
Visualization of the Marked Cells of Model Organism

Radek Kubı́ček∗

Department of Computer Graphics and Multimedia
Brno University of Technology

Brno / Czech Republic

Abstract

We will present the current state of ongoing work on a
simple to use, quality result algorithm for visualization of
marked cells of the model organism. In this work, we try
to find a method based on volume rendering to visualize
marked parts of input data composed by a set of confo-
cal deconvolution microscope images in such a way that
these marked parts can be higlighted and visualized. We
have tried different techniques for dealing with the visual-
ization speed and with the quality of the rendered images
and propose best methods for realizing the work goals. In
the last case, the quality of the rendered image is suffi-
cient for imagination of position of the marked parts. We
demonstrate results on different biological data sets, such
as plant cells or model organism Caenorhabditis Elegans
marked by GFP process.

Keywords: Volumetric Data Rendering, Biological Data
Rendering, Shader, Pre-integration, Transfer Function

1 Introduction

Nowadays, direct volume rendering via 3D textures is an
efficient tool for displaying and visual analysis of volu-
metric data sets. It is commonly accepted, especially for
reasonably sized data sets, because of achieving interac-
tive rates and appropriate visual quality. Unfortunately,
there are also some problems, such as huge amount of per-
fragment operations and need of big amount of memory.
Real-time methods of direct rendering of volumetric data
sets are still a challenge to the computer graphics commu-
nity.

Volumetric rendering is acceptable and in most cases
the one method for getting image of complexity and depth
dependencies of volumetric data sets. This technique uses
semi-transparent parts of the volume, which also makes it
possible to view into the inner structures of the data. This
technique is mostly used in biology and in medicine.

In biology, which is our case of use, volumetric images
are used for the purpose of better understanding the in-
ner structures within plant or animal body. The image di-
agnostic, new organism research, biology education and

∗xkubic23@stud.fit.vutbr.cz

study of internal organism events are examples of appli-
cations that benefit from and require visualization of these
images. Biology images are acquired mostly by special
devices such as microscopes. Each image corresponds to
a 2D image of a transversal cut of the organism, also called
slice. The sequence of these images make a volume or a
scene.

Suppose we have volumetric data set, captured by a con-
focal deconvolution microscope with some marked parts.
Input data form one volumetric block containing sepa-
rate slices. This data block we render by an applicable
method and then we identify, highlight and visualize the
cells marked by GFP (Green Fluorescent Protein) process
[3, 8].

The principal aim of this work is to find of preferably
optimally effective method enabling this highlight, mostly
working without manual check. Due to the data structure,
this ambition seems hard to be achieved, so it suffices to
find a manually working method. This work also proposes
different techniques for dealing with the rendering quality
of images.

In the next sections, we describe the rendering tech-
niques, usable in volumetric rendering. We also describe
the selected re-slicing process and its comparison to other
techniques. Finally, in Section 7, we examine the effects
of these techniques and discuss the results and some per-
formance issues.

2 Related Work

Real-time volume graphics has a long history in com-
puter graphics, starting with the first straightforward CPU-
based image-order approaches in 1984. With the increas-
ing availability of hardware accelerated 3D textures, many
volume rendering techniques have utilized this feature for
different purposes. GPU-based image-order techniques
have been developed only recently with the introduction
of graphics boards that support true conditional branches
and loops of variable length in the fragment processor. For
it, there is existing GPU only based solution of direct ren-
dering methods, mainly raycasting algorithm [12].

Since huge sizes of the volume data block are com-
mon in the volumetric rendering area, there have been
also found some methods how to deal with large data sets
that exceed the graphics adapter memory. In this work we



probably will not use so large data sets, so we are not in-
terested in these methods.

3 Used Techniques and Algorithms

Rendering techniques are used to transform 3D data into
a 2D image, providing this resulting image with some 3D
information such as linear perspective or shading. Several
rendering techniques have been proposed that can be clas-
sified into two major classes: surface rendering and direct
volume rendering. In surface rendering methods, only the
voxels containing object boundary information are consid-
ered to contribute the rendering. It means that an approx-
imate representation of the surface of the object is com-
puted and rendered. In direct volume rendering methods,
each voxel has assigned opacity value contributes to the
rendering. The result is a semi-transparent volume. More
about these techniques can be found in [1, 4].

