
Simulation and Visualization of topology-changing plastic
material

Marc Gissler∗

Computer Graphics
University of Freiburg

Germany

Abstract

We present a dynamic simulation framework for topology-
changing deformable objects. The objects are represented
using tetrahedral meshes and deformations are governed
by a corotational finite element approach for linear elas-
ticity and plasticity. Geometric constraints are employed
to efficiently handle topology changes in a unified way.
Topology changes comprise fracturing and merging of de-
formable objects. Fracturing is realized by breaking ex-
isting constraints, while merging is implemented by gen-
erating new constraints. Thus, geometric constraints sig-
nificantly reduce the complexity of data structure updates
in the context of topology changes. This improves the
computational efficiency and reduces the implementation
effort. Experiments illustrate the versatility and the effi-
ciency of our approach.

Keywords: Physically Based Animation, Finite Ele-
ment Method, Constraints, Topology Changes, Fracturing,
Merging

1 Introduction

The simulation of physical systems at interactive rates is
essential for a variety of applications, ranging from med-
ical training systems to computer animation for games and
feature films. In order to implement an interactive system,
all components ranging from fluid and solid modeling to
collision detection and contact handling have to be consid-
ered.

Efficient data structures are an important aspect in terms
of interactivity. While the processing of data structures is
less demanding for deformable solids, the update of these
representations poses additional challenges in the context
of topology changes. Therefore, we propose to employ an
efficient and accurate approach to geometric constraints in
order to simplify and to accelerate these updates.

Our contribution. We present a dynamic framework
for topology-changing deformable tetrahedral meshes.
Elasto-mechanical properties are simulated with a coro-
tational finite element approach for linear elasticity and

∗gisslerm@informatik.uni-freiburg.de

a strain-state based plasticity model. Topology changes
such as breaking and merging are efficiently processed in
a unified way with minimized complexity in terms of data
structure updates. In a pre-processing step, objects are de-
composed into single tetrahedrons and efficient and accu-
rate constraints [7] are employed to re-assemble the object
to its original geometry. During the dynamic simulation,
fracturing and merging are realized by removing exist-
ing constraints and by generating new constraints, respec-
tively. Information on internal strain can be considered to
control fracturing, while collision information can be used
to induce a merging step. In each simulation step, a con-
sistent high-resolution surface mesh is maintained using
subdivision surfaces.

2 Related Work

We give a short overview over the three main areas of re-
search we have incorporated into our scheme.

FEM: Twenty years ago, Terzopolous et al. [16] pro-
posed the use of physically-based models for the anima-
tion of elastic and plastic objects. They used surfaces
to represent the objects and solved the governing par-
tial derivatives using finite difference schemes. Modeling
three-dimensional volumes using a finite element method
is based on techniques presented in mechanical engineer-
ing and computer graphics [3] [16] and widely used [13]
[11] [1].

Constraints: There exist two main strategies to solve
constraints numerically. The first technique computes
forces or impulses using maximal coordinates. In this con-
text, Lagrange multipliers or propagation methods have
been proposed. As an example, [21] uses Lagrange mul-
tipliers to compute constraints on linear deformations. In
contrast, the second technique reduces the number of co-
ordinates to represent the system state. The remaining co-
ordinates are so-called reduced coordinates or generalized
coordinates. Reduced coordinates are preferred in global
approaches, if the number of constraints is large compared
to the number of degrees of freedom. As an example, [8]
presents an approach for contact constraints of deformable
bodies. Recently, a constraint approach for articulated
rigid bodies has been presented in [20]. This approach

employs information on the underlying numerical integra-
tion scheme. [7] also considers the underlying integration
scheme but proposes a local, non-iterative solution for de-
formable objects.

Topology changes: Shortly after physically based mod-
els were proposed for animating elastic models, [17] de-
scribed how to also simulate fracture effects.O’Brien et al.
presented a finite element technique to simulate brittle [13]
and ductile [12] fracture in combination with elasto-plastic
materials. By analyzing the stress tensors computed with
FEM, their algorithm determines where cracks should ini-
tiate and in what directions they should propagate. Re-
cently Müller et al. [11] proposed a method to animate
and fracture a detailed surface mesh along with the under-
lying hexahedral mesh. Up until now, only little attention
was given to methods that allow for the merging of ob-
jects. Simulating virtual clay could be an application for
such methods. [4] and [14] use volumetric models that
define the object as an iso-surface of a three-dimensional
scalar field function stored in a grid. This representation
allows for the addition and removal of material. Theoret-
ically, the merging of objects would therefore be possible
with this methods but is not explicitly mentioned. To our
knowledge there exists no work dealing with merging of
objects using tetrahedral meshes as volumetric representa-
tion.

