
Color Reduction Using K-Means Clustering 
Tomá š Mikolov* 

Faculty of Information Technology 
Brno University of Technolgy 

Brno / Czech Republic 
 

                                                           
* xmikol04@stud.fit.vutbr.cz 

Abstract 
Although nowadays displays are able to handle 24-bit 
graphics efficiently, it is still useful in many areas to 
reduce color space. The aim of this paper is to propose an 
easy to implement algorithm for color reduction using 
modified K-Means clustering. The comparison of results 
is made using popular ACDSee and Adobe Photoshop 
programs. 
 
Keywords: Color reduction, K-Means clustering, 
dithering, mean square error 

1 Introduction 
It may not be obvious, but effective color reduction is 
needed in many graphical applications. One well known 
example may be the GIF format used widely on the 
Internet - this graphical format reduces the color space by 
defining a palette with size of 256 colors [5]. Another 
examples may be video codecs, computer games and 
various handheld devices like mobile phones. 
Since the problem of finding optimal palette is 
computationally intensive (it is not possible to evaluate 
all possible combinations), many different approaches 
were taken to solve it, such as using neural nets, genetic 
algorithms, fuzzy logic, etc. On the other hand, for many 
applications it is much more appropriate to use simpler 
algorithms, like classic K-Means clustering. 
The goal of this paper is to propose an easy to 
implement algorithm for color reduction with 
sufficient visual quality. The algorithm itself is 
described in chapters 3, 4 and the results and their 
comparison with output from standard programs 
(ACDSee 4.0 [7], Adobe Photoshop 6.0.1 [8]) are 
summarized in chapter 5. 

2 Background 
The problem of color reduction may be seen as a 
clustering problem. For example, for picture conversion 
to 16 colors, it is needed to find optimal positions of 16 
clusters in RGB space that represent the input space so 
that the global error after picture conversion is 
minimized. Commonly used error function is mean 
squared error function (MSE, [6]), which can be simply 

seen as an average of square of distances between input 
and output vectors. 
Probably the simplest way to obtain these clusters is to 
cut off least significant bits in RGB values. For example, 
to reduce 24-bit picture to 8-bit, it is possible to cut off 5 
least significant bits for red and green and 6 bits for blue. 
Although this algorithm is fast and simple, it’s results are 
insufficient for many applications. 
Other common algorithms for color reduction are median 
cut algoritm [2], Wu color quantization algorithm [3] and 
neural network color quantization algorithm [4]. These 
algorithms differ in output quality, implementation 
difficulty and memory and time consumption. For 
example, solution using neural networks gives best 
results (in terms of MSE), but is computationally very 
expensive. 
For many algorithms used in image processing and 
computer vision, implementation difficulty may be 
another important measure. It is clear that there is no 
‘best’ algorithm for color reduction, since the solution 
always favours some characteristics (quality of output for 
neural networks, implementation difficulty for cutting off 
least significant bits). 
One of the simplest algorithm for clustering is the 
classical K-Means algorithm [1]: 
 
1. Choose K points (centroids) in space 
2. Assign each input vector to the nearest centroid 
3. Recalculate positions of all centroids, so that the 
new position of each centroid will be the average of 
all vectors that have been assigned to this cluster 
4. Go to step 2 until the positions of centroids no 
longer move 
 
What is not specified is the way how to choose the 
starting centroids in step 1. Usually, random selection 
from the input vectors is made. 
Since this algorithm is very simple, it seems well suited 
to satisfy chosen demands. 

3 Proposed Clustering Algorithm 
The designed algorithm is a modification of the K-Means 
clustering. The difference is in the way how to obtain the 
initial positions of the clusters. Instead of random 
initialization, the clusters are built incrementally: 
 

mailto:xmikol04@stud.fit.vutbr.cz


1.  Start with one cluster 
2. Choose some number of vectors from input 
space at random; assign each of these vectors to 
the nearest cluster 
3.  Compute new centroids for all clusters 
4.  Find the cluster which was used the most; divide 
this cluster into two new clusters, move them in a 
random direction by a small amount 
5. Go to step 2 until desired number of clusters is 
found 
 
After this initialization, the clusters are adapted using 
classic K-Means algorithm. 

