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Abstract

We tackle the problem of automatic matching, consistency
checking and registration of multiple unknown and un-
ordered range images. Utilizing robust visual features ex-
tracted from the supplied reflectance images, an efficient
pairwise view matching scheme is used to build up a di-
rected correspondence graph, nodes representing the input
range images and edges labeled with relative pose esti-
mates. Subsequently, a local and global consistency check
eliminate false positive edges in the graph as these prevent
the succeeding to a correct solution. Absolute poses are re-
covered by a breadth-first search (BFS), thereby, for each
visited node, combining the weighted contributions of all
encountered paths back to the root. Remarkably, the ab-
solute alignments are accurately recovered from only the
features. Thus, a subsequent fine registration step can be
omitted. The framework is independent from object size
and particular sensor model.

Keywords: features, SIFT, surface matching, hypothesis
testing, pose consistency, breadth first search

1 Introduction

Registration has been an active topic of research for about
thirty years. Much work in the past successfully addressed
pairwise registration, i.e. aligning two three-dimensional
(3d) views of a static scene. Due to the ongoing ad-
vances in scanning and computer hardware for about the
last ten years, multiple view registration became manage-
ably and thus more and more attractive as a basic tool
in reconstructing a complete 3d model from a captured
scene. However, most multiview approaches assume that
the input views are roughly prealigned or that it is known
which views overlap one another. In contrast, just a small
amount of research has been published that engages auto-
matic matching, consistency checking and registration of
multiple unknown views as presented here.

Today, a laser range scanner is the method of choice for
digitizing real-world objects of moderate size. Laser range
scanners are non-contact 3d scanners that measure the dis-
tance from the sensor to points in the scene, typically in
a regular grid pattern. A range image is the visualization
of this grid pattern where the pixel intensity is a function
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Figure 1: Example range image and co-registered re-
flectance image obtained with the Minolta Vivid 900.

of the measured distance (cf. figure 1). A natural byprod-
uct of the acquisition process is the reflectance image that
records the laser reflectance strength (LRS) for each pixel.

In general, because of occlusion and field of view
limitations, not all parts of the scene can be observed from
any given position. Therefore, range data from multiple
viewpoints must be combined to form a complete model
of the scene. Given a set of n overlapping range images
of a static scene, the process of creating the complete
scene model consists of two main steps: registration and
reconstruction. In the registration step, the n input range
images are all aligned in a common coordinate system
whereas the reconstruction step usually accounts for the
generation of a triangulated mesh out of the registered
range data [1, 2].

The outline of the rest of the paper is as follows: The
next section reviews related work. In section 3 we give an
overview of the proposed pairwise view matching. Each
pairwise match is introduced into the model graph as an
edge. Edge and graph consistency checking are described
in section 4 whereas absolute pose recovery is considered
in section 5. An application result is shown in section 6
and conclusions are given in section 7.



2 Related Work

The first and most prominent approach to pairwise reg-
istration (n = 2) is the Iterative Closest Points (ICP) [3]
algorithm, which has numerous variants [4]. However,
ICP and its variants usually require the input to be roughly
prealigned. If not the case point correspondences need to
be found by using more sophisticated techniques, referred
to as surface matching [5] or surface correspondence [6].
In such approaches, point correspondences are typically
found by matching additional distinctive properties like
geometrical or color features [7, 8, 6]. Often, the regis-
tration process is also split up into a crude alignment step
(based on the features) and a fine registration step (usually
ICP) [9, 10, 11, 12, 13, 14].

For unordered input, it is unknown which of the n > 2
scans are neighbouring or overlapping. It is easy to extend
an existing surface matching algorithm to a scan matching
algorithm [15] by simply applying it for all possible O(n2)
pairs. Therefore, in analogy to information retrieval and
hypothesis testing, we call it a matching hypothesis when a
surface matching algorithm succeeds in finding sufficient
correspondences between two scans. However, a match-
ing hypothesis is not enough because any scan matching
algorithm can easily be fooled by similar structures ap-
pearing repeatedly at different locations in the input data
(see figure 2). Because accepting an incorrect hypothesis
drastically reduces the chance of finding the correct over-
all solution, it is thereafter necessary to perform a con-
sistency test. In the context of full- and semi-automated
registration this is referred to consistency checking, veri-
fication or classification [16, 5, 17]. An incorrect but ac-
cepted hypothesis is named false positive whereas a cor-
rect but rejected hypothesis is named a false negative. In
summary, the registration procedure for unordered input
typically reads as follows:

1. Scan matching
Perform pairwise surface matching on all O(n2) pairs
of input range images, produce matching hypotheses
and obtain crude alignment by least squares.