3 Deformable solids

Our simulation framework allows for the simulation of
both elastically and plastically deformable solids. We use
the corotational finite element approach as proposed by
Müller et al. [11] and Becker [1]. We describe the main
steps of the two models in the next two sections.

3.1 Elasticity model

The Finite Element Method requires an object to be dis-
cretized into a finite set of elements. Therefore, we ap-
proximate a deformable solid by generating a coarse tetra-
hedral mesh as was proposed by Spillmann et al. [15],
yielding a set of tetrahedrons and mass points (see Fig-
ure 1). At every mass point we define a displacement
vector u, which gives the difference between the posi-
tion of the mass point in the undeformed and the de-
formed state. Every point x within a tetrahedral element
can then be linearly interpolated using the displacement
vectors at the four mass points of the tetrahedron, given
by u(x) = N(x)ũ, with u(x) being the displacement field
over the whole mesh, N(x) being a shape function i.e. the
barycentric coordinates of x, and ũ = [u1 u2 u3 u4]T being
a collection of the four displacement vectors.

In [1] Becker shows how the Cauchy linear strain tensor
within every tetrahedral element e can be computed using
the displacement field, yielding

ε = Beũ, (1)

Figure 1: Tetrahedralization: The triangulated surface of
the Stanford bunny serves as the input model (left). A vol-
umetric mesh consisting of 974 points and 4053 tetrahe-
drons is generated (right).

where Be is a constant matrix and can be pre-computed.
Furthermore, the relation between the stress ε and the
strain σ is given by the constitutive equation σ = C̃ε ,
where C is a symmetric matrix defining the mechanical
properties of the material. In order to compute the dy-
namic behavior of the objects we derive forces fe for every
tetrahedral element from the potential energy of the ele-
ment. It turns out, that the forces are linearly dependent
on the displacements ũ defined at the four mass points of
the element:

fe = Keu, (2)

with Ke = VeBT
e C̃eBe being the stiffness matrix and Ve the

volume of the element.

3.1.1 Corotational stiffness

The linear Finite Element Method is not rotationally in-
variant. Thus, objects grow in size under large deforma-
tion. In [11] Müller et. al propose the corotational stiffness
algorithm to overcome this shortage.

If p1, ...,p4 ∈ R3 and q1, ...,q4 ∈ R3 denote the points
of a tetrahedron in the undeformed and deformed state
respectively, then the transformation of a tetrahedron is
given by:

A = HP−1 =

 B t

0 0 0 1

 (3)

with H ∈ R2x4 and P ∈ R2x4 containing the points pi
and qi respectively, t ∈ R3 denoting the translational and
B ∈ R3x3 denoting the rotational and stretching part of the
transformation. A polar decomposition extracts the rota-
tional part R ∈ R3x3 from B. Employing R to the force
computation yields

fe = ReKe(R−1
e t̄− p̄), (4)

with t̄ = [q1 q2 q3 q4]T , p̄ = [p1 p2 p3 p4]T and Re ∈R12×12

having the rotation matrix R four times on its diagonal.

3.1.2 Dynamic deformation

Using the derived forces, we now can compute the dynam-
ics of the system

M
d2X(t)

dt2 +D
dX(t)

dt
= Fext(X, t)−KU, (5)

where the coordinate vector X is made a function of time
X(t), M is the mass matrix, D the damping matrix, K an
assembly of all stiffness matrices Ke and U the displace-
ment matrix. For numerical integration we use the Verlet
scheme, because it is an explicit integration scheme that
can be computed very efficiently and allows for compara-
tively large time steps [18].

