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Abstract

As the role of computer-aided biopsy and surgery becomes
more and more important in medical treatment, the need
for a common frame of reference for all devices that partic-
ipate in the operation is ever increasing. One indispensable
task in that context is the determination of the patient’s
position and orientation in a pre-defined world coordinate
system to locate and position medical instruments. In or-
der to find the correct alignment, a 2D/3D registration of
a pre-operative CT volume dataset and inter-operative X-
Ray images is carried out. This is done by generating Digi-
tally Reconstructed Radiographs (DRRs) from the volume
and aligning it with the portal images.

We propose an intensity-based registration approach ex-
ploiting the capabilities of consumer-level graphics hard-
ware. Using GPU fragment shader programs to calculate
the DRRs and to determine the derivative of the objective
function we achieve a considerable speed-up compared to
CPU-based approaches. The application of Algorithmic
Differentiation allows for a computation of the exact gra-
dient vector used for our gradient descent based optimiza-
tion procedure in the course of one DRR computation and
similarity measuring sweep.

Keywords: 2D/3D Registration, Algorithmic Differenti-
ation, DRR Generation, GPU Raycasting

1 Introduction

The problem discussed in this work consists of register-
ing an high-quality pre-operational CT volume with inter-
operational X-Ray images of poorer quality. Given the
X-Ray camera’s geometry and position in the world and
some (usually two) portal images we can derive the pa-
tient’s pose.

In other words, we are trying to find the correct align-
ment between the coordinate system of the CT dataset and
a world coordinate system established somewhere in the
treatment room. This coordinate system acts as a com-
mon frame of reference for various devices, such as sur-
gical robots, which take part in the treatment process and
have to share location data. The coordinate system implic-
itly defined by the CT dataset may on the other hand be

used to file position information that is to outlast the pe-
riod of time between biopsy and surgical intervention. In
short, 2D/3D registration makes it possible to compensate
for the patient’s pose variations without moving the patient
or changing the configuration of the operating table. Note
that these variations occur inevitably whenever several op-
erations are to be carried out.

The main problem that arises from a 2D/3D registra-
tion at sub-millimeter accuracy is the computational effort
caused by DRR generation and similarity measuring which
may lead to an unacceptably high runtime. Note that per-
formance primarily matters during surgical intervention,
when medical instruments are to be positioned in an exact
way. During biopsy speed is usually secondary, because
the alignment can be computed subsequently.

The goal of this work is to provide an algorithm that
finds the alignment between the CT and the world coordi-
nate system in an efficient way without trading the regis-
tration’s accuracy for speed. The registration should work
without any user interaction as this would impede the work
flow of the medical staff and push the computer unneces-
sarily into the foreground. The work of the surgeon must
not be impaired in any way. Furthermore, we do not want
to apply any landmarks to the patient’s body. Attached to
the skin they are imprecise, mounted at the bones the fa-
cilitation of the registration task they may entail does not
justify the effort and the patient’s burden.

In Section 2 we will provide a short overview of exist-
ing work on 2D/3D registration by means of DRR genera-
tion and on GPU based CT volume rendering approaches.
Section 3 presents the registration task we strive to ac-
complish. The following chapters address the single steps
of the registration, namely camera calibration (Section 4),
DRR generation (Section 5), similarity measuring (Sec-
tion 6) and optimization (Section 7). Subsequently, Sec-
tion 8) will describe the algorithmic differentiation ap-
proach in some detail, where Section 9 provides some ex-
perimental results which establish a basis for the conclu-
sions in and Section 10.



2 Related Work

A lot of research has been done in the field of 2D/3D reg-
istration of CT and X-Ray data. The task provides a lot of
single steps that may be varied more or less independently.
Consequently, the approaches vary in the way two dimen-
sional images are obtained from CT volume data (the pro-
cess of generating DRRs, see Section 5), similarity to the
X-Ray images is measured and thereupon optimized.

