
Catmull–Clark Subdivision Surfaces on GPU
Juraj Konečný*

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava, Slovakia

* konecny.juraj@gmail.com

Abstract
In this paper we describe our approach for computing
subdivision surfaces. We proceed in two ways. The first
is computing on CPU and the second is computing using
GPU. To achieve these goals we use OpenGL. Also we
want to compare results of computing on CPU and GPU.
We use two different methods for computing on CPU
and three different methods of computing on GPU. The
difference between these methods on GPU is in the way
how we use textures for computation. The results of
these algorithms are compared and evaluated. We use
only one subdivision algorithm - Catmull-Clark on
regular meshes for demonstration purposes.
Keywords: CG, subdivision surface, GPU, OpenGL,
Catmull-Clark

1 Introduction
Subdivision surfaces are not new, but their use in high-
end CG production has been limited. Traditionally,
shapes like hands, heads, etc. have been modeled with
NURBS surfaces despite the severe topological
restrictions that NURBS imposes. Few years ago things
were changed. Subdivision surfaces are replacing
NURBS in modeling and animation. There are many
reasons for using subdivision: efficiency, compact
support, local definition [1]. Subdivision surfaces are
used for example in famous short film Geri’s game,
movies Bug’s Life, and Toy Story 2. Figure 1 shows a
screenshot showing detail of Geri’s finger which was
computed using piecewise smooth Catmull-Clark surface
[2].

On SIGGRAPH 2005 was published a paper about
subdivision surfaces computed mostly using GPU.
Authors succeeded in implementation of Catmull-Clark
subdivision scheme also for extraordinary vertices [3].
Another related work about subdivision using GPU is
even older [4]. A result of this is a realtime rendering of
subdivision surfaces using GPU. Our approach is a little
bit different because we want to compare more methods
and implementations of the same algorithm.
Even though CPUs performance has increased in last
years and also CPUs with more than one core in desktop
computers can be found, there are still many reasons why
to use GPU for many purposes. For example new
operating systems with all applications can consume
nearly all the resources we have. A regular user is
running more than one application at the time. “Today,
parallel GPUs have begun making computational inroads
against the CPU, and a subfield of research, dubbed
GPGPU for General Purpose Computing on GPU has
found its way into fields as diverse as oil exploration,
scientific image processing, and even stock options
pricing determination. There is increased pressure on
GPU manufacturers from "GPGPU users" to improve
hardware design, usually focusing on adding more
flexibility to the programming model” [5]. That is why
we have decided to implement this subdivision algorithm
and compare performance of CPU and GPU. For
working with GPU we use OpenGL shading language [6]
and programmable shaders.
The paper is structured as follows. Section 2 describes
the subdivision. In Section 3 we deal with OpenGL and
GPU. Section 4 reports on comparison of time at
different computers. Future work we discuss in Section
5.

2 Subdivision
There are plenty of subdivision algorithms being used
these days. As mentioned before, the main motivation of
subdivision is to replace NURBS, because subdivision
surfaces have many properties similar to NURBS but
computation is faster and easier. Most important
properties of subdivision surfaces are:

• Efficiency: the location of new points should be
computed with a small number of floating point
operations what makes it easy to move the
computing to GPU and also makes huge Figure 1: Geri’s Game – Geri’s fingers

difference between subdivision surfaces and
NURBS

• Compact support: the region over which a
point influences the shape of the final curve or
surface is small and finite, what gives us a lot of
freedom that is essential for modeling

• Local definition: the rules used to determine
where new points go should not depend on “far
away” places so it is easy to work with small
fragments of entire mesh independently

• Affine invariance: if the original set of points is
transformed, e.g., translated, scaled, or rotated,
the resulting shape should undergo the same
transformation

• Simplicity: determining the rules themselves
should preferably be an offline process and
there should only be a small number of rules
what enables us to set up fragment shader for
computing

• Continuity: Each subdivision algorithm is
specified also by its continuity as it can be seen
in Table 1

In Table 1 there are the most known stationary
subdivision schemes generating C1 continuous surfaces
on arbitrary meshes using splitting faces. Approximating
schemes converge faster then interpolating and also
produce surfaces of higher quality especially when
talking about continuity.