In this paper we are concerned only about direct volume
rendering methods, because they are used by the imple-
mentation and the surface methods are not probably suit-
able for this type of data, which is used in this work. At
first, we have to define the way, how the data are saved
in the memory. Next it is neccessary to select the render-
ing method to be used. In the next sections the techniques
used in this state of the work can be found with their pros
and cons. Input data, acquired by the confocal deconvolu-

Figure 1: Strongly noised input data – plant cell structure

tion microscope are strongly noised, as illustrates Figure
1. It is necessary to use some de-noising filter, in the cur-
rent state of the work we use the three-dimensional cross
neighborhood median filter. The white areas in the image
are the cells that we are visualizing. We need to use tech-
niques that are capable with 16-bit data, for the input data
are in this bit depth.

3.1 3D Texture Based Volume Rendering

In order for the graphics hardware to be able to access all
the required volume information, the volume data must be
downloaded and stored in textures. We use 3D texturing
capability of graphics hardware, because in the rasteriza-
tion step it is able to use trilinear filtering. Also 3D tex-
tures are well supported by all common graphics cards.

One of limiting aspects of this approach is the fact that the
amount of memory provided by most of commonly used
graphics cards is still limited.

This approach stores the volume data in memory as one
three-dimensional texture. With 3D textures the volume
is usually split into viewport aligned slices. These slices
are computed by intersecting the bounding box of the vol-
ume with a stack of planes parallel to the current viewport.
In consequence, viewport-aligned slices must be recom-
puted whenever the camera position changes. Viewplane
aligned polygons are drawn in back to front order or re-
versely. During rasterization, the transformed polygons
are textured with the image data obtained from a solid
texture block by trilinear interpolation. During fragment
processing, the resulting polygon fragments are blended
semi-transparently together into the frame buffer using al-
pha blending and finally displayed on screen [12]. Nowa-
days, there is no reason not to use 3D textures except for
special cases needing 2D memory saved slices.

3.2 Re-slicing Method

Volume rendering via 3D textures is usually performed by
slicing the texture block in back to front order with planes
oriented parallel to the viewplane, see Figure 2. Slices are
created in the following way. We make clip plane for each
slice and then are calculated points of intersection with
all 12 edges of volume data bounding box. Slice is cre-
ated of 3 to 6 points. These points are sorted according
to their angle and in this order they make a polygon. The
coordinates of the points are also the texture coordinates.
We map the volume texture on each polygon and then it is
sent into the rasterizer and fragment shader. The resulting
image quality depends strongly on the number of slices.
More slices, better image quality. This algorithm has great

Figure 2: Volume rendering via 3D texture slicing [6]

advantage, it is very easy to implement it. It is only neces-
sary to find a way how to get slices and how to generate the
slices polygons. Simple vector analysis knowledge is suf-
ficient. On the other side there is disadvantage in the fact,
that small number of slices strongly degrades the quality
of the resulting image due to fact, there is no available ras-
terized texture data for the whole volume space. It implies,
that there is no interpolation and the resulting image seems



very rough. If we use only small number of the slices we
could also miss the important details of the data. But if
we use many slices, the rendering speed rapidly decreases,
for the fragment shader is called very often and slows the
result visualization.

If we compare implementation of the re-slicing method
and ray-casting method, we find that slice-based vol-
ume rendering might be considered the ”brute-force”-
approach, that relies solely on the fill-rate and the high
fragment throughput of the rasterization unit. Ray-casting
on the other hand employs optimization techniques such
as emptyspace skipping and early-ray termination. At the
bottom line, however, the brute-force approach is still ad-
vantageous in terms of performance, while GPU-based
ray-casting has several clear advantages when rendering
iso-surfaces or sparse volumes [12].

