
Volume Rendering in an Optical Tracking based Virtual
Environment

Balázs Domonkos∗
Attila Egri†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

In the last five-eight years the three dimensional display-
ing come into focus again. When it is amended by a track-
ing system it is called mixed reality. This paper presents a
mixed reality environment (its hardware and software el-
ements) developed by us on the Budapest University of
Technology and Economics. Our system uses a dual pro-
jector stereo display for three dimensional visualization
and a computer-vision based tracking system. The hard-
ware configuration consists of two projectors, polar filters,
video cameras, cheap passive coloured markers and an av-
erage PC.

Volumetric data visualization in a virtual environment
has several benefits. It decreases the depth information
loss caused by the 3D→ 2D projection, tracked tools can
affect many properties of the visualization, that can be set
or modify using the classic keyboard, mouse input in a
difficult way.

The final goal of this project is to improve this virtual
environment with general tracking therefore it can be used
for augmented reality applications.

Keywords: augmented reality, computer vision-based
tracking, real-time volume rendering

1 Introduction

Mixed Reality (MR) systems require tracking of the user’s
head movement and in many applications other object
tracking can be useful. The word ”registration” means
allocation of the position of real and virtual objects in a
common coordinate frame. The problem of registration
are liable to occur in all mixed reality technologies both in
Virtual Reality (VR) and in Augmented Reality (AR).

AR brings the existing physical space and some virtual
space into one common space in real-time. It differs from
virtual reality basically in not replacing, but extending the
user’s environment. The tasks of the two technologies are
similar, but while in the case of virtual reality, the real

∗domonkos.balazs@lanten.hu
†vregath11@gmail.com

Figure 1: Test system configuration for cvbARlib

challenge is to create the most realistic visualization possi-
ble, for augmented reality the accuracy of the registration
matters. For example a virtual ”cup” have to be displayed
on not above or under the real ”table” in order to ensure
believable virtual environment.

The goal of our work is to develop a system realizing a
general purpose AR environment on a simple hardware –
can be used for visualization large volumetric data sets in
a projected AR environment.

The hardware configuration of an AR system is made of
three parts [2]:

visualization: according to the principle of the 3D visual-
ization the images for the two eyes are produced sep-
arately. In our realization this means a pair of projec-
tors mounted with circular polar filters and suitable
spectacles [19, 18].

registration: realized by computer vision-based tracking
of passive coloured markers (pieces of high-coloured
paper, ping-pong balls or ”Kinder” eggs). Recon-
struction is done using stereo vision. Therefore two
cameras are used.

computing power: we used a desktop PC with video cap-
ture card and two video cards.



From the software view, our goal is to develop a gen-
eral purpose programming library (cvbARlib: Computer
Vision Based Augmented Reality Library1). This library is
responsible for all functionalities that need to be provided
in a projected AR system.

There are numerous benefits of applying such AR tech-
nology in visualization of large amount of volumetric data
(highly accurate 3D medical images, images created in ge-
ology, industrial radiology, scientific simulation data):

• The stereo rendering technique is appropriate for
decreasing the depth information loss of the three
dimensional data caused by the 3D → 2D projec-
tion. [8]

• Due to the registration, one can walk around the dis-
played objects, a natural, perceptual interface is pro-
vided for setting the external geometric parameters of
the visualization.

• Cheap passive coloured markers can be attached to
any real objects affecting the volumetric data (user’s
hand, real tools). With these tools light sources, slic-
ing planes and other properties of visualization can
be defined and modified in a perceptual way.

Certainly the above mentioned system has disadvan-
tages according to the classic, monitor based volume vi-
sualization:

• Stereo rendering doubles the rendering time.

• Tracking increases the computation time, and can
make delays in the system.

• Computer-vision algorithms are usually not robust
and accurate.

The next section summarizes briefly the system and its
metrics. It is followed by the detailed descriptions of the
hardware and the software elements. After that we in-
troduce the volume rendering application. At the end of
the paper the results are presented and the conclusions are
summarized.

2 Our Virtual Environment

The following metrics are set up for our system:

• the system must be able to update the displayed im-
age at a rate of 20-25 frames per second to sustain the
illusion of reality.

• The system must respond to the user’s movement in
near real-time.

• The displayed virtual objects must have correct real
sizes, specified position and orientation.