 Triangular mesh Quadrilateral

mesh
Approximating Loop C2 Catmull-Clark C2
Interpolating Mod. Butterfly C1 Kobbelt C1

Table 1: Face split subdivision schemes

A natural choice for implementation of subdivision
algorithm is Catmull-Clark.
Main reasons are:

• Control mesh doesn’t need to be quadrilateral (It
will be quadrilateral after the first mesh
refinement using more general form of Catmull-
Clark rules)

• Simple data representation for regular control
meshes (in regular control mesh the valence of
interior vertices is 4, boundary 3 and valence of
corner vertices is 2)

• Resulting surface is C2
 continuous everywhere

except for extraordinary vertices where it is C1
continuous (for purpose of display we can use
coefficient originally suggested by Catmull-
Clark but to achieve formal C1

 continuity we
need a bit more complicated coefficients [7])

The final subdivision surface is a limit of repeated
subdivision. While we are working on regular meshes
standard rules for Catmull-Clark subdivision scheme are
used in the form displayed in Figure 2 and Figure 3. It is
obvious, that we need only a few floating point
operations to find the positions of new vertices and new
positions for old vertices. Handling of extraordinary
vertices requires other rules, but for now we stay

working with regular meshes what brings us various
benefits. On the other hand it also decreases the amount
of surfaces we can generate. But one of our main goals is
to compare performance of CPU and GPU so regular
control mesh is enough to get results which are worth to
be taken into consideration.
For storing data of the entire mesh it is useful to have
complex data structure which is flexible for
reconfiguring the entire mesh and interacts with mesh
processing algorithm. Half–edge data structure is costly
for maintaining, reconfiguring and even for refining used
in subdivision algorithm, but still is a good choice
because of its adaptability. In our algorithm we use it
only for storing mesh in the OpenGL scene and for the
first iteration of the subdivision algorithm. It means, that
our work with this initializing data structure is limited
and the influence of its processing is small [3]. For this,
we use half-edge structure described in [12]. This half-
edge structure is considered to be one of the fastest. This
half-edge is one of the structures we use for subdivision.
Even trough it is costly to maintain, its adaptability will
help us in future work. Another data structure used for
computing on CPU is a two dimensional array in which
we store all important data we need. We can even use
static structure because the size of a regular mesh after

Figure 2: Standard rules for regular control mesh for
new vertices

Figure 3: Standard rules for regular control mesh for
old vertices

refining is easy to compute. When the size of the regular
input mesh is m × n then after refinement it is (2m-1) ×
(2n-1). Then we compute new positions of vertices using
Catmull-Clark subdivision rules. Knowing indices of
vertex stored in this array means that we even know
which rule is to be used so we can do it in few cycles
computing new internal face and edge vertices
separately, then new values of old vertices and, at last,
crease and boundary vertices. In Figure 4 we can see how
to determine type of new vertex.

Figure 4: Array refinement

The last thing we perform on CPU is to create 2D
floating point texture for storing coordinates of vertices
in RGB space and one 2D texture for storing additional
data (for example whether it is crease or not). Because
OpenGL supports textures with size 2w × 2h

 we need to
store the actual size of used part of these textures in
values w (width) and h (height). There are some
extensions in OpenGL supporting textures with “non
power of two” size but because we also need to divide by
size of texture it is better to divide by power of two.

3 OpenGL and GPU
For GPU programming we use OpenGL and OpenGL
shading language. Another alternative is to use Direct3D
but we have decided for OpenGL because we want our
program to work also under other operating systems like
Linux. Most computation is done using programmable
fragment, vertex and geometry shader. Fragment shader
is used to compute values to update frame-buffer or
texture memory. Vertex shader computes homogenous
position of a single vertex independently of other vertices
[6]. For now we use fragment shader to render all