2. Consistency checking
Perform a binary classification (accept/reject) for the
found matches and delete the rejected matches.

3. Refinement
Refine the relative transformations (usually ICP-
based).

4. Absolute Pose
Choose a common coordinate basis and rewrite the
relative poses according to this basis.

For step 4 (absolute pose), it is helpful to consider a
directed graph G = (V,E) where the node set V := {Vi};
i = 1, . . . ,n represents the n input range images and the
edge set E = {e j

i = (Vi,Vj)} represents the matching hy-
potheses [5, 10, 11]. If G is connected, there exists a path

Figure 2: Motivational example for consistency checking.
A scan matching algorithm will probably matching the
highlighted region (red), although this obviously incorrect.
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Figure 3: The Registration Pipeline.

π l
k = (Vk, · · · ,Vl) connecting any two vertices Vk and Vl .

So, when selecting V0 as the root node, the pose of any
other node Vi can be obtained with respect to V0 by accu-
mulating the relative poses along the path π i

0. In the works
cited above, a minimum spanning tree (MST) of G is used
to avoid long paths for numeric reasons. However, since
the MST is only a minimum subgraph, this means ignoring
most of the available information.

We make a last distinction for the case of unknown in-
put, which means that no specific assumptions are made on
the input, such as the presence of markers [18] or that the
captured scene belongs to a distinct and known category
(e.g. cars, indoor, single object, etc.). In the input cate-
gory was known, empirical thresholds derived from repre-
sentative training data could be used for decision making
[19, 20, 21, 22, 23, 24, 9, 17]. Also, supervised learning
techniques like bayesian classifiers [5] or support vector
machines could be used. However, when dealing with un-
known input, this does not apply because of missing train-
ing data.

3 Relative Pose

Figure 3 gives a high-level overview of the proposed reg-
istration framework. Input are n unknown and unordered
range images {Vi}. If not already present, the prepro-
cessing stage encompasses normal estimation by gaus-
sian weighted plane fitting to local k-neighbourhoods [16].
Noise caused by the acquisition device, is removed by
novel yet simple outlier rejection scheme [16] that exploits
the regular grid structure of the range image.

Searching for point correspondences is speeded up by
using distinctive features that are able to guide the search
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Figure 4: Hypothesis Evaluation for the view pair (V1,V2).
(a) A pose hypothesis T1 is generated from the candidate
match ( f 1,g1) (blue) and evaluated by counting inliers
(light blue). (b) Another match ( f 2,g2) is accepted as an
inlier if mapped closer than the sum of the positional un-
certainties σv.
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Figure 5: Example model graphs. A complete model
graph (left), two partial models (middle) and an example
with an isolated node (right).

early into the most likely direction. We apply the Scale In-
variant Feature Transform (SIFT) [25] on the reflectance
images which encode the material information of the cap-
tured surfaces. Thus, a matching of the extracted features
is more likely to result in unique point correspondences,
than geometric matching alone. The SIFT descriptor pro-
vides image location, orientation and scale and was re-
cently shown to be highly distinctive [26]. Each feature is
annotated a 3d position v along with a corresponding un-
certainty estimate σv, both computed by robust maximum-
likelihood estimation [16]. Moreover, each feature is as-
signed a local 3d basis constructed by Gram-Schmidt or-
thonormalization using the feature’s orientation in the im-
age plane and the estimated surface normal. The local ba-
sis is the key for efficient relative pose estimation. It is
performed for all O(n2) pairs of input views and can be
summarized as follows:

1. Selection of potential feature matches
For each SIFT feature extracted from the first view,
the nearest neighbour from the second view is found.
This is speeded up by approximate nearest neighbour
(ANN) search in the high-dimensional feature space
similar to the Best-Bin-First (BBF) algorithm pro-
posed in [27]. Ambiguous nearest-neighbours are re-
jected by using the Closest-To-Next-Closest (CTNC)
[25].