3.2 Plasticity model

This section shows how to add elasto-plastic properties
to the simulation model. This technique was proposed
by [12] and adopted to linear corotational FEM by [11].
As opposed to elastic materials, elasto-plastic materials
store part of the deformation. They move to a resting state
between the deformed and undeformed state after remov-
ing the external forces (see Figure 2). The resting state de-
pends on the elastic limit of the material and the creep. The
creep is the permanent deformation resulting from pro-
longed application of stress below the elastic limit. It is
influenced by the magnitude of the load and the time the
load is applied.

Using equation 1 and considering the rotation-free dis-
placement of an element yields the total strain

εtotal = Beq̃ = Be(R−1
e t̄− p̄). (6)

resulting in a deformation of an object . To store some of
the deformation in the elasto-plastic material we remove a
portion of the strain - the plastic strain εplastic. Therefore,
the elastic strain is εelastic = εtotal − εplastic.

Three scalar parameters control the plasticity of a ma-
terial: cyield , ccreep and cmax. cyield defines the elastic
limit. If the 2-norm of the elastic strain exceeds the elas-
tic limit, the plastic strain absorbs part of it: εplastic +=
4t ∗ ccreep ∗ εelastic. ccreep defines the creep of the mater-
ial. It gives the amount of strain the material can absorb
per time step. If ccreep ∈ [0...1/δ t] is 1/δ t, all the elastic
strain is absorbed in one time step. cmax defines the max-
imum plastic strain that can be stored in the material. If
the 2-norm of the plastic strain exceeds this threshold, it
is adjusted respectively: εplastic ∗= cmax/||εplastic||2. We
have to integrate the plastic strain into the system of equa-
tions. Therefore, we compute corresponding plastic forces
fplastic using the definition of the stiffness matrix in section
3.1:

fplastic = ReKeq̃plastic

= ReKeB−1
e ∗ εplastic

= Re(VeBT
e C̃Be)B−1

e ∗ εplastic

= ReVeBT
e C̃ · εplastic

= RePe · εplastic.

As can be seen the plasticity matrix Pe = VeBT
e C̃ maps

the plastic strain to plastic forces. An advantage of this
technique is the possibility to pre-compute this matrix for
each element. Furthermore, only a force vector is added
to equation 5. Thus, the plasticity does not change the
condition of the linear system that needs to be solved:

Fext(X, t) = M
d2X(t)

dt2 +D
dX(t)

dt
+(felastic−fplastic)(X, t).

(7)

Figure 2: The Stanford bunny in its resting position after
it was deformed elastically (left). The bunny in its resting
position after it was deformed plastically (right).

4 Constraints

By now, we are able to simulate objects with elastic and
plastic properties. Now we want to add additional prop-
erties which allow for changes in the topology of the ob-
jects. Therefore, we introduce local constraints. Two ob-
jects merge with each other by applying constraints, and
objects fracture by dissolving constraints. This section de-
scribes the constraints for merging and fracturing objects.
We use the local constraints method as presented in [7].
The following sections recapitulate the main steps of the
method.

4.1 Considering the integration scheme

The local constraint method employs information on the
underlying integration scheme of the simulation. The up-
date from time t to t +h of positions xt

i and velocities vt
i of

mass points mi can generally be written as(
xt+h

i
vt+h

i

)
=
(

Ai
Bi

)
st

i +
(

ci Ft
i

di Ft
i

)
(8)

with system matrices Ai and Bi ∈ R3×k, state vector
st

i ∈ Rk and scalars ci and di ∈ R.

As we use the Verlet integration scheme, positions and
velocities are updated with

xt+h
i = 2xt

i −xt−h
i +

h2

mi
Ft

i

vt+h
i =

1
2h

(
xt+h

i −xt−h
i

)
(9)

where the velocity update can be rewritten as

vt+h
i =

1
h

(
xt

i −xt−h
i +

h2

2mi
Ft

i

)
. (10)

By incorporating these equations into equation 8 we get

Ai = (2I3 − I3) ci = h2

mi

Bi =
(1

h I3 − 1
h I3
)

di = h
2mi

, (11)

and for the state vector we get

st
i =
(

xt
i

xt−h
i

)
. (12)

4.2 Constraint forces

The goal is to compute a constraint force F̃t
i to meet an im-

plicitly or explicitly defined constraint on a position or ve-
locity which are denoted with x̃t+h

i and ṽt+h
i , respectively.