important data. On the other side geometry shader begins
with a single primitive (in our case point). It can read its
attributes and use them to generate new primitives which
are clipped and then processed like an equivalent
OpenGL primitive specified by the application [9]. This
new geometry shader (released in November 13, 2006)
should be included in future work. Other information
about programming for GPU could be found in [10].
To get 2D floating point texture with 32-bits for each
RGB channel we use OpenGL extension
GL_ARB_TEXTURE_FLOAT. In this texture there are
stored coordinates of vertices. To know which part of
texture is active we also have stored two variables m, n.
We also store all subdivision masks we need in arrays.
For additional data we have look_up texture where we
store data like point is boundary, corner or crease. These
are all data we need to create fragment shader computing
new iteration. For storing new mesh we render it to
texture [11]. We compare we use three methods of
rendering. The first one is rendering to frame buffer
object (FBO), second one is using copy to texture [13]
and third one is direct rendering to texture using pixel
buffer (pbuffer) [14]. Using FBO which is similar to
texture object makes working with rendering target easier
[15]. Copy to texture is the slowest and the oldest of these
methods but it is easy for implementation. Direct
rendering using pbuffer is rendering to new rendering
context. This last method has some “bottle necks” which
influence runtime and makes computing slower.
When we have rendering target we need to set up
viewport to see entire rendered image. We already know
its size. It is (2m-1) × (2n-1) where m × n is size of
input texture. When we have the rasterized output (as it
can be seen in Figure 5) we can easily use fragment
shader to compute the new image. To determine which
subdivision rule is to be used we divide current fragment
coordinates by 2 and then we can find out which
subdivision mask to use:
x1=x div 2; y1=y div 2; //x and y are coordinates
 x2=x mod 2; y2=y mod 2; //of fragment
While x1 and y1 give us coordinates of neighboring
vertices in input texture, x2 and y2 provide us with
information if it is a new vertex or not.

1. old vertex: x2==0 and y2==0
2. face vertex: x2==1 and y2==1
3. edge vertex: x2==1 and y2==0,

 x2==0 and y2==1
To avoid branching in this case we need new 1D function
that will separate all this cases and also works with
look_up texture. For this we multiply (2× x2)+(3× y2)
and choose part of array where is stored scheme for this
case. Now we know which mask we use for computing
coordinates of vertex p[x][y] and also indices i,j of
neighboring vertices in old mesh. To get their texture
coordinates, we need to divide their indices by the size of
texture i=i/2h, j=j/2w. Using these values, we compute
new RGB coordinates of vertex p[x][y]. This procedure
is repeated for each fragment. Independence of these
operations brings an opportunity to use parallelism
provided by fragment processors because each fragment
depends only on its coordinates, input texture, and values

Figure 5: OpenGL pipeline [8]

h,w. If we want to continue in repeating subdivision we
just have to replace input texture with computed output
and also change h, w, m, n values. A difference between
this method and computing on CPU using array instead
of texture is, that here we have to determine which mask
we have to use while with array we just perform a cycle
for each mask computing only vertices we want. For
rendering and displaying of resulting mesh we use vertex
shader which is used to transform coordinates from RGB
coordinates.

4 Comparing
There are two ways how to compute Catmull-Clark
subdivision surfaces in our work. To get more values for
comparing, we use 2 computers with different
configuration. Both of them are running Windows XP
Professional Edition and also Linux. Here are their
hardware configurations:
1. HP Pavilion zd8000, Intel Pentium 4 540 / 3.2 GHz,

FSB 800MHz, Hyper-Threading Technology, 1GB
DDR II SDRAM - 400 MHz, graphic card ATI
Mobility Radeon x600 - PCI Express x16, 256 MB
video memory, SuSe Enterprise 10.0

2. Toshiba Satellite M70, Intel Centrino M 760 /2.00
GHz, FSB 533 MHz, 512MB DDR II SDRAM - 533
MHz RAM, graphic card ATI Mobility Radeon x700
- PCI Express x16, 256 MB video memory, Ubuntu
6.10

These two computers are very different. The first one has
a faster CPU while the other configuration has a faster
GPU. Also we want to use some computers with
NVIDIA graphic cards, but their configuration is not
known yet.
At first we run the algorithm using only CPU for half-
edge and array data structure on both computers. The
result is the time to render the final surface. This is
repeated several times for different control meshes.
Problem on GPU is, that rendering subdivision surface of
depth 6 from control mesh 8× 8 stored in array gives us
during scene transformations average frame-rate about 4
fps on computer running all common utilities. It is even
slower when we use half-edge data structure. We repeat
the same using computing on GPU with the same control
meshes. Another part is rendering while there is user
interaction with mesh in scene. In this part our result is
the frame rate. User is changing coordinates of control
mesh vertices in OpenGL scene and after each change
the surface is rendered. We hope to achieve realtime
rendering at this part. Average frame rate after 5 minutes
of modeling is another result. These values will be
compared and displayed in a table. This part is written in
advance, because shader implementation is not finished
yet. In related work [3] they got frame-rate about 1 fps
using half-edge data structure on CPU for subdivision
surface of depth 4 and about 20+ fps using fragment
shaders.