2. Hypothesis optimization
The least squares transformation from one coordinate
frame to another can be computed in closed-form re-

quiring a minimum of three point correspondences
[28]. Note that these are given by the feature’s lo-
cal 3d basis vectors so that a pose hypothesis can be
generated from only a single feature match. For each
candidate match, we count the number of inliers sup-
porting the hypothesized pose, as depicted in figure
4. Finally, the transformation for the best hypothesis
is refined by computing the least squares transforma-
tion for all inliers. For further implementation details
we refer to [16].

The output of the relative pose step is a model graph
(see figure 5). A model graph is an undirected Graph
G = (V,E) where the nodes V = {Vi} represent the n input
range images. Pairs of matched views are connected by an
edge e j

i = (Vi,Vj). Associated to each node Vi is an abso-
lute pose Ti and to each edge e j

i a relative pose T j
i as well

as various other registration attributes.

4 Consistency checking

We propose a novel two-stage consistency check. First,
all edges are tested to be locally consistent, which means
that both views agree on the on the mutually seen volume.
Second, a concept of global consistency (section 4.2) is
derived similar to [9] where the observation is explored
that accumulating the relative transformations along a cy-
cle path in the graph should result in the identity transfor-
mation.

4.1 Local consistency

The proposed local consistency check can be seen as a
hypothesis test, which attempts to refute one claim H0 in
favour of the complementary claim H1 based on observa-
tion data {τk}k. Informally, these two claims are:

• H0 - “e j
i is locally consistent“ and

• H1 - “e j
i is not locally consistent, and thus incorrect“.

For the sample data {τk}k we consider the euclidean 3d
distances between corresponding surface points of the two
views Vi and Vj. To evaluate these distances we per-
form bilateral image warping similar to [29]. For ease of
notation, let V ′

j denote the view Vj warped to the view-
point of Vi and V ′

i the view Vi warped to Vj. Now,
evaluating the distances of corresponding surface points
reduces to computing two difference images ∆Vi,V ′

j
and

∆V j ,V ′
i
. For a correct match, the distances ∆Vi,V ′

j
(xk,yk)

and ∆Ω
V j ,Vi

(xl ,yl) should be small for any defined raster
points (xk,yk),(xl ,yl). By contrast, a large observed dis-
tance should not be forejudged to indicate an inconsistency
unless aspects of visibility, occlusion or device limitations
can be ruled out. Moreover, it should be considered what,
if anything, can be concluded for the surface consistency
when one of the corresponding pixels is not defined.



4.1.1 Space violations with respect to visibility

Following the notation of [16, 5], figure 6 depicts the few
basic situations to arise

Surfaces are close If distances between corresponding
pixels are reasonably small, the surfaces can be considered
consistent. However, instead of thresholding we assign
a likelihood value to each observed distance (cf. section
4.1.2). Therefore, the separation to the following cases
should be considered for conceptual reasons only.

Free/Blocked Space Violation (FSV/BSV) The FSV
has recently been introduced by [5]. The warped surface
V ′

j(x,y) blocks the visibility of the source surface Vi(x,y).
This violates the assumption of the source view Vi that the
space along the ray of sight should be free until it reaches
the surface Vi(x,y). Since Vi has the most correct visibility
information w.r.t to its own viewpoint, this is an unmis-
takable inconsistency. The BSV is the counterpart to the
FSV; both are considered in figure 6 (b).

Empty Space Violation (ESV) An ESV occurs when
one of the two pixel operands is not defined. It violates
the assumption of one view, that the space along the line
of sight should be empty whereas the other view detected
a solid surface. For more details on space violations we
refer the reader to [16].

If we used an ideal range scanner that never misses a solid
surface no matter how specular, how dark or how far away
it is, our violation model would be complete. In practice,
however, laser range scanners are limited and they may
fail at surface detection for various reasons. We therefore
consider fuzzy violations by assigning observation confi-
dences {µO

k }k ∈ [0,1] as described in [16].

4.1.2 Probabilistic model and binary classification

For the local consistency measure P j
i , we make the follow-

ing assumptions [16]:

1. The decision whether H0 applies or not, is totally de-
termined by the mutually observed region O.

2. Observations on different pixels are independent.

3. The probability P[τk] can be approximated by the nor-
malized observation confidence µO

k /∑l µO
l ,

4. The probability P[H0|τk] can be modeled by a Poisson

process with rate λ = 1/
√

mse j
i where mse j

i is the
mean squared error of the 3d positions of the features
matched between Vi and Vj.