We prefer the re-slicing algorithm for its easy of im-
plemetation and for the high-quality results. There is one
more advantage over the ray-casting method; the re-slicing
algorithm uses the slices which consist of the vertices
whereas ray-casting algorithm is generating a ray for ev-
ery pixel of the scene. It means we can use the vertex
shader for speed up of the re-slicing algorithm instead of
the CPU-based slices generating method. The [12] demon-
strates that the performance of object-order volume ren-
dering can be improved by moving the necessary slice de-
composition, which is usually done on the CPU, onto the
vertex processor. This gives us the flexibility which is nec-
essary to load-balance the rendering process for maximum
performance. We will try to implement this improvement
into the work.

4 Transfer Function

The role of the transfer function in direct volume render-
ing is essential. Its job is to assign optical properties to
more abstract data values. It is these optical properties
that we use for rendering a meaningful image. While the
process of transforming data values into optical proper-
ties is simply implemented as a table lookup, specifying
a good transfer function can be a very difficult task [1].
Why do we need a transfer function, i.e. why not store

Figure 3: Pre-classification verses post-classification [1]

the optical properties in the volume directly? First, it is
inefficient to update the entire volume and reload it each
time the transfer function changes. It is much faster to
load the smaller lookup table and let the hardware handle
the transformation from data value to optical properties.
Second, evaluating the transfer function at each sample
prior to interpolation is referred to as pre-classification.
Pre-classification can cause significant artifacts in the fi-
nal rendering, especially when there is a sharp peak in the
transfer function. An example of pre-classification can be
seen on the left side of Figure 3. A similar rendering using
post-classification is seen on the right [1].

Transfer functions are usually represented by color
lookup tables. They can be one-dimensional or multi-
dimensional, and are usually stored as simple arrays.
Transfer functions may be downloaded to the hardware
in basically one of two formats: In case of the pre-
classification, transfer functions are downloaded as tex-
ture palettes for on-the-fly expansion of palette indides to
RGBA colors. If the post-classification is used, transfer
functions are downloaded as 1D, 2D, or even 3D textures
(the latter two for multidimensional transfer functions). If
pre-integration is used, the transfer function is only used
to calculate a pre-integration table, but not downloaded
to the hardware itself. Then, this pre-integration table is
downloaded instead [1]. By using the transfer function the

Figure 4: Transfer function editor

users can set the optical properties of the volume. Figure
4 shows the tranfer function editor used in this work. On
bottom there are buttons for switching the active channels.
By moving mouse through the graph area we can spec-
ify values for the active channels. Then these values are
used in the pre-integration process for calculating the pre-
integration dependent texture. In the graph area there is
the volume data histogram also visible which can be used
for the best transfer function estimation.

The same transfer function principle is also used for ad-
justing the axis slices contribution function but instead of
calculating the resulting function of all the values it is used
to save each curve into the relevant axis contribution one-
dimensional texture.



One of the possible enhancements of the transfer func-
tion could be use of the logarithmic scale. For the fact
that the bands span an extremely narrow region for depths
above 30 percent of the volume means that for such re-
gions, differences in transfer function values as small as
0.001 (in the region near zero) will visibly change the im-
age. Even if an entire screen is used for a transfer func-
tion editor, the user must be able to specify the transfer
functions to the accuracy of a single pixel to make such
changes. At the same time, values above 0.05 all map to
nearly opaque, resulting in 95 percent of the screen space
being wasted. If we scale the transfer function opacities
logarithmically, it would be easier, both conceptually and
physically, for a user to precisely control the intensity of a
region in the volume. This should result in more efficient
transfer function editing, which is significant since transfer
function editing is one of the most time-consuming aspects
of creating clear and informative renderings of medical,
mathematical or generally scientific data sets [9]. More
about the transfer function principle and directions how to
create the extended or the multi-dimensional transfer func-
tions is described e.g. in [1].

5 Pre-integration

High accuracy in direct volume rendering is usually
achieved by very high sampling rates, because the discrete
approximation of the volume rendering integral will con-
verge to the correct result for a small slice-to-slice distance
d → 0, i.e., for high sampling rates n/D = 1/d. However,
high sampling rates result in heavy performance losses, i.e.
as rasterization requirements of the graphics hardware in-
crease, the frame rates drop respectively. According to the
sampling theorem, a correct reconstruction is only possi-
ble with sampling rates larger than the Nyquist frequency
[1]. It means, if the two near-by slices are too far from
each other, there can be a little but important detail in the
data and we do not get it in the resulting image. If the
sampling distance is not at least as large as minimal im-
portant detail in the data, we can miss this detail during
the sampling.