5 Future work
This work is not finished in several directions. For
working with irregular meshes we need to make many
changes. Entire algorithm is extended for computing
irregular meshes as well as regular. For this extension we
have to use modified coefficients to achieve continuity of
final surface. Also we have to compute new masks for
each valence of extraordinary vertices and store them in
another texture. For data representation we do not use
array any more and CPU part is done using half-edge
data structure described before. For computing data on
GPU we use 1D texture for storing coordinates and
another texture which serves like a look up table for
finding neighbours [3],[4]. Loop subdivision scheme is
another scheme which has simple rules and can be
computed similar way. But even for regular meshes it is
more difficult to store data in texture than for regular
meshes for Catmull-Clark subdivision. Data are stored in
textures the similar way like for irregular meshes
mentioned before. Last extension is computing on GPU
with using geometry shaders which provides us with
many interesting features we can use. Even through it is
new extension in OpenGL there are already some
algorithms already implemented using geometry shader.
One of them is marching cubes. All this future work is
about to bring us new information about performance
and real use of GPU for computing subdivision and its
benefits.

References

[1] ZORIN, D. et al. 2000. Subdivision for Modeling

and Animation. Siggraph 2000 Course Notes.

[2] DEROSE, T. et al. 2000. Subdivision Surfaces in
Character Animation. Part of [1]. Siggraph 2000
Course Notes. pp. 185-194

[3] SHIUE, L.-J. et al. 2005. A Realtime GPU
Subdivision Kernel. In SIGGRAPH 2005
Conference Proceedings.

[4] BOLZ, J. et al. 2007. Evaluation of Subdivision
Surfaces on Programmable Graphics Hardware.
Available from
http://www.multires.caltech.edu/pubs/GPUSub
D.pdf. Accessed January 19, 2007.

[5] Graphics processing unit, Available from
http://en.wikipedia.org/wiki/GPU. Accessed January
19, 2007.

[6] KESSENICH, J. et al. 2006. The OpenGL Shading
Language. Document Revision: 8. 07-Sept-2006.

[7] BOLZ, J. et al. 2002. Rapid Evaluation of Catmull-
Clark Subdivision Surfaces. In Proceedings of the
Web3D 2002Symposium, pp. 11-18.

[8] LIPCHAK, B. 1997. Overview of OpenGL.
Available from
http://web.cs.wpi.edu/~matt/courses/cs563/talks/Op
enGL_Presentation/. Accessed January 19, 2007.

[9] YONGMING, X. 2006. Geometry Shader
Tutorials. Version 15.11.2006. Available from
http://appsrv.cse.cuhk.edu.hk/~ymxie/Geometr
y_Shader/. Accessed January 19, 2007.

[10] PHARR, M. ed. 2005. GPU GEMS 2:
Programming Techniques for High-Performance
Graphics and General-Purpose Computation.
ISBN-10: 0321335597. ISBN-13: 978-0321335593.
Publisher 3. 3. 2005.

[11] BAKER, P. 2007. Render To Texture. Available
from
http://www.paulsprojects.net/opengl/rtotex/rtot
ex.html. Accessed January 19, 2007.

[12] KETTNER, L. 1999. Using generic programming
for designing a data structure for polyhedral
surfaces. Computational Geometry 13, 1 (May), 65–
90.

[13] CORNO, D. 2007. Nehe Productions: OpenGL
Lesson #36. Available from
http://nehe.gamedev.net/data/lessons/lesson.asp
?lesson=36. Accessed January 19, 2007.

[14] WYNN, CH. 2007. OpenGL Render-to-Texture.
Available from
http://developer.nvidia.com/object/gdc_oglrtt.ht
ml. Accessed January 19, 2007.

[15] JONES, R. 2006. OpenGL Frame Buffer Object
101. Posted 11/22/2006. Available from
http://www.gamedev.net/reference/articles/artic
le2331.asp. Accessed January 19, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