4 Implementation 
Implementation of the original K-means clustering is 
very straightforward. Suppose reduction to K colors: 
first, palette is established by choosing K random pixels 
from the input image. Second, K-means algorithm is 
used to modify this palette. Third, input image is 
converted to output image. 
As it is computationally very expensive to perform step 2 
in K-means algorithm mentioned in chapter 2, it is very 
useful to reduce the number of input vectors to some 
reasonable value. For testing purposes, all input images 
were 24-bit pictures with resolution 1024 x 1024 pixels. 
This would mean over million input vectors. It was 
observed that choosing 10, 000 randomly chosen input 
vectors from input image achieves good results with 
speedup factor of 100 (for this part of implementation). 
The second important thing is early stopping of the 
algorithm - it was observed that 40 iterations is enough. 
Although the centroids keep changing for a long time, no 
significant improvement is achieved after 40. iteration. 
This means that the computational complexity is constant 
- it may be useful to choose more input vectors for larger 
images, but since the value itself is a compromise 
between quality and speed, it is not necessary. 
Conversion of input image to output image is very 
simple. For all input pixels, the nearest cluster is found 
by linear search over all clusters. The value of the output 
pixel is then the position of this cluster. This part of the 
implementation is very simple and ineffective, and large 
speedups can be gained by performing other than linear 
search. For example, simple hashing may be used to 
prevent recomputation of pixels at the same position in 
the input space. This results in significant speedups for 
images with large areas with exactly the same color. 
However, reported results are without any 
optimalizations in this part of implementation (to prevent 
confusion of the reader). So the complexity is S*K, 
where S means the size of the input image in pixels and 
K means the desired number of colors in the output 
image. 
Although the K-means algorithm itself works pretty well 
for color reduction problem, it's modification as is 
mentioned in chapter 3 was investigated to see whether 
better than random initialization leads to better results. 

The difference in implementation lies in the part before 
the K-means algorithm itself - instead of randomly 
choosing the starting palette from the input picture, the 
starting palette is incrementally built as is described in 
chapter 3. The number of vectors in step 2 was chosen to 
be 1 000 (using testing data). It is useful to discard from 
the splitting process new clusters (four last clusters in the 
current implementation). In step 4, new clusters are 
moved in opposite directions by a random vector with 
size 30. Note that these values were determined by using 
testing data set; it is possible that for some class of 
pictures, other values may work better. Computational 
complexity of this part of implementation is determined 
only by number of clusters. 
Memory consumption of whole implementation is 
determined just by the size of input image and palette - 
2*S + 3*K, where S is the size of input image and K is 
the number of clusters. 
Simple dithering method was implemented for better 
visual quality and possibility of comparison with 
ACDSee program that does not allow color reduction 
without dithering. Note that dithering always increases 
the MSE value, and various implementations behave 
differently. 
Because this work is not primarily focused on dithering, 
only simple method based on transferring part of the 
error after pixel conversion to its right neighbour was 
used. 

5 Results 
Popular Adobe Photoshop (version 6.0.1) and ACDSee 
(v. 4.0) programs were used for comparison with output 
from K-means and modified K-means algorithms using 
MSE. Since ACDSee does not support color reduction 
without dithering, reported results include those obtained 
with simple dithering method mentioned in chapter 4. 
Since the algorithms use random number generator, the 
results vary with each conversion - to avoid this noise, 
reported results are computed as an average for 50 
conversions for each picture. 
Sample pictures obtained by reduction to 16 colors are 
included in appendix A. Results for reduction to 256 
colors are reported, but the pictures themselves are not 
included, since the image distortion is almost invisible.  

 
 

Picture K-means modified  
K-means 

m.K-means 
+ dithering 

1 909 894 1467 
2 382 372 641 
3 355 349 534 
4 511 508 891 

Table 1: MSE on sample pictures using K-means, 
reduction to 16 colors 

 
Modified version of K-means clustering indicate a 
modest improvement over basic version. 



 
 

Picture Photoshop Photoshop 
+dithering 

ACDSee 

1 933 1477 2081 
2 453 594 1731 
3 411 531 755 
4 502 688 1270 

Table 2: MSE on sample pictures using popular 
programs, reduction to 16 colors 

 
Tables 1 and 2 may be used for direct comparison of 
results between Adobe Photoshop and K-means 
clustering. Surprisingly, the simple implementation of K-
means is significantly better at pictures 2 and 3. Results 
for pictures 1 and 4 are quite similar. Results obtained 
with dithering show quite bad performance of ACDSee. 
 
 

Picture K-means modified  
K-means 

K-means   
+dithering 

1 100 103 224 
2 57 54 116 
3 58 60 114 
4 59 62 122 

Table 3: MSE after reduction to 256 colors 
 

Results from table 3 show that there is no gain in using 
modified version of K-means for reduction to 256 colors. 
 