The pre-integration provides high image quality post-
classification method even with low-resolution volume
data. Besides direct volume rendering, the algorithm also
allows us to render double-sided isosurfaces with diffuse
and specular lighting without extracting a polygonal rep-
resentation. More about this technique can be found in
[2, 1, 10]. The main principle of the pre-integration algo-
rithm is illustrated on Figure 5. Let us have the slice that
is actually rendered. Imagine we cast a ray through each
pixel of this slice. Sampling distance is the distance, this
ray takes until it reaches the next slice. But we want to
know optical values along the whole ray. It is allowed by
the pre-integration function. We can create slabs, imagi-
nary spaces between near-by slices. As we can see on Fig-
ure 5, the transfer function determines the optical values

Figure 5: Pre-integration algorithm principle [7]

for all possible data values. During the pre-integration pro-
cess, we calculate all possible combinations in the trans-
fer function for front and back slices and these values are
then saved into integral transfer table. This table makes a
new 2D texture, that is sent into the graphics card texture
memory. During the fragment operation, we fetch values
for the current and previous slice (if we render in back-to-
front order) and using them we determine the final color
and opacity of the rendered pixel.

The primary drawback of pre-integrated classification
in general is actually the preintegration required to com-
pute the lookup tables, which map the three integration
parameters (scalar value at the front, scalar value at the
back, and length of the segment) to pre-integrated colors
and opacities. As these tables depend on the transfer func-
tions, any modification of the transfer functions requires
an update of the lookup tables [1]. This causes that the pre-
integration texture could be updated either after the trans-
fer function modification or during the modification, but in
this case there are executed many costly computations and
the modification is very difficult to be performed interac-
tively. Also it can be helpful to implement an accelerated
pre-integration algorithm. This approach has not so qual-
ity result as full pre-integration, but it is much faster and
allows to imagine how the result will look. After the mod-
ification of the transfer function the full pre-integration al-
gorithm is then executed. Some of these methods are de-
scribed in [1, 10].

In this work we use this technique for setting the opti-
cal properties as color and opacity with the helpful transfer
function. This transfer function we pre-integrate into 2D
texture and then this texture is used in fragment shader for
getting demanded optical properties. Probably we could
use only opacity channel if the color palette is specified by
the application. Pre-integration is still not adaptable to the
change of the number of slices – the sampling distance.
It is necessary due to increase or decrease of the amount
of the optical properties, because if the number of slices
is huge, more values are integrated and maximal value is
reached earlier. The next problem is, that the data is 16-bit
but we use the transfer function with only 256 entries (8-
bit range), because it is rendered onto viewplane with the
256 pixels size. So we need to find a way, how to adapt the
transfer function to the 16-bit range. We can use the cur-
rent transfer function editor, but, due to using 8-bit range



we will have the same value for 256 possibly different val-
ues of 16-bit range image. It seems that zoomable transfer
function editor could be the right approach. It means we
will have 16-bit range transfer function for 16-bit volume
data and for its size is huge for render on screen it needs to
enable zooming and set detail values in the transfer func-
tion for the right zoom level. Probably it will be also help-
ful to use iso surfaces and the iso surface pre-integration,
described i.e. in [10, 11].

6 Fragment Shader

After creation of the texture mapped slices, they are sent
into the rasterization. Of course, we can use rendering
pipeline with fixed functionality, but we do not get the in-
creased functionality and the most of all the GPU hard-
ware accelerated rasterization. The fragment shader en-
ables the accelerated rendering. We use the Cg language
and runtime environment to do this job, but if another lan-
guage or approach will prove to be more convenient, we
can use it as well. In Figure 6 we can see the core of the