General information on medical image registration can
be gathered from [10]. The work of Sherouse [19] and
Lemieux [8] mark the beginnings of DRR generation and
its application in CT to X-Ray registration. Comprehen-
sive studies on DRR generation, similarity measuring and
optimization strategies for patient positioning are provided
in [21] and [15]. Approaches exploiting the capabilities
of modern graphics hardware in order to generate images
from CT data or evaluate objective functions can be found
in [7, 6, 18, 5, 3], where [18] describes a GPU raycast-
ing algorithm that is very similar to the one used for this
work. In [22] and [9] gradients computed from the CT data
are used to generate DRRs. Volume rendering based on
shear-warp factorization and similarity measuring in terms
of pattern intensity is presented in [20]. In [23], the 2D/3D
registration task is accomplished using mutual information
(see Section 6) combined with a gradient-based optimiza-
tion strategy, where in [13] and [14] the correlation ratio is
chosen to act as a measure for image similarity.

3 2D/3D Registration

The registration is modeled as a 2D/3D rigid-body regis-
tration. During the operation it is impossible to acquire
high-quality 3D scans of the patient. Intra-operative 2D
images are usually provided by X-Ray devices. Therefore
we carry out a registration of 3D volumes taken with com-
puter tomography devices pre-operatively and 2D images
acquired intra-operatively.

For the registration we primarily use bones and firm
structures as reference. Therefore, we can consider our
alignment task as a rigid-body registration. Consequently,
the coordinate systems to be aligned are regular grids, with
six degrees of freedom. Three parameters define the trans-
lation along the x-, y-, and z-axes (referred to as tx, ty and tz
in the following) and three parameters define the rotation
around the x- (yaw), y- (pitch) and z-axis (roll) (referred
to as α , β , γ). Note that all transformations are given
in world coordinates. Since the volume is to be rotated
around its center we position the volume such that its cen-
ter and the origin of the world coordinate system coincide.
As the individual rotations are not commutative we define
their order as yaw, pitch and roll. After the rotation we
apply the translation. The mapping from volume to world

coordinates is described by a 4×4 matrix:

Tworld
CT =


cβ cγ sα sβ cγ − cα sγ cα sβ cγ + sα sγ tx
cβ sγ sα sβ sγ + cα cγ cα sβ sγ − sα cγ ty
−sβ sα cβ cα cβ tz

0 0 0 1


(1)

where sα stands for the sine of α and cα for the cosine of
α and so on.

4 Camera Calibration

The purpose of the camera calibration is to recover the in-
trinsic parameters (e.g. focal length, geometric distortion)
as well as the extrinsic parameters (position and the ori-
entation in the predefined world coordinate system) of the
X-Ray camera. This is done using calibration targets, with
known (or from an CT scan derived) geometry.

Since the intrinsic parameters are independent of the
camera’s orientation and position in the world and their
change is negligible they can easily be retrieved during an
off-line procedure, that is, before any intervention, where
a simple radio-opaque calibration target (e.g. a wooden
board) with metal markers attached to it is imaged at
different angles and distances from the X-Ray camera’s
source (see [6] for a description of this procedure). The re-
sult of this step is a homogeneous projection matrix Pimg

src ,
which maps each point from the coordinate system estab-
lished at the camera’s source to the image plane. We de-
fine this coordinate system’s axes and the image plane’s
axes to have equal unit distances, and these axes to be per-
pendicular. So we can assemble a matrix of three intrinsic
parameters

Pimg
src =


f 0 px 0
0 f py 0
0 0 1 0
0 0 0 1

 (2)

where f denotes the focal length of the X-Ray camera, px
and py the coordinates of the image plane’s principle point.

