm they may not move on to an-

other surface. But ideas for an extension of the method

for usage with more surfaces and arbitrary objects have al-

ready been created. However the drops may not drop off

the surface into air (cf. figure 20). But as the normal of

the surface points more and more upwards the movement

is slowing down and finally stops. The drops stay on the

surface until it is pointed downwards again.

(a) (b)

Figure 19: Drops are always flowing in the direction of the

gravitation vector.

The number of drops on the surface does not influence

performance, because all calculations are always done for

each texel. Hence it is not relevant if water is on a texel

or if the water amount of the texel is changed. However

the frame rate is influenced by the size of the height map.

Also the resolution of the drops depends on the textures

Figure 20: Drops on the lower side should actually fall off

the cube.

resolution. To achieve higher quality a larger texture has

to be used. Frame rates for different texture resolutions

rendering a mirror are shown in table 2. For all previous

screenshots a 512x512 texture was used. Figure 21 shows

screenshots with three different texture resolutions. The

same drops have been blended onto them. The smaller

texture doubles the frame rate while it is only a third with

the larger texture. A levels of detail technique may be im-

plemented to adapt the texture resolution dynamically to

the distance between object and camera. So an object near

the camera will use a higher resolution height map than

one far away.

texture resolution in px fps

128 x 128 480

512 x 512 160

1024 x 1024 65

Table 2: Frame rates with different texture resolutions.

(a) 128x128 (b) 512x512 (c) 1024x1024

Figure 21: Due to the resolution of the height map the

frame rate changes.

In contrast to existing work our algorithm performs in



real-timeand is calculated on the GPU. Only ATIs ap-

proach also runs in real-time, but was published after com-

pletion of our work.

Most observers found the results quite plausible,

whereas they cannot keep up in comparison with real water

drops (cf. colorplate). An important point for criticism is

that too few small drops stay on the surface. Furthermore

the drops do barely change their direction of movement.

In comparison with real drops they display too little ac-

cident. But as in nature this randomness is usually based

upon physics, these physical interactions should be added

to the simulation.

7 Conclusions and Future Work

Physical forces affecting large amounts of water differ

from those acting on water drops. Consequently different

techniques have to be used to achieve credible simulations.

In this article a new approach for rendering water drops in

real-time was introduced. As the implementation is done

on the GPU the water particles are stored into a texture.

Thus it is possible to calculate water movement in a frag-

ment shader. To perform lighting with the Fresnel-model

a normal map is created.

The new algorithm is promising but still needs some en-

hancements to achieve greater realism. Currently water

drops are limited to flow on flat surfaces, which can be

overcome with some modifications. It would be necessary

to lay out the normals of the whole geometry onto a flat

surface. Problems may occur as not all neighbouring sur-

faces are connected on the 2D layout.

Future work will include saving the direction of move-

ment for each texel. Thus texels will also consider their

neighbours’ direction of movement when calculating their

own. Hence it will be possible that texels sweep away their

neighbours. A similar approach has been taken by ATI in

the ”Toyshop” demo [Tat06].

Lighting may be improved by a glow effect. Through

the use of high dynamic range (HDR) better reflections

could be achieved [Deb02]. Additionally the height map

can be used as shadow map so that drops cast shadows on

objects behind them [Tat06].
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