The first two assumptions allow us to apply the law of total
probability, i.e.

P[H0] = ∑
k

P[H0|τk] ·P[τk]. (1)

The third assumption says that P[τk] does not depend on
the surface distance observed in the kth pixel but only
on the observation confidence. A Poisson process with
rate λ > 0 is an integer-valued, independent and station-
ary continuous time stochastic process {X(t); t ≥ 0} with
the Poisson distribution

P[X(t + s)−X(s) = l] =
λ l · e−λ t

l!
. (2)

It is convenient to view the Poisson process X(t) as a spe-
cial counting process, where the number of events in any
interval of length t is quantified by the Poisson distribu-
tion. For our case, the length t of the time interval cor-
responds to the observed distance τk and the number of
events l equals the number of surface inconsistencies to be
observed when H0 applies, namely 0. Then, the Poisson
distribution reduces to the exponential reliability function
e−λ t . By substituting and approximating (1) we obtain:

P[H0]≈
1

∑l µO
l

∑
k

e−λτk ·µO
k =: P j

i , (3)

which can be seen as the confidence-weighted sample
mean of the exponential reliability e−λ t . In [16] the cut-
value of 0.5 is motivated for binary classification, i.e.
edges e j

i with a value P j
i < 0.5 are rejected as locally in-

consistent. However, if an edge is accepted there might
still be inconsistencies undetectable from the two consid-
ered views Vi,Vj. Therefore, a consistency concept that
extends to the whole model graph G is introduced in the
following section.

4.2 Global consistency

The basic idea is that in a correct graph each cycle is pose
consistent. Consider a model graph G representing a cor-
rect registration. Let

(Vπ(0),Vπ(1), · · · ,Vπ(k−2),Vπ(k−1),Vπ(0))

be a cycle path of length k and π : [0 : k−1] 7→ [0 : n−1]
a reordering which just eases the notation. When compos-
ing the relative motions along the cycle, the resulting pose
should equal the pose of the start node Vπ(0), i.e.

T π(1)
π(0) ◦T π(2)

π(1) ◦ · · · ◦T π(k−1)
π(k−2) ◦T π(0)

π(k−1) =: T̂ ≈ I. (4)

In practice, the condition T̂ = I is never met due to noise
in the data which in turn introduces errors in the transfor-
mation estimates. As a measure of cycle consistency, we
consider the mean distortion that T̂ introduces to Vπ(0) and
compare this to the sum of edge errors in the whole cycle.
If the sum is exceeded, we consider the cycle inconsistent.

The breadth-first-search BFS defines a spanning tree 1

of G and additionally, it tends to prefer short over long cy-
cles and thus sharpens the cycle error bound. Moreover,

1Note that any spanning tree of an undirected connected graph spans
the graph’s cycle space [30]. This means that 1) by adding an edge to any
spanning tree, a cycle is closed and 2) the set of cycles detected this way
can generate all cycles in the graph by union and intersection.
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Figure 7: Global consistency through breadth-first traver-
sal in the model graph G.

by maintaining the same traversal order for the absolute
pose recovery, we make sure that only the relevant cycles
are visited. A motivational example is given in figure 7.
A breadth-first search is started from node V0. The algo-
rithm traverses the edges (V0,V1),(V0,V2) (blue). Moving
on to V1 and traversing the edge (V1,V2) an inconsistent
cycle arises. (7 b). All edges of the inconsistent cycle are
marked as probably wrong (red) and the traversal pro-
ceeds until a second cycle is closed at (V3,V4), this time
it is pose consistent. Now all edges back to the root node
can be labeled as approved(green), leaving the inconsis-
tent edge (V1,V2). Finally note that, although checking
pose consistency of cycles is a useful tool, it is not failsafe.
For more details including the selection of root nodes we
refer to [16].