The extrinsic parameters of the X-Ray camera encode
the position and orientation of the X-Ray camera. They
define a rigid-body transformation from the world coor-
dinate system to the coordinate system established at the
X-Ray camera’s source. Thus, the homogeneous transfor-
mation matrix Psrc

world assembled from the three translation
and the three rotation parameters of the camera maps a
point in the world to a point in the camera’s coordinate
system. These parameters can only be retrieved before
any intervention if the camera’s position is fixed relative
to the world and it can be moved in a predefined way dur-
ing the operation. In other words, we have to be able to
reproduce certain camera positions and orientations which
correspond to sets of extrinsic parameters known before-
hand. As C-arm X-Ray cameras and the like are usually
mobile and subject to potential bumps against it we carry



out an online calibration for each image that we acquire.
For that purpose we use a three dimensional calibration
target fixedly attached in the treatment room. By means
of this target we set up the world coordinate system which
serves as the common frame of reference for the partici-
pants in the operation.

Again, we use a wooden board with little metal mark-
ers attached to it to carry out the calibration. In contrast
to the determination of the intrinsic parameters we do not
arrange the markers only on one plane but on at least two
planes that are inclined against each other. This adds three
dimensionality to the target. If we know the absolute posi-
tions of the markers and establish an correlation between
a sufficiently large number of them and their image on the
radiograph (obtained during a preliminary segmentation
step) we are able to recover the position and orientation
of the camera during image acquisition.

If we apply both transformations consecutively by mul-
tiplying the matrix assembled from the intrinsic parame-
ters with the matrix assembled from the extrinsic parame-
ters we obtain the operator Cimg

world . It maps each point in
the world to a point in the image plane Ximg and thus ab-
stracts the camera. Incorporating the matrix Tworld

CT which
specifies the position and orientation of the CT volume in
the world, we can describe the whole transformation pro-
cess as follows:

Ximg = Cimg
worldTworld

CT XCT (3)

where XCT is a point in the CT volume and Ximg a point in
the image plane.

5 DRR Generation

The intensity of an X-Ray image pixel results from the in-
tensity of the X-Rays (the amount of X-Ray photons) af-
ter traversing the space between the X-Ray source and the
detector plane or the image intensifier respectively. The
attenuation of the original intensity is dependent on the
radio-opacity or radio-density of the imaged object. The
voxel intensities of a CT volume which have likewise been
gained by a measuring of radiation intensities provide a
measurement for the local intensity diminution, which we
refer to as attenuation coefficient. The Hounsfield scale
is commonly used to quantify the radio-density of a point
in space. According to [22] the image intensities can be
expressed by the following equation:

I(u,v) =
∫ Emax

0
I0(E)exp(−

∫
r(u,v)

µ(x,y,z,E)dr)dE (4)

where I(u,v) denotes the X-Ray intensity at the position
(u,v) of the image plane, I0(E) the incident energy at po-
sition E of the X-Ray energy spectrum and µ(x,y,z,E) the
attenuation coefficient at the position (x,y,z) in space and
an energy E accumulated along the ray r(u,v). The inte-
gration of the energy spectrum has to be incorporated in

the equation because X-Ray sources are always polychro-
matic. For the sake of simplicity we consider the X-Ray
source to be monochromatic and the attenuation coeffi-
cients to act upon an effective energy Eeff. Furthermore,
we can eliminate the exponential function because image
intensifiers usually calculate the logarithm of the arriving
energy and invert the result. The result of these simplifica-
tions is given by the following equation:

I(u,v) =
∫

r(u,v)
µ(x,y,z,Eeff)dr (5)

which leads more radio-dense regions of the imaged ob-
ject to appear darker on the resulting X-Ray radiograph.
Figure 1 shows a sample image taken by a C-arm X-Ray
camera. The dark regions in the image result from the
medical instruments used during biopsy. As the genera-

Figure 1: An X-Ray image of the pelvis taken by a C-arm
camera

tion of X-Ray images and CT volumes differ as far as the
amount and spectrum of radiation energy are concerned a
so called radiometric calibration may be needed (see [6]).
It consists essentially of finding an adequate window/level
setting for the CT data and has to be done only once for
each pair of imaging modalities.