1http://www.cvbarlib.net

Figure 2: Physical system design draft

Figure 3: Libaries used by cvbARlib

For visualization, two projectors, polar filters and a front
projectable canvas are used [19, 18]. The displayed images
are generated by the DLP (digital light processing) projec-
tors. DLP technology is necessary because the LCDs have
in-built polar filters which would interfere with the exter-
nal filters. The projected images are separated by two cir-
cular polar filter pairs. One of the pair is mounted in front
of the lens of the projector the other one is assembled into
the glasses worn by the user. The canvas has to preserve
the polarity of the light and its amplifying characteristic
has to be almost direction-independent. We found a low-
cost paperboard to assemble a test system that satisfies the
specified requirements.

The registration subsystem is based on stereo vision
techniques, it uses two cameras and passive coloured
markers. The user is monitored by two cameras, head po-
sition value are calculated using the camera images. This
head position is used for rendering the appropriate images
for the two eyes. These images are displayed by the pro-
jectors and are separated by the polar filters 2.

From software view implementation of the visualization
and the registration is a challenge, however there are some
additional tasks to perform. A world model is required
for containing attributes of real and virtual objects. The
cameras and the canvas have to be calibrated before the
system is used. For comfortable usage of the system a
graphical user interface is needed.



Figure 4: cvbARlib sample world model

Our library creates a uniform layer on the top of the
libraries shown in Figure 3. The following task have to be
accomplished:

1. world model,

2. registration,

3. visualization,

4. user interface,

5. calibration.

In the next sub-sections we discuss these tasks in detail.

2.1 World modell

The world model of cvbARlib suitable for defining geom-
etry and optical attributes of both real and virtual objects
is simplified from the scene graph of Ogre3D2 [16] game
engine. This framework defines a common metalevel on
the top of the DirectX and OpenGl rendering engines and
the Win32 and X windowing systems.

The Node class gives a node of the scene graph. The
geometric and optical attributes of the inherited classes
(RealObject, VirtualObject) are described sepa-
rately by Mesh and Material classes.

The advantage of this model lays in its generality and
flexibility: the real and virtual objects can be freely at-
tached to each other (the tracked coloured markers move
the model of the user which moves the virtual cameras
used in rendering, see Figure 4). The only exception in
hybrid structure creation is attaching real objects to virtual
ones because the constraints are affected between the two
worlds in only one direction.

Ideally whole augmented world is known and displayed:
the virtual objects are displayed by the rendering system,
their position and orientation are known; the locations of
real objects are determined by the tracking system, and
their rendering is done by the reality.

2Object Oriented Graphics Rendering Engine

2.2 Visualization

There are lots of possibilities to display objects in three
dimensions. These solutions differ in technology, size, in-
door or outdoor usage, the number of concurrent users etc.
One of these technologies is the Head Mounted Display
(HMD). It can be used for both VR and AR environments
(optical and video see-through technologies). Its advan-
tages are the good resolution and the nice generated depth
cue. Since the HMD is mounted on the user’s head, there
are no limits in augmentation of the environment, since
the rendering canvas is set near the user’s eye. Therefore
the position and orientation of the canvas (namely the lens
of glasses) are changing during the user’s head movement.
Thus the good position and orientation tracking is very im-
portant in this technique [2].

Another technology is the holo-TV. This is a rel-
atively new device delivered by the Hungarian Holo-
grafika Ltd. [15]. It visualizes a calculated holography
from a voxel-addressable framebuffer. Since practically
every ray is displayed for all pixels and all directions,
head tracking is unnecessary and the number of users is
unlimited in this technology. But the width, height and
depth sizes of the three dimensional image is limited by
the screen size, the graphics memory and the bandwidth.

The projected VE technologies are located between the
HMDs and the holo-TV. Here orientation tracking is un-
needed since the canvas is fixed, as at the holo-TV, but
only two images are calculated for only one user just like
at the HMDs. The ”window to the virtual world” is limited
by the fixed canvas, but depth is almost unlimited (only
limited by the largest disparity can be rendered). Since
the image is projected one or more meters screen diameter
can be reached easily. It is a noticeable benefit, that only
position tracking is needed, because orientation is usually
calculated from positions, therefore errors in position can
cause huge error in orientation.

In addition, our hardware configuration has two CRT
displays too for displaying two dimensional information
(GUI, camera images, debug information) and for conven-
tional user input. The device-independent display used
by cvbARlib is based on X Windowing system features
(XF86, Xorg) accessible on most Unix-based systems.