Adding this constraint force to equation 8 yields(
x̃t+h

i
ṽt+h

i

)
=
(

Ai
Bi

)
st

i +
(

ci
(
Ft

i + F̃t
i
)

di
(
Ft

i + F̃t
i
)) . (13)

4.2.1 Points-to-point forces

We are specifically interested in constraint forces that hold
n points xt

i at a jointed position xgoal . This jointed position
is not user-defined but instead the result of the n equations
computing the n constraint forces Ft

i . Adding the equation
preserving the momentum in the mass point system yields

xgoal = x̃t+h
i = 2xt

i −xt−h
i +

h2

mi

(
Ft

i + F̃t
i
)

=
1

∑ j m j
∑

j
m jxt+h

j . (14)

This is the center of mass of the n positions xt+h
j of the

points involved, as was shown in [7]. Figure 3 illustrates
this procedure for three points. Solving this equation for
F̃t

i , we compute the constraint forces for a points-to-point
constraint by

F̃t
i = −mi

h2

(
xt+h

i −xt+h
0

)
+

mi

∑ j m j
∑

j

m j

h2

(
xt+h

j −xt+h
0

)
=

mi

h2

(
1

∑ j m j
∑

j
m jxt+h

j −xt+h
i

)
. (15)

Figure 3: Three points (gray dots) are constrained together.
Orange dots indicate the ”would-be” positions of the three
points in t + h. However, actual force (gray arrow) and
constraint force together (red arrow) move the point to the
center of gravity of the three points (red dot).

The positions xt+h
i are computed using Verlet integration

as well. Thus, the constraint forces can easily be computed
with an additional integration step for all affected points.
However, the more points are involved in the constraints,
the more integrations have to be executed per constraint.

5 Topology changes

This section describes how to use the constraints described
in the previous section for modeling the merging and
breaking and therefore the topology changes of objects.
If two objects collide with each other constraints are com-
puted to keep them stuck together. Conversely, constraints
are dissolved, if an object should break at at a specific po-
sition.

5.1 Merging

An object is able to merge with another object, if they
collide with with each other. The collision detection
is accomplished by the spatial hashing approach as
presented by Teschner et al. [19] and its extension for
consistent penetration depth estimation by Heidelberger
et. al [9]. The algorithm in [9] processes three steps
that are used in our merging algorithm: First, it detects
all colliding points. Second it labels all colliding points
adjacent to one or more non-colliding points as border
points. Third, it detects all intersecting edges that contain
one non-colliding point and one border point.

Instead of computing a collision response we use the in-
formation from the collision detection to constrain the two
objects. Therefore, we loop through all the intersecting
edges and perform the following steps:

• Find a border point that is also a surface point.

• Use one of the intersecting edges this border point is
part of to find the nearest permissible adjacent surface
point on the penetrated object.

• Constrain the two points found in the previous steps.
Insert points into possibly existing constraints at one
of the points.

We demand several quality criteria to be fulfilled while
looping through these three steps: In step one we search
for a border point also being a surface point because we
want both points to lie on the surface of their tetrahedral
meshes. This is a precondition for the visualization algo-
rithm described in section 6. Step two demands a permissi-
ble surface point. A point is not permissible if constraining
it would yield a tetrahedron with zero ore negative volume.

The method can handle the self-collisions an therefore
the merging of objects with itself. In fact, the algorithm
only knows about points, tetrahderons and constraints and
does not distinguish between objects as such.

5.2 Fracturing

We assume a tetrahedron being the smallest part of an ob-
ject. In a pre-processing step we divide an object into its
individual tetrahedrons it was built of. Additionally we
store the connectivity between the tetrahedrons using the
constraints. Points duplicated from the same initial point
form a points-to-point constraint. This yields an object
built up with individual tetrahedrons and held together by
constraint forces.

This special data structure gives us the opportunity to
fracture objects very fast. The only thing we have to do is
removing points from constraints. This yields the loss of
connectivity between tetrahedrons and therefore fractures
the object. In contrast to other approaches we do not have
to duplicate points during run-time since this was done in
a pre-processing step. This may be considered as an over-
head as long as no fracture occurs. On the other hand we
simulate the worst case, the fracture of a tetrahedral mesh
into all its simplices, right from the start. Thus, constant
simulation times are guaranteed during all possible events.