Now that we have all preliminary knowledge to under-
stand how X-Ray images are produced and thus the inter-
relationship between the patient’s position and orientation
and the resulting radiograph, we can emulate the process
of generating X-Ray images. We refer to the result of this
process as Digitally Reconstructed Radiograph (DRR see
[19]), which we can consider a virtual X-Ray image. It is
by means of these DRRs and their similarity to the original
X-Ray image that we seek to recover the transformation
parameters. As a DRR reflects one particular set of trans-
formation parameters we may assume, that if we succeed
in aligning it with the X-Ray image, we have found the
wanted registration. Of course, this only holds if we chose
the camera parameters correctly, that is, conforming to the
actual set-up in the operating room.



In order to create the DRRs we use a GPU based ray-
casting algorithm that inherently emulates the generation
of X-Ray images in an adequate manner. We install the
ray source according to the extrinsic camera parameters in
the world and shoot rays through the CT volume onto the
image plane according to the perspective projection deter-
mined during camera calibration. Along the rays we com-
pute the discretization of (5) by accumulating the atten-
uation coefficients of the volume at a constant sampling
rate. Creating the DRR by means of a fragment shader
program executed directly on the GPU causes a significant
calculation speed-up [18, 5, 3]. In order to incorporate the
camera parameters we use the GL_MODELVIEW and the
GL_PROJECTION matrices provided by OpenGL. In or-
der to obtain the intersections of the rays with the volume
we assign each vertex of the volume its three-dimensional
texture coordinate encoded in the R, G and B channel of
the vertex’ color, thus exploiting the interpolation capabili-
ties of the GPU. Rendering the vertices with the back faces
culled to an off-screen render target (a texture attached to
a frame buffer object [1]) yields the texture coordinates
of the front intersection for each image pixel. The result
of the first rendering pass is shown in Figure 2. Culling

Figure 2: The color coded texture coordinates of the vol-
ume’s front faces

the front faces in the second rendering pass provides the
coordinates of the back intersections and triggers the ray-
casting fragment shader program (see [18] for a similar
approach). Given the texture coordinates of the intersec-
tions and the sampling rate we can determine the positions
where the volume texture is to be sampled. Figure 3 shows
a sample DRR of the pelvis generated from a CT volume
of size 512×182×512.

6 Similarity Measuring

Similarity measures or objective functions provide a
means to assess the similarity or dissimilarity of two im-
ages. In this work we will refer to a measurement of the

Figure 3: A sample DRR showing the pelvis

error that we strive to minimize.
There is a large number of measures to choose from (see

[21] or [15] for comprehensive studies) where their use-
fulness may strongly depend on the field of application.
The focus in this work lay on intensity-based measures,
as opposed to feature-based approaches. That is because
we neither want to rely on the presence of markers in the
patient’s body nor do we want pre-process the images to
obtain significant features.

Intensity-based measures differ in complexity and in
the way they interpret the relation that underlies the sim-
ilarity of images. By all means it is desirable that the
similarity measure peaks for correct registrations and de-
creases smoothly towards this peak regardless of radiomet-
ric differences that arise from the use of different imaging
modalities. Probably the simplest measure is the sum of
squared differences (SSD) which adds up the squares of
the single pixel intensity differences and divides the result
by the number of image pixels N

SSD(I,J) =
1
N ∑

(u,v)∈Ω

(I(u,v)− J(u,v))2 (6)

where ω denotes the image domain, I(u,v) and J(u,v)
the intensity of the DRR and the X-Ray image at position
(u,v). SSD does not accept any radiometric discrepancies
at all. In contrast, the normalized cross correlation toler-
ates a global scale and shift between the intensities of the
two images, thus disclosing a potential linear relationships
between them:

NCC(I,J) =
1

σIσJ

1
N ∑

(u,v)∈Ω

(I(u,v)−µI)(J(u,v)−µJ)

(7)
Considerations will be restricted to these two measures as
they qualify for a pixel-wise calculation by means of a
fragment shader program. Another approach that is partic-
ularly suitable for images originating from different imag-



ing modalities is mutual information. It stems from infor-
mation theory and is extensively dealt with in [23]. The
measure quantifies the amount of information that an im-
age (considered a random variable) reveals about another.