 

Picture Photoshop Photoshop 
+dithering 

ACDSee 

1 132 172 292 
2 75 94 146 
3 85 105 159 
4 92 118 193 

Table 4: MSE after reduction to 256 colors using popular 
programs 

 
Direct comparison of results in tables 3 and 4 confirms 
superiority of K-means clustering algorithm over results 
obtained with Adobe Photoshop and ACDSee even for 
reduction to 256 colors. 
The only weakness seems to be the computational 
complexity. Both Adobe Photoshop and ACDSee 
maintain time for conversion of testing image (24 bit, 
resolution 1024 x 1024) to be far less than a second 
(approximately 0.1 second). For reduction to 16 colors, 
K-means finishes in 0.4 sec, while for reduction to 256 
colors, it's about 4 seconds for original and 4.5 for 
modified method (@ AMD Sempron 2200+). This is 
caused by simple implementation of nearest cluster 
search (see chapter 4 for details). The overall speed of 
the implementation may be heavily increased by using 
better than linear search over all clusters. 
Although MSE is an objective function, it is not the only 
measure we are interested in when comparing results 

from different algorithms. In many cases, subjective 
appearance of the image may be more important. 
First picture (see appendix A) consist of four pictures 
(don't get confused!). The purpose of this is to test 
algorithms on a picture with wide variability of colors. 
Best results were obtained with modified K-means (for 
16 colors) and original K-means (for 256 colors). Adobe 
Photoshop maintained good results, while ACDSee 
performed poorly - there can be seen a rather big 
distortion in color of the sky. 
The second picture is a cartoon picture. During testing, 
best improvement by using modified version of K-means 
clustering against original version was achieved on this 
type of pictures (up to 40% for pictures which had 
already reduced palette size). Again, K-means is the best, 
Photoshop maintains good results and ACDSee is the 
worst one. 
The third and fourth pictures show again rather poor 
performance of ACDSee, while Photoshop maintains 
comparable results. 

6 Conclusion and future work 
Although very simple, K-means algorithm seems to be 
very useful for color reduction problem. Achieved results 
are better than those obtained by using popular Adobe 
Photoshop and ACDSee programs. 
Modification of the initial phase of the algorithm was 
investigated with rather modest improvement for 
reduction to 16 colors and no improvement for reduction 
to 256 colors. However, for some sort of pictures (those 
containing already somewhat reduced palette size), much 
better improvements were achieved. This may be 
investigated in the future. 
Future work should be focused on improving the overall 
speed by using better search techniques for finding the 
nearest cluster. 
The algorithm itself may be very well used in a 
preprocessing phase before more advanced algorithms 
from image processing and computer vision. 
 

References 
[1] J. B. MacQueen (1967): "Some Methods for 

classification and Analysis of Multivariate 
Observations, Proceedings of 5-th Berkeley 
Symposium on Mathematical Statistics and 
Probability", Berkeley, University of California 
Press, 1:281-297 

[2] P. Heckbert (1982): “Color Image Quantization for 
Frame Buffer Display” , Computer Graphics, vol. 16, 
No. 3, pps. 297-307. 

[3] X. Wu (1991): “Efficient Statistical Computations 
For Optimal Color Quantization” , in Graphics 
Gems, vol. II, edited, by James Arvo, Academic 
Press, Inc., Cambridge, MA, pp. 126-133. 



[4] A. Dekker (1994): “Kohonen neural networks for 
optimal colour quantization” , Network Computation 
in Neural Systems, Vol. 5, pps. 351-367. 

[5] http://en.wikipedia.org/wiki/GIF 

[6] http://en.wikipedia.org/wiki/Mean_squared_error 

[7] ACDSee portal. http://www.acdsee.com/ 

[8] http://www.adobe.com/products/photoshop/

http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/Mean_squared_error
http://www.acdsee.com/
http://www.adobe.com/products/photoshop/


Appendix A - sample pictures for reduction to 16 colors: 
 
 

 a) Original picture     b) K-means with dithering            c) K-means 
 

  
              d) Photoshop no dithering     e) Photoshop with dithering        f) ACDSee (dithering) 

 
Figure 1 - sample picture consisting of four pictures 

 
 

 
 

 
 
 a) Original picture     b) K-means with dithering            c) K-means 
 



 
 
              d) Photoshop no dithering     e) Photoshop with dithering        f) ACDSee (dithering) 

 
Figure 2 - sample cartoon picture 

 
 
 

 

 
 
 a) Original picture     b) K-means with dithering            c) K-means 
 

 
 
              d) Photoshop no dithering     e) Photoshop with dithering       f) ACDSee (dithering) 

 
Figure 3 

 
 



 
 
 a) Original picture     b) K-means with dithering            c) K-means 
 

 
 
              d) Photoshop no dithering     e) Photoshop with dithering        f) ACDSee (dithering) 

 
Figure 4 

 