A point is removed from the constraint, if the 2-norm of
the constraint force computed to satisfy the constraint ex-
ceeds a certain scalar threshold. This is done recursively:

1. compute the center of mass of the constraint

2. loop through all points of the constraint and compute
their constraint forces

3. if the 2-norm of the constraint force of a point ex-
ceeds the specified threshold, remove it from the cur-
rent constraint and insert it into a new constraint
group else leave the point in the current constraint

4. if if no points were removed from the current con-
straint, return

5. repeat from step 1 with the current constraint

6. repeat from step 1 with the new constraint

Employing this method allows for the removal of indi-
vidual points from the constraint instead of dissolving the
whole constraint (see Figure 4).

Figure 4: External forces (red) act upon points of the ob-
ject (left). The object was moved unconstrained to xt+h.
Constraint forces (green arrows) are computed based on
the center of mass (blue circle) of the points. The con-
straint forces of the lower two points exceed a threshold.
(middle). Two new constraints were built. Now, all the
constraint forces lie below the given threshold (right).

6 Surface animation

In the following subsections we describe how we gener-
ate the surfaces of our objects and how we adopt changes
in topology from the simulation level to the visualization
level. The algorithm both handles the merging as well as
the fracturing of objects in the same way. Furthermore,
the algorithm keeps an initially watertight surface mesh
watertight throughout the simulation.

6.1 Generation

In this section we describe how to generate the surface
mesh of the objects in a scene. We first describe how the
algorithm works in general and then explain the modifica-
tions to adapt the algorithm to topological changes.

Given a tetrahedral mesh we search for the surface of
this mesh. Therefore we loop through all the tetrahedrons
and visit their faces. Faces visited twice are lying inside
the mesh. Faces only visited once lie on the surface of the
mesh. They build the set surface faces. Now, we con-
sider more than one tetrahedral mesh and a set of con-
straints applied onto this mesh. We assign a unique ID
to every constraint representing all the points participating
in a constraint. We loop through all the tetrahedrons of
all meshes as described above, but this time we consider
the constraints and the unique IDs assigned to them. Thus,
faces having their three faces constrained in the same con-
straints are considered as faces lying adjacent to each other
and therefore inside an object. As a result, we get all the
surface faces of all tetrahedral meshes in the scene with
respect to the constraints in the scene. As can be seen the
algorithm does not distinguish between tetrahedral meshes
but between points constrained or not.

6.2 Smoothing

We use surface subdivision to smooth the resulting sur-
face mesh generated in the previous section. Subdivi-
sion schemes defining smooth surfaces have been intro-
duced by Catmull and Clark [2], Doo and Sabin [5],
and Loop [10]. In our implementation we use the Loop
scheme [10] and a modified version of the Butterfly subdi-
vision scheme [6] [22]. Both can be applied to triangular
meshes. Furthermore, they are local, stationary and uni-
form.

The Loop scheme is an approximating scheme where
the vertices of the control mesh do not need to lie on the
limit surface. This perfectly smoothes the control mesh
making the control mesh disappear completely. How-
ever, if it is applied to a control mesh with high curvature
such as a single tetrahedron, the resulting mesh might be
smaller in size as the control mesh and does not cover the
tetrahedral mesh anymore. On the other hand the butter-
fly is an interpolating scheme leaving the vertices of the
control mesh on the limit surface. This prevents the mesh
to shrink even in cases of high curvature. However, the
low resolution of the control mesh can be identified in the
limit surface due to interpolation. Depending on the sce-
nario we use the scheme that suits the best.

6.3 Mesh coupling

We use mesh coupling as proposed by Müller et al. [11] to
couple the low resolution tetrahedral mesh with the high
resolution subdivision surface mesh. For every vertex in
the high resolution mesh we search for the closest tetra-
hedron in the tetrahedral mesh and store the barycentric
coordinates of the vertex with respect to this tetrahedron.
In each visualization step the new vertex position is com-
puted by interpolating the positions of the tetrahedron us-
ing the stored barycentric coordinates.

Finding the closest tetrahedron for every vertex can be
costly. It lies in O(nm) with n being the number of tetra-
hedrons of the tetrahedral mesh and m being the num-
ber of vertices of the surface mesh. Since we know over
which edge a vertex is created during subdivision we also
know the nearest tetrahedron immediately. This reduces
the problem to O(n).