7 Optimization

Now that we can quantify the similarity of two images we
want to find the set of transformation parameters that min-
imizes the objective function. One of the most popular
methods is gradient descent. It considers the similarity
measure a function of the translation parameters and up-
dates them according to the gradient vector at the func-
tion’s current position:

xn+1 = xn−λ
∂F(xn)

∂xn
(8)

where xn is the transformation parameter vector, F the ob-
jective function and λ a non-negative number denoting
the step size or learning rate. Note that the convergence
behavior of gradient descent is heavily dependent on the
choice of λ . If we choose a number that is too small, the
algorithm may converge late or not at all because of get-
ting trapped in a local minimum. If, on the other side, we
choose it too large, we might never get close to the desired
minimum.

Other optimization methods include Powell-Brent’s di-
rection set method (see [12] and [2]) and a best neighbor
search. The former performs line minimization along sev-
eral, iteratively updated vectors in the parameter space of
the objective function. The latter changes each parameter
separately and sets the parameters of the next iteration to
the set that yielded the minimal objective function value.
According to [21], both of them prove to be reliable opti-
mization strategies in the field of 2D/3D registration, yet
did not keep up with gradient descent in terms of regis-
tration speed. However, they are not suitable for our pur-
poses since they renounce gradient calculation, which we
consider an indispensable target for an overall registration
optimization. Note that optimization methods that incor-
porate small errors unnoticeable for the user are out of the
question as they impair the registration’s accuracy.

8 Algorithmic Differentiation

As opposed to symbolic differentiation, which attempts to
differentiate an expression as a whole, algorithmic differ-
entiation (AD) provides an efficient means to calculate the
exact derivative of functions of the form y = F(x1, ...,xn),
which consist of an arbitrary amount of elementary state-
ments. The accuracy of the derivative is only restrained
by machine precision. Applying AD to a computer pro-
gram essentially amounts to a gradual application of the
chain rule (see [11] for a introduction to the mathemat-
ics behind algorithmic differentiation). AD distinguishes

between two basic modes: The forward and the reverse
mode. The former conforms to the calculation of the
derivation of the function F with respect to one of its input
parameters xi. Since the calculation of the derivative re-
quires the differentiated program to be run once, we need n
passes to compute the whole gradient vector, which is un-
satisfactory for our six-dimensional parameter vector. In
contrast, the reverse or adjoint mode is independent of the
input size. It adds adjoint statements to the original pro-
gram and inverts the direction of the program flow. Con-
sequently, the derivative of the function’s result is prop-
agated backwards using the adjoint versions of the pro-
gram variables. If we initialize the adjoint variable vector
with the unit vector parallel to the y-axis the adjoint ver-
sions of the input variables will hold the derivatives of the
function with respect to these variables, thus the elements
of the desired gradient vector. The biggest drawback of
the reverse mode is that, the value of the original pro-
gram variables have to be pre-computed during a so called
forward sweep. During the reverse mode these precom-
puted values may be needed to evaluate the derivatives of
the program statements. Algorithm 1 shows the algorithm

Algorithm 1 The original DRR algorithm
E = 0
for all (u,v) ∈Ω do

Iu,v = 0
for all λ ∈ [0,1] do

(x,y,z)T = Rγ Rβ Rα((tx, ty, tz)T +λ (u,v, f )T )
Iu,v = Iu,v +V (x,y,z)