There are two technologies for assembling multi-
display systems:

1. The TwinView [20] enables joining two video outputs
into one logical X screen on dual-display cards.

2. The Xinerama [21] merges two different X servers
(even on different GPUs) into one logical X server.

The disadvantage of the TwinView according to the
Xinerama is the limit of the connectable video outputs, but
it has many advantages:

• It uses one X screen, the nVidia driver hides the
multi-display hardware-specific information from the
X server which sees one screen.



Figure 5: X server configuration in cvbARlib

Figure 6: Parallel axis asymmetric frustum perspective
projection

• All graphic devices use one frame buffer and accord-
ingly all functionality of the single display appear un-
der TwinView too.

• Emulating one logical screen does not make any no-
ticeable software overhead.

The empirical X server configuration of cvbARlib for
maximal TwinView exploiting is shown in Figure 5. The
common type devices are connected to the same graph-
ics cards under TwinView; the TwinViews are merged into
one logical screen by Xinerama on the top level.

For the proper three dimensional rendering we use the
parallel axis asymmetric frustum perspective projection
(PAAFPP) [4, 1].

The PAAFPP calculates the X ,Y projected coordinates
by the following formulas.

For left camera:

X =
(x+ c/2)d

d− z
− c/2, (1)

Y =
yd

d− z
(2)

For right camera:

X =
(x− c/2)d

d− z
+ c/2, (3)

Y =
yd

d− z
(4)

Here (x,y,z) is the three dimensional coordinates of the
point, (X ,Y ) is the projected point, d is the distance be-
tween the camera and the canvas and c is the eye offset
(see Figure 6).

Figure 7: Tracking pipeline

The stereo rendering of augmented world mentioned
above and tracking of real objects (markers on the user)
is achieved in a parallel way and real-time ensuring con-
tinuous registration and three dimensional experience.

Our rendering engine uses the modified Ogre3D meta-
renderer. To implement the PAAFPP method, we added
some methods to the Ogre3D’s Camera class to overwrite
the camera matrix directly with the new values calculated
by the PAAFPP (similar to the glFrustumOpenGl func-
tion).

The logical screen of the windowing system is handled
by the Screen class, the physical devices are represented
by different ViewPorts (ViewPort2D for two dimen-
sional user interface and ViewPort3D for projection).
The offsets and sizes of these viewports can be set for
each one. The Canvas has references to the received
ViewPort3Ds, it sets the viewport attributes at projec-
tor calibration.

2.3 Registration

We use computer-vision based algorithms for interest of
metrically registered system. Knowing the accurate posi-
tion of the canvas, the user and the encroaching units are
very important both for proper 3D visualization and possi-
ble user interaction.

The tracking system of cvbARlib uses coloured mark-
ers have to be fixed on the tracked objects. Now the head
tracking is implemented, but the number of the tracked ob-
jects is theoretically and algorithmically unlimited in our
solution. The whole tracking pipeline is shown in Figure 7.

First, moving pixels are searched in the camera images
(Motion Filter). There is a simple way to find the contours
of moving areas with background estimation using three
equal-sized images (background, last and current image):



1. Computing two differences:

• BCDiff: between background and current im-
age and

• LCDiff: between last and current image.

2. Calculating the new background image: a pixel is de-
termined to be a background pixel when is does not
change in the last x images, that means LCDiff is less
than threshold ∆1 y times (y <= x).

3. Finding moving pixels: when BCDiff is greater than
threshold ∆2.

The algorithm has four tunable parameters: x, y, ∆1 and
∆2. The background is learned during the motion detec-
tion. As the texture of objects are often homogeneous,
small motions can change the colour values of the inner
pixels slightly, the above steps usually find only the con-
tours of moving areas. Accordingly moving area (a line)
can be assumed between two pixels marked as moving and
the algorithm can be amended in the following way:

When a moving pixel is found, a temporary list is cre-
ated to which further pixels are appended until another
moving pixel is found or the margin is reached. When
another moving pixel is found, the pixels in the tempo-
rary list are marked as moving pixels, otherwise the list is
dropped.

The Colour Filter algorithm is based on the hue value
uses the grey world algorithm [3] to estimate the lighting.
The output of the colour filter is processed by the Blob
Filter, which generates marker-coloured continuous pixel
sets (blobs).

With this centroids of corresponding blobs have to be
associated. More than one same marker-coloured cen-
troids in the same image can raise a correspondence prob-
lem. In this case, epipolar constraints can be applied (de-
scribed for two cameras): an epipolar line can be com-
puted from the two camera matrices and the position of
blob center in the selected camera image. The nearest one
is chosen from the blobs on the other camera image [12].