6.4 Fracturing

In Section 5 we described how the tetrahedral mesh is
fractured when points are removed from constraints due
to their constraint forces exceeding a threshold. Changing
or dissolving a constraint triggers the surface mesh update,
because it possibly separates two tetrahedrons t1 and t2 and
their common face f gets exposed. A closing surface has
to be computed to cover the two new surface faces.

6.5 Merging

The second event that triggers a surface mesh update is
the merging of objects, because constraints are created or
altered. If the three points of a surface face are constrained
to the three points of another face using the algorithm
described in section 5.1, it becomes an inner face and
does not contribute to the surface anymore. This poses
some conditions on the properties of a surface face.
Ideally, the size of the surface faces should not differ
greatly, otherwise big surface faces might be constrained
onto several small faces. This would not be considered as
a merged object in the visualization algorithm since the
faces do not match onto each other.

In conclusion, the surface fracturing and the surface
merging both trigger the generation of a new surface as
soon as changes in the constraints occur.

7 Results

We tested our implementation in various scenarios, rang-
ing from off-line computations to interactive animations.
All experiments have been performed on an Intel Core
Duo 2.13 GHz PC using an ATI Radeon X1300 graphics
card.

The first scenario shows the versatility of the plastic-
ity model. In Figure 5 a hand falls on a plastically de-
formable plate. For the plasticity parameters, we set cyield
to zero. Thus, plastic strain always absorbs part of the
elastic strain. ccreep was set to one half of the time step, so
plastic strain absorbs half of the elastic strain per time step.
The scene consists of 10000 mass points and 40000 tetra-
hedrons and the simulation runs at 4 frames per second in
average, including deformation and collision handling.
The second scenario demonstrates the fracturing of a
model. Figures 6 and 7 show a teddy with a volumet-
ric mesh composed of 4292 tetrahedrons and 1540 sur-
face faces for which the subdivision algorithm computes
a high resolution surface mesh of about 23500 triangles.
Removing the arm from the body of the teddy corresponds
to dissolving 25 constraints. The closing surface that is
generated at the crack adds an additional 1000 triangles
to the surface mesh. The simulation runs at an average of
20 frames per second. Currently, visualizing the frame fol-
lowing a topological change takes 200 ms since the surface
subdivision algorithm works globally and generates all the
23500 triangles from scratch. A local refinement only in
areas where topology changes occur will greatly improve
this performance in the near future.
The last scenario shows the merging of some clay cubes
(see Figure 8). They stick to each other as soon as they
collide with each other. If the properties of an object
do not allow the merging with other objects, collision re-
sponse forces are computed to separate the objects. This
is demonstrated by the sphere hitting the pile of cubes.

The cubes consist of 1080 tetrahedrons, the sphere of 1200
tetrahedrons.

8 Conclusion

We have presented a novel approach to handle topology
changes. It handles both merging and fracturing of objects
in a unified way. It creates constraints to merge objects and
dissolves constraints to fracture them. Finding the surface
of an object after a modification of the constraints is ex-
ecuted only on the knowledge about the constraints. We
do not need to know how many objects are present in the
scene. We use surface subdivision to smooth the result-
ing surface. The algorithm guarantees watertight meshes
that surround the object at all times. Our implemented de-
formation model allows the application of our approach
on elastic as well as plastic materials. Currently, we are
working on an extension of the proposed method to con-
sider internal stresses in the objects. Computing splitting
planes from the stresses allows for crack propagation.

References

[1] M. Becker and M. Teschner. Robust and efficient
estimation of elasticity parameters using the linear
finite element method. In Proc. Simulation and Visu-
alization, 2007, to appear.

[2] E. Catmull and J. Clark. Recursively generated b-
spline surfaces on arbitrary topological meshes. In
Computer Aided Design 10, 6, pages 350–355, 1978.

[3] R.D. Cook, D.S. Malkus, and M.E. Plesha. Applica-
tions of Finite Element Analysis. John Wiley & Sons,
New York, third edition, 1987.

[4] G. Dewaele and M.-P. Cani. Virtual clay for direct
hand manipulation. In Eurographics (short papers),
2004.