end for
E = E +(Iu,v− Ju,v)2

end for
E = E

N

that generates a DRR I for a volume V (x,y,z) as well as
a given set of transformation parameters (tx, ty, tz,α,β ,γ)
and computes its dissimilarity E from the X-Ray image
J using SSD (see equation (6)). Differentiating its state-
ments with respect to the variables gives the adjoint ver-
sion of the DRR algorithm presented in Algorithm 2. Note
that the adjoint variables are computed by adding up the
derivatives of the original program’s statements with re-
spect to the correspondent variables from the original al-
gorithm multiplied by the adjoint version of the variable
the statement’s result is assigned to. Thus the derivative
of the “outer” sub-function each is propagated to the “in-
ner” sub-function until the adjoint input parameters of the
algorithm are reached. It is those parameters that we pay
most regard to since they hold the values of the gradient
vector after the algorithm, initialized with ad_E = 1, has
finished. Note that the final DRR intensity I(u,v) of a sin-
gle pixel is referenced right at the beginning of the adjoint
algorithm, which would normally require its value to be
calculated in a preliminary forward sweep. Yet, the adjoint
versions of the input parameters are only linearly depen-



dent on ad_Iu,v, which allows us to accumulate I(u,v) in
the inner loop and incorporate it into the adjoint variables’
values only when the loop has finished. Thus, we first ac-
cumulate the derivatives of the volume with respect to x,
y and z at the sample positions just as we add up the in-
tensities for I(u,v) to obtain intermediate results for ad_x,
ad_y and ad_z. To make use of accelerated texture look-up
we store the voxel intensities and their respective deriva-
tives in one four-channeled volume texture. Note that the
calculation of the gradient volume can be done during an
off-line procedure, thus does not impair the runtime of the
registration algorithm.

The output of the fragment shader program, which is
written to two three-channeled off-screen buffers (one for
the translational parameters, one for the rotational pa-
rameters), consists of a pixel-wise six-dimensional gra-
dient vector. We now incorporate the outer loop of
Algorithm 2 and compute the complete gradient vector
(ad_tx,ad_ty,ad_tz,ad_α,ad_β ,ad_γ). In order not to be
obliged to read the gradient textures back to main mem-
ory, which would be very costly, we compute their sums
right on the GPU using the texture reduction technique de-
scribed in [4].

9 Experimental Results

In order to demonstrate the efficiency of the techniques
proposed above some experiments were carried out, where
DRRs of different sizes were computed and compared to
X-Ray images. 1. Table 1 summarizes some runtime mea-

DRR size CT 512×512×193 CT 512×512×318
256×256 0.032 0.051
512×512 0.036 0.051
800×800 0.037 0.053

Table 1: Average DRR generation time (in seconds) using
the GPU raycaster

surements performed using the GPU based raycasting al-
gorithm. The results have been gained by calculating the
mean of ten rendering passes. The data of the resulting
DRRs is not read back to main memory, which complies
to the realities of our algorithm. Note that the runtime is
hardly influenced by the size of the DRR.

To illustrate the acceleration of the registration algo-
rithm achieved by the use of Algorithmic Differentiation
to calculate the gradient vector of the objective function
we implemented the numerical approximation approach

∆F(x1, ...,xn)
∆xi

=
F(x1, ...,xi +∆xi, ...,xn)−F(x1, ...,xn)

∆xi
(9)

1The results stem from an execution on a machine with an Intel Core-
Duo 1.66 GHz processor, 1 GByte of main memory and a NVIDIA
GeForce Go 7400 TurboCache graphics card with 256 MBytes of video
memory

where F denotes the objective function and xi a transfor-
mation parameter. It is apparent, that the calculation of (9)
requires the objective function to be evaluated twice. For
the whole six-dimensional gradient vector the number of
DRRs that must be generated and compared to the X-Ray
image amounts to a total of twelve. In contrast, the AD
approach requires the fragment shader program to be exe-
cuted only once. Thus, the volume has to be traversed only
once which is reflected in a considerably shorter computa-
tion time. Table 2 shows the results of a direct comparison
between gradient calculation using numerical approxima-
tion and Algorithmic Differentiation. The results repre-

DRR size NA AD
256×256 0.83 0.14
512×512 3.30 0.55

Table 2: Numerical approximation (NA) vs. Algorithmic
Differentiation (AD) (runtimes in seconds)

sent the average runtime of one pass computed from a to-
tal of 25 passes. Two different DRR sizes (256×256 and
512×512) have been generated from a CT dataset of size
256×256×96. The runtimes grow linearly with the DRR
size. In all cases the AD approach was about six times
faster than numerical approximation. The reason why the
speedup factor is not twelve is that the volume texture is
four times larger for AD. In addition, more arithmetical
operations have to be evaluated due to the program state-
ments being differentiated with respect to three or even six
parameters each (see Algorihm 2).