If the corresponding centroid pairs have been found,
the three dimensional coordinates of the blob center can
be calculated using a linear triangulation with SVD algo-
rithm, otherwise the last found spatial coordinates are re-
turned.

We use the functionalities of openCV [17] computer vi-
sion library to implement the tracking system. The results
of these algorithms are shown in Figure 8.

2.4 Calibration

For the system to function properly, two calibration steps
are needed. The tracking subsystem requires metrical cal-
ibration of the cameras, the correct 3D visualization needs
canvas calibration. Since the cameras are used for canvas
calibration, they need to be calibrated first.

Figure 8: Working tracking algorithm

Camera Calibration

Zhang’s algorithm [11] is used for camera calibration. The
advantage of this calibration algorithm is that it can be
done by an inexpert user, (s)he only has to move a flat
pattern in front of the cameras. The results of the cali-
bration can be saved since the intrinsic parameters does
not change frequently. Only the extrinsic parameters cal-
ibration is necessary in most cases, which needs only one
image to be taken by each camera.

Canvas Calibration

The calibration of the canvas is necessary for a dual head
stereo rendering system. The static binocular depth cue
comes from the disparity3 on the two projector images.
A few pixel displacement causes disparity failure which
leads to depth errors. Therefore the canvas calibration has
two goals:

• to determine the distortion characteristic of projec-
tion,

• to determine the coordinate system and sizes of the
screen, thus the projection metrics can be derived in
pixels/meters resolution), thence the sizes of the pro-
jected objects can be set metrically.

During the calibration, the characteristic of the projec-
tion is determined by projecting running horizontal and
upright lines on the canvas. One of the cameras, turned
perpendicularly in front of the canvas, takes images simul-
taneously. The largest usable area of the canvas (I) and the
displacement map of the projected images can be retrieved
using the following algorithm (see Figure 9):

Let Pi(u,v) be the projected pixel on the ith projector,
Icam(x,y) is the corresponding pixel on the raster image of
the largest usable area of the canvas (I) in the camera im-
age and IPi(x,y) in the image of the ith projector. From the

3the distance between the correspondent points on the images



Figure 9: Canvas calibration

rectificated images4 the projection function can be calcu-
lated for each projectors (Figure 9):

Pi(u,v) → Icam(x,y) (5)

The projection of I, from the image of the projector to the
camera image, can also be retrieved from the measured
image pairs:

IPi(x
′,y′) → Icam(x,y) (6)

Inverting projection (5) using interpolation, the IPi(x,y)→
Pi(u,v) projection can be retrieved which can be used as
displacement pixel shader lookup table (stored in a tex-
ture) for each projector.

2.5 User interface

The main interface of the system is perceptual: the exter-
nal parameters of the rendering virtual camera can be set
by the user’s movement. cvbARlib also provides conven-
tional two dimensional user interface on ViewPort2Ds
with keyboard and mouse inputs (see Figure 10). This
functionality of our library is built on the CEGUI5 GUI
system [13]. The GUI consists hierarchical system of win-
dows. The widget structure is defined in separate XML
files while the event handlers are the descendants of the
GuiWindow class.

The library contains in-built windows for the following
tasks:

• camera management,

• camera calibration,

• canvas calibration,

• teaching marker colours,

• reconstruction debugging.

4undistorted camera images using the information of the camera ma-
trix

5Crazy Eddie’s GUI System

Figure 10: Two dimensional cvbARlib user interface

3 Volume rendering using cvbARlib

Direct volume rendering visualization technique is a
method for directly displaying a sampled three dimen-
sional scalar field (density distribution function) without
any conversion steps (fitting geometric primitives to the
samples, eg. using the Marching Cubes method [10]). Our
application achieves texture mapping (direct) volume ren-
dering methods. During texture mapping techniques the
volumetric information is loaded into the texture memory
of the graphics card, and the hardware realizes a mapping
from the object (or viewport) space to the texture space.

Approximating the Direct Volume Rendering Integral
(DVRI) [7], the composited shells can be represented by
parallel polygons. The visualization process gives a pro-
jection between the texture space and the object space by
setting the spatial and the texture coordinates of the poly-
gon vertices.

The parallel polygons can be defined either in object or
in viewport based coordinate system [5]. Better results can
be reached using the viewport based approach, but it needs
three dimensional texture support (today it is widespread).
Using three dimensional textures also allows trilinear in-
terpolation. Even better results can be achieved using ver-
tex and pixel shader programs – in our implementation we
use conventional alpha blending and filtering.