1 uniform float uIsoValue;
2 uniform sampler3D uTexVolume;
3 uniform sampler2D uTexTransfer;
4 uniform sampler1D uTexSlX;
5 uniform sampler1D uTexSlY;
6 uniform sampler1D uTexSlZ;
7
8 void fshader_main(
9 float3 iTexCrd0 : TEXCOORD0,
10 float3 iTexCrd1 : TEXCOORD1,
11 float4 iColor : COLOR,
12 out float4 oColor : COLOR)
13 {
14 float4 slX = tex1D(uTexSlX, iTexCrd0.x);
15 float4 slY = tex1D(uTexSlY, iTexCrd0.y);
16 float4 slZ = tex1D(uTexSlZ, iTexCrd0.z);
17 float3 slices = float3(slX.x, slY.x, slZ.x);
18
19 if (all(slices))
20 {
21 float val1 = tex3D(uTexVolume, iTexCrd0).r;
22 float val2 = tex3D(uTexVolume, iTexCrd1).r;
23
24 float4 color = tex2D(uTexTransfer,
25 float2(val1.r, val2.r));
26
27 float multCoeff = slices.x*slices.y*slices.z;
28 oColor = color*multCoeff;
29 }
30 else
31 {
32 discard;
33 }
34 }

Figure 6: Fragment shader inner algorithm core

fragment shader algorithm. This algorithm core is as much
as possible flexible piece of code, so it can be enhanced by
the more efficient and complex code in the future. Because
the fragment shader makes a lot of work, it is the most crit-
ical part of the renderer. It is also possible to optimize and
speed up this algorithm, as well as add more functional-
ity, due to the fact, that the fragment shader is executed

in parallel and it is strongly hardware accelerated. Also,
nowadays most of the graphics cards are capable of using
fragment shaders.

Lines 1− 6 are declarations of the global (also called
uniform) parameters. Property uIsoValue is not used yet,
but it is implemented here for possible future use of the
iso surfaces. uTexSlX , uTexSlY and uTexSlZ determine
the contribution of the slices in each axis of the volume
and they are also adjustable by the user. The test, if
the currently rendered pixel has nonzero contribution on
each axis is on the line 19. Parameters uTexVolume and
uTexTrans f er are pointers to the used volume and trans-
fer textures in the memory. These contributions of the cur-
rently rendered pixel are fetched for each volume axis on
lines 14−17. If the currently rendered pixel has any con-
tribution to the resulting image, values on the lines 21−22
are fetched for this pixel for the rendered slice and the pre-
vious slice. Then, on lines 24−25, these values create the
texture coordinates into transfer textures and the optical
properties are fetched from the pre-integrated transfer tex-
ture. On line 27 the total pixel contribution coefficient is
calculated and at the end, on line 28 we set the optical val-
ues multiplied by this coefficient as the resulting value for
this pixel. If the current pixel has zero contribution to the
final image, so the test on lines 19−20 failed, we discard
the current pixel on line 32. Then this pixel does not affect
the resulting image and the texture values are not fetched,
so it slightly increase the speed of the rendering. The cur-
rent implementation uses discard statement; it could also
use the clip() operation, or in lower shader profiles set the
pixel to black, fully transparent value for this purpose.

7 Results and Future Work

However the current status of this work is still experimen-
tal, we are able to visualize medical or synthetical data.
The volume renderer has been created operating the most
efficiently on 8-bit data. 16-bit data can be also visualized,
but the application is still not optimized for this size of the
data elements. This volume renderer works fine especially
for the synthetic data, but it is only necessary to implement
some described improvements and it will work fine for the
biological and medical data. The hardware acceleration al-
gorithm core is finished and it remains to implement some
enhanced functionality or modify this core according to
our demands. It can be also easy to implement additional
shading or illumination algorithm if necessary. It could be
done using the fragment shader capabilities of the reading
texture values. Fragment shader could estimate the gra-
dient vector on-the-fly using e.g. central differences and
multiple texture lookups per fragment (8 texture lookups
per fragment). It also remains to implement some func-
tion for the marked parts of the input data highlighting,
which should be the main part of this work.

In the current state of the work, after rendering the input
biological data, the result looks like on Figure 7 and 8. As



we can see, there are partly visible marked cells of data,
but they are not so much differentiated from the other data,
as they should be. If the border slices which contain most
of all noise are not visualized (Figure 7), marked cells are
visible more than if these border slices are rendered too
(Figure 8). For comparison we can see on Figure 9, that
if we render non-noised data, the quality of the resulting
image is very good.