10 Conclusions and Future Work

The results presented in Section 9 show the potential of a
combination of accelerated GPU rendering to obtain DRRs
and Algorithmic Differentiation to compute exact deriva-
tives for gradient based optimization. Both techniques are
capable of dramatically reducing the runtime of the overall
registration algorithm.

Ongoing work will be concerned with the enhancement
of the optimization strategy and an exact evaluation of the
registration accuracy. Furthermore, the perspective pro-
jection transformation presented in Section 4 is to be ex-
tended to incorporate the geometric distortion caused by
X-Ray image intensifiers (as opposed to detector planes).
As far as similarity measuring is concerned, there are ef-
forts, to extend the set of available objective functions by
mutual information by finding an effective implementation
by means of shading languages.
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Algorithm 2 The adjoint DRR algorithm

ad_E = 1
N ad_E

for all (u,v) ∈Ω do
ad_Iu,v = ad_Iu,v +2(I− Ju,v)ad_E
for all λ ∈ [0,1] do

ad_x = ad_x+ ∂V (x,y,z)
∂x ad_Iu,v

ad_y = ad_y+ ∂V (x,y,z)
∂y ad_Iu,v

ad_z = ad_z+ ∂V (x,y,z)
∂ z ad_Iu,v

ad_tx = ad_tx− sinβad_z
ad_tx = ad_tx + cosβ sinγad_y
ad_tx = ad_tx + cosβcosγad_x

ad_ty = ad_ty + sinαcosβad_z
ad_ty = ad_ty +(sinαsinβ sinγ + cosαcosγ)ad_y
ad_ty = ad_ty +(sinαsinβcosγ− cosαsinγ)ad_x

ad_tz = ad_tz + cosαcosβad_z
ad_tz = ad_tz +(cosαsinβ sinγ− sinαcosγ)ad_y
ad_tz = ad_tz +(cosαsinβcosγ + sinαsinγ)ad_x

ad_α = ad_α +(cosαcosβ (ty +λv)− sinαcosβ (tz +λ f ))ad_z
ad_α = ad_α +((cosαsinβ sinγ− sinαcosγ)(ty +λv)+(−sinαsinβ sinγ− cosαcosγ))(tz +λ f ))ad_y
ad_α = ad_α +((cosαsinβcosγ + sinαsinγ)(ty +λv)+(−sinαsinβcosγ + cosαsinγ)(tz +λ f ))ad_x

ad_β = ad_β +(−cosβ (tx +λu)+−sinαsinβ (ty +λv)+−cosαsinβ (tz +λ f ))ad_z
ad_β = ad_β +(−sinβ sinγ(tx +λu)+ sinαcosβ sinγ(ty +λv)+ cosαcosβ sinγ(tz +λ f ))ad_y
ad_β = ad_β +(−sinβcosγ(tx +λu)+ sinαcosβcosγ(ty +λv)+ cosαcosβcosγ(tz +λ f ))ad_x

ad_γ = ad_γ + (cosβcosγ(tx + λu) + (sinαsinβcosγ − cosαsinγ)(ty + λv) + (cosαsinβcosγ + sinαsinγ)(tz +
λ f ))ad_y
ad_γ = ad_γ +(−cosβ sinγ(tx +λu)+(−sinαsinβ sinγ−cosαcosγ)(ty +λv)+(−cosαsinβ sinγ +sinαcosγ)(tz +
λ f ))ad_x

end for
end for
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