[5] D. Doo and M. Sabin. Analysis of the behaviour of
recursive division surfaces near extraordinary points.
In Computer Aided Design 10, 6, pages 356–360,
1978.

[6] N. Dyn, S. Hed, and D. Levin. Subdivision schemes
for surface interpolation. In Workshop in Computa-
tional Geometry , A.C. et. al., Ed., World Scientific,
pages 97–118, 1993.

[7] M. Gissler, M. Becker, and M. Teschner. Local con-
straint methods for deformable objects. In Proc. Vir-
tual Reality Interactions and Physical Simulations
VriPhys, pages 25–32, 2006.

[8] K.K. Hauser, C. Shen, and J.F. O’Brien. Interactive
deformation using modal analysis with constraints.
In Graphics Interface, pages 247–256, 2003.

[9] B. Heidelberger, M. Teschner, R. Keiser, M. Mueller,
and M. Gross. Consistent penetration depth estima-
tion for deformable collision response. In Proc. Vi-
sion, Modeling, Visualization, pages 339–346, 2004.

[10] C. Loop. Smooth subdivision surfaces based on tri-
angles. Master’s thesis, Utah University, USA, 1987.

[11] M. Müller and M. Gross. Interactive virtual mate-
rials. In Proc. Graphics Interface, pages 239–246,
2004.

[12] J.F. O’Brien, A.W. Bargteil, and J.K. Hodgins.
Graphical modeling and animation of ductile frac-
ture. In Proc. ACM SIGGRAPH, pages 291–294,
2002.

[13] J.F. O’Brien and J.K. Hodgins. Graphical modeling
and animation of brittle fracture. In Proc. ACM SIG-
GRAPH, pages 287–296, 1999.

[14] R.N. Perry and S.F. Frisken. Kizamu: A system
for sculpting digital characters. In Proc. ACM SIG-
GRAPH, pages 47–56, 2001.

[15] J. Spillmann, M. Wagner, and M. Teschner. Ro-
bust tetrahedral meshing of triangle soups. In Proc.
Vision, Modeling, Visualization VMV, pages 9–16,
2006.

[16] D. Terzopolous, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models. In Proc. ACM SIG-
GRAPH, pages 205–214, 1987.

[17] D. Terzopoulos and K. Fleischer. Modeling inelastic
deformation: viscolelasticity, plasticity, fracture. In
Proc. Computer graphics and interactive techniques,
pages 269–278, 1988.

[18] M. Teschner, B. Heidelberger, M. Müller, and
M. Gross. A versatile and robust model for geometri-
cally complex deformable solids. In Proc. Computer
Graphics International, pages 312–319, 2004.

[19] M. Teschner, B. Heidelberger, M. Müller, D. Pomer-
anets, and M. Gross. Optimized spatial hashing for
collision detection of deformable objects. In Proc.
Vision, Modeling, Visualization, pages 47–54, 2003.

[20] R. Weinstein, J. Teran, and R. Fedkiw. Dynamic
Simulation of Articulated Rigid Bodies with Contact
and Collision. IEEE TVCG, 12(3), 2006.

[21] A. Witkin, M. Gleicher, and W. Welch. Interactive
dynamics. In Proc. Symposium on Interactive 3D
graphics, pages 11–21, 1990.

[22] D. Zorin, P. Schröder, and W. Swelders. Interpolating
subdivision for meshes with arbitrary topology. In
Proc. ACM SIGGRAPH, pages 189–192, 1996.

Figure 5: To test the plasticity properties of the defor-
mation method, a hand is stamped into a plastically de-
formable plate. After the hand is removed an imprint is
left in the plate.

Figure 6: Upper row: A teddy with a smooth and water-
tight surface mesh (left). The arm was removed from the
body and a closed surface was generated at the exposed
areas. (right). Lower row: The volumetric mesh of the
teddy. Constraints were dissolved at the fracture spot.

Figure 7: Consistent and watertight fracturing is guaran-
teed during the whole fracture process. In the top row
fracturing starts on top of the arm whereas in the bottom
row it starts at the lower front.

Figure 8: Clay cubes. 5 cubes are are merged together
(top row). A ball hits the resulting object and deforms it
plastically (bottom row).