It should be remarked that the texture transfer speed
is different for different texture dimensions (2D or 3D)
and voxel types (8/16 bits intensity, 24 bits RGB, 32
bits RGBA). According to our benchmark we use I8 and
RGBA32 colour modes.

High Resolution Volume

The following specification can be set up on an AR volume
renderer:

• The displaying must be achieved in real-time frame
rate (at the least 20 fps is required). If it is not possi-
ble, undersampling has to be done.

• The sizes of the projected internals should be real. It



Figure 11: VoxelCache

can be reached using proper canvas calibration (see
section 2.4)

Visualization of high resolution volumetric data raise
bandwidth problems since the whole data (which can be
one gigabyte or more) can not be stored in the texture
memory. We did several benchmarks on our test system
for determining the bandwidths between the hard drive,
the system memory and the texture memory using op-
timized PNG compression6 (see Figure 13). Consider-
ing the 400MByte/sec memory bandwidth swapping is not
worth during a rendering pass.

There are at least three methods for handling this prob-
lem (from the simplest to the most complicated):

• undersample the whole data in order to fit into the
video memory,

• divide the data into blocks and do swapping between
the rendering passes,

• compress the data; hierarchical wavelet transforma-
tion is very suitable for this problem [6]

We used a hybrid method of the first and the second
techniques inspired by Google (former nVidia) Keyhole
project [14]. Our algorithm (called VoxelCache, Fig-
ure 11) divides the whole Volume into SubVolume cubes
with sizes of power of 2 using regular subdivision. The
subvolumes are stored in different resolution (like three di-
mensional mipmaps) in a preprocessing step. The regular
2-powered subdivision has two benefits:

• the graphics card uses textures with dimensions of
powers of 2,

• the regular decomposition makes the composition
easier.

6http://pmt.sourceforge.net/pngcrush/index.
html

Figure 12: Sharing voxels among neighbour subvolumes

Figure 13: Bandwidths in our test system

This method allows to mark subvolumes with too low
or too high average voxel density as ”black” and ”white”
blocks. These subvolumes will not be rendered or will be
rendered without texture in the rendering pass.

The VoxelCache registers the subvolume instances:

• the devices where the subvolume is storeed: hard
disk, system memory or graphics memory,

• the resolution of the instance.

Using this registry the algorithm manages the swapping
scheduler using

• inner strategy elements: considering the capacity of
the devices and the bandwidths between them,

• outer strategy elements: relative position of the sub-
volume in the user’s frame which gives the required
maximal spatial resolution of the subvolume.

Displaying the subvolumes is achieved using trilinear
interpolation. To avoid artifacts, the neighbour subvol-
umes share the common voxels (Figure 12) [6]

4 Results

Our test hardware is an AMD Athlon64 3200+ with
2GB system memory, 2x 80 GB SATA-1 hard drives
in RAID07, 2x nVidia 6800 graphics cards with 1.0-
7667 kernel module, IVC-200 video digitalizer card, 4x
800x600 video output devices (2x DLP projectors + 2x
CRT monitors) in 3200x600 arrangement. The cvbAR-
lib programming library with the AR volume renderer is
implemented and experimented under the Debian Etch op-
erating system with kernel 2.6.12.3 patched with Mingo
Preemptive patch. The physical layout of the environment

790-98 MB/s read bandwidth (205-216 MB/s can be reached taken
into account the PNG compression)



Figure 14: Human FrozenCT cadaver in our virtual envi-
ronment, stereo image pair

Polygons per Worst Average Best
subvolume value value value

64 8.96 34.74 34.75
128 5.94 17.67 17.68
256 4.67 9.00 9.02
384 3.89 6.12 6.13

Table 1: The measured frame rates

is shown in Figure 1. The bandwidths in our test system
are presented in Figure 13.

Our test data are The Visible Human Data Set [9] Male
FrozenCT volume: decoded from GECT format to I8 and
RGBA32 we get a volume with size 470 MB and 1880
MB. Our empirical subvolume size is 1283 voxels. The
subvolume data are organized into PNG images with di-
mensions l× l2 since the voxels order is the same as in in
l× l× l 3D textures. The minimal/maximal average voxel
density limit is 1% / 99%.

The screenshot of the rendered images using simple al-
pha blending is shown in Figure 14, the alpha filtered
rendering in Figure 15 (The fullscreen antialiasing filter
(FSAA) of Ogre3D is disabled). Rendering and tracking
frame rates can been seen in Table 1 and in Table 2.

To benchmark the tracking speed, 1000 image-pairs are
taken and three different modes are defined: no opera-
tion (camera image is only grabbed), tracking without mo-
tion filter and full tracking. To determine the accuracy
of tracking, the following simple benchmark test is used:
the chessboard pattern for camera calibration is continu-
ously moved in front of the camera-pair at the distance
of approximately 1.5 meters (this is the average distance
from the user). Three dimensional coordinates of two fixed
chessboard corners (at the distance of 6 chessboard units)
are calculated for 1000 image-pairs. The results of this test
is shown in Table 3.

Figure 15: Stereo projection in working

Mode Worst Average Best Std.dev
value value value

NOP 25.00 25.00 25.00 0.00
No Motion 18.73 21.15 22.01 0.69

Filter
Full Tracking 16.65 19.63 20.77 0.92

Table 2: Tracking frame rates

5 Conclusion, future Work

Our goal is to create a hardware and software environ-
ment with which AR based applications can be developed,
tested and run. Our Augmented Reality approach differs
from classic ones using HMDs. It is an indoor, projected
virtual environment, uses simple and light glasses, cheap
tracking markers and we focus on metrical registration not
just providing ”3D feeling”. Our environment has both
advantages and disadvantages against the HMD and the
holo-TV technologies. The system can be calibrated semi-
automatically by pattern-recognition algorithms. All parts
are commercially available at relatively low cost or as free
software.

Now the user can walk around the projected objects, but
we plan implementing gesture recognition algorithms in
order to interact with the visualized objects. The bottle-
neck of the renderer is the hdd-sysmem bandwidth. For
better performance we also plan implementing wavelet
transformation.

6 Acknowledgement

This work has been supported by the National Office for
Research and Technology (Hungary).

References

[1] Akka, Bob. Writing Stereoscopic Software for
StereoGraphics(R) Systems Using Microsoft Win-



Avg. dist. Avg. dist. Std.dev
in ch. units in cms in cms

input 6 30.00 0.00
tracked (avg) 5.93 29.67 0.32

error 1.17 % 1.17 % 1.07 %

Table 3: Accuracy of the tracking

dows(R) OpenGl. 1998.
http://www.stereographics.com/support/

developers/pcsdk.htm.

[2] Azuma, R. T. A Survey of Augmented Reality.
Presence Cambridge Masachusetts, pages 355–385,
1997.

[3] Barnard, Kobus. Modeling Scene Illumination
Colour for Computer Vision and Image Reproduc-
tion: A survey of computational approaches. Submit-
ted for partial fulfillment of the Ph.D. depth require-
ment in Computing Science at Simon Fraser Univer-
sity.

[4] Bourke, Paul. 3D Stereo Rendering Using OpenGL
(and GLUT). 1999.
http://astronomy.swin.edu.au/∼pbourke/
opengl/stereogl.

[5] G. Greiner and K. Engel and M. Bauer and T. Ertl. In-
teractive Volume Rendering on Standard PC Graph-
ics Hardware Using Multi-Textures and Multi-Stage
Rasterization. 2000.

[6] Guthe, Stefan and Wand, Michael and Gonser, Julius
and Straßer, Wolfgang. Interactive Rendering of
Large Volume Data Sets. 2002.

[7] Meißner, Michael and Huang, Jian and Bartz, Dirk
and Mueller, Klaus and Crawfis, Roger. A Practi-
cal Evaluation of Popular Volume Rendering Algo-
rithms. 2000.

[8] Mora, Benjamin and Ebert, David S. Instant vol-
umetric understanding ”order independent” volume
rendering. 2004.

[9] The National Library of Medicine. The Visible
Human Project.
http://www.nlm.nih.gov/research/visible/

visible\ human.html.

[10] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construction
algorithm. In SIGGRAPH ’87: Proceedings of the
14th annual conference on Computer graphics and
interactive techniques, pages 163–169, 1987.

[11] Zhang, Zhengyou. A Flexible New Technique for
Camera Calibration. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence Pami, pages
1330–1334, 1998.

[12] Zisserman, Andrew and Hartley, Richard. Multiple
View Geometry in Computer Vision (Second Edition).
2004.

[13] CEGUI Crazie Eddie’s GUI System.
http://www.cegui.org.uk.

[14] Google keyhole.
http://www.keyhole.com/body.php?h=

products&t=keyhole2NV.

[15] Holografika Ltd.
http://holografika.com.

[16] Ogre