Despite the noise in the input data, which must be pre-
filtered by some noise removing filter, visual quality of
result images is quite good and later it should be compa-
rable to the original data images. We need to propose an
algorithm for quality removal of noise and also for dif-
ferentiating marked parts of data. We probably also need
to use some of the global filtering or classifying function
before the visualization. The speed of the algorithm en-
ables a real-time visualization of the slices, but only if the
number of slices is not very huge and sizes of data are ad-
equate. It is also necessary to optimize the pre-integration
function according to the number of slices.

Implementation of a function of each slice contribution
to the result image also seems to be very helpful. Because
when we have a detail look into data structure we get the
fact, border slices are roughly noised and very degradate
the result image. This function is a one-dimensional curve
for each axis. This curve sets contribution ratio for each
slice from the [0.0,1.0] range. Then this function is saved
into one-dimensional texture which is sent into the graph-
ics card memory and used by the fragment shader. These
values of contributions are adjustable by the user using the
transfer function. It could be also considered as another
way how to deal with the global image statistical func-
tions.

8 Conclusions

In this paper, we have briefly presented the current state
of a technique for visualization of marked cells in volu-
metric data sets based upon the direct volume rendering
algorithms. It consists of a re-slicing method and GPU-
based acceleration by fragment shaders. We also use the
pre-integration algorithm to set the optical properties for
each value of the volume. As next, we have suggest some
methods, how to deal with the noised data and poor qual-
ity slices that degrade the resulting image. Also we have
outlined some principles and methods how speed up this
work and enhance the results.

References

[1] Klaus Engel, Markus Hadwiger, Joe M. Kniss, and
Christof Rezk-Salama. High-Quality Volume Graph-
ics on Comsumer PC Hardware. SigGraph Course
Notes 42, 2002.

[2] Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using
Hardware-Accelerated Pixel Shading. Visualiza-
tion and Interactive Systems Group, University of
Stuttgart, Germany, 2001.

[3] Jay Enten and Brendan Yee. Green Fluorescent Pro-
tein (GFP). Beckman Coulter, Inc., Miami, FL,
2005.

[4] Sören Grimm. Real-Time Mono- and Multi-Volume
Rendering of Large Medical Datasets on Stan-
dard PC Hardware. Technischen Universität Wien,
Fakultät für Informatik, 2005.

[5] Evan Hart. 3D Textures and Pixel Shaders. ATI Re-
search, 2004.

[6] J. Krüger and R. Westermann. Acceleration Tech-
niques for GPU-based Volume Rendering. Computer
Graphics and Visualization Group, Technical Univer-
sity Munich, 2003.

[7] Kwan-Liu Ma. An Efficient Pre-Integrated Volume
Rendering Algorithm. Department of Computer Sci-
ence, University of California at Davis, 2006.

[8] Colm O’Carroll. Green Fluorescent Protein. B/MB
senior seminar, 2006.

[9] Simeon Potts and Torsten Möller. Transfer Func-
tions on a Logarithmic Scale for Volume Rendering.
Graphics, Usability and Visualization (GrUVi) Lab,
School of Computing Science, Simon Fraser Univer-
sity, 2002.

[10] Stefan Röttger and Thomas Ertl. A Two-Step Ap-
proach for Interactive Pre-Integrated Volume Ren-
dering of Unstructured Grids. Visualization and
Interactive Systems Group, University of Stuttgart,
Germany, 2002.

[11] Stefan Röttger, Martin Kraus, and Thomas Ertl.
Hardware-Accelerated Volume And Isosurface Ren-
dering Based On Cell-Projection. Visualization and
Interactive Systems Group, University of Stuttgart,
Germany, 2002.

[12] Christof Rezk Salama and Andreas Kolb. A Vertex
Program for Efficient Box-Plane Intersection. Com-
puter Graphics and Multimedia Systems Group Uni-
versity of Siegen, Germany, 2005.



Figure 7: Resulting images - plant cell structure. Image size is 512x512x92x16b. Not all slices rendered.

Figure 8: Resulting images - plant cell structure. Image size is 512x512x92x16b. All slices rendered.

Figure 9: Resulting images - CT head data. Image size is 256x256x225x8b. All slices rendered.