5 Absolute Pose

The last step in the registration pipeline is to provide an
absolute transformation for each node with respect to one
common coordinate system. Figure 8 (b) suggests that the
absolute node transformations can be estimated through
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Figure 8: (a) In an MST-based approach the absolute
poses are determined from one path (blue) to the root node
whereas the additional information provided by indirect
paths (red) is ignored; (b) Using a modified BFS takes in-
direct paths into account.

a weighted combination Ti := ∑ j ω j · T ∗
j of the accumu-

lated transformations T ∗
j of all paths j that lead into node

Vi. accumulation. However, linear interpolation of n > 2
rigid motions is difficult due to the non-linearity of rotation
[31]. Instead we suggest to pick up the feature matches
M j

i when traversing the edge e j
i and propagate them to the

edge transformations. When arriving at a node we solve
for the weighted least squares transformation of all pre-
viously collected and transformed feature matches. The
traversal order is given by the same BFS as performed
in the previous section except that promising paths over
nodes of high degree and confidence are examined first.
During traversal, parent nodes are tracked so that the path
back to the root node is instantly available for any vis-
ited node. Also, feature matches of incoming edges are
collected, transformed and stored at the respective node.
When arriving at a distinct node, we examine all adjacent
nodes that have been visited so far, thereby incrementally
combining the feature matches of all direct and indirect



paths yet visited to solve for an absolute pose. More de-
tails are given in [16].

6 Results

The church model was automatically scanned as a
sequence of small incremental 12◦ rotations using a
turntable, resulting in 30 views. For one view, the ob-
ject has been missed completely due to range miscalibra-
tion, so that only background clutter was measured. The
view remained isolated, i.e. totally unmatched, and was
therefore silently removed. The small rotation angle of
12◦ provided sufficient overlap for up to five rotations -
for instance, the view V19 was correctly matched against
the subsequent views V20,V21,V22,V23 and V24 - and thus
eased view matching, resulting in a model graph with high
connectivity. However, the workload for local consistency
was also significant: 306 edges needed to be checked,
from which all 227 incorrect edges were found. Timings
were: 2 : 42m (preprocessing), 73.89s (matching), 226.65s
(local consistency), 0.05s (global consistency) and 0.62s
(absolute pose). Preprocessing includes conversion from
proprietary file formats, SIFT feature extraction2, normal
estimation and noise removal. The model graph for the
remaining 79 edges is shown in 9 (left). Note how the se-
quential turntable scanning order (V0, . . . ,V28) can be fol-
lowed by the string-like shape of the graph. More results
are presented in [16].

7 Summary and Conclusions

We presented a framework and some novel ideas for auto-
matic registration of multiple unordered views of an un-
known scene. To handle false positive edges, we con-
ceived a novel test for both local and global consistency.
Local consistency was engaged with respect to the visi-
bility of both involved viewpoints and expressed in terms
of the euclidean distances between all corresponding sur-
face points. By using a bilateral image warping scheme,
these distances could be evaluated basically in the form of
a difference image. We introduced the concept of the ESV
which extends the consistency reasoning from the over-
lapping region to the whole mutually seen region. With
this, a local consistency measure was presented, based on
1) a fuzzy model to assess the confidence of a pixel ob-
servation and 2) the Poisson process to model the like-
lihood for the observed pixel surface distance under the
H0-assumption. Edge classification was then performed
by thresholding the value of the local consistency measure
against the cut-value of 0.5.

Global consistency is expressed in terms of pose con-
sistent cycles in the model graph. A measure for the pose

2we used the authors implementation available at http://www.
cs.ubc.ca/˜lowe/keypoints/

consistency of a cycle was defined as the mean displace-
ment of a view’s surface points when propagated along
the cycle. However, a concept of consistency cannot im-
ply correctness. In the same way a locally consistent edge
can still be incorrect, also a cycle can almost be perfectly
pose consistent and yet still be incorrect. Finally, absolute
poses were recovered by composing relative poses along
the path to the root node. In contrast to common MST-
approaches, we proposed not to rely on a single path but
on a incremental, weighted combination of multiple paths
back to the root node by means of a BFS-scheme. Thereby,
we obtain more accuracy and avoid error accumulation as
well as the subsequent costly fine registration step.

We conclude that the presented framework performs ef-
ficiently and accurately without user intervention. They
keys for efficient registration as presented here are 1) to
use the feature metric to quickly guide pairwise matching
into the most likely direction, 2) to carry out optimization
on features only and 3) to use a path traversal scheme in
favor of global optimization. When registering on the or-
der of some thousand views, the bottleneck will be the lo-
cal consistency check which is by far the most expensive
operation in the pipeline. To accomplish this, one might
investigate in hierarchical data structures like range image
pyramids, for instance. An example for a future applica-
tion is guided scanning, where each shot is instantly reg-
istered and camera locations for subsequent shot are sug-
gested by software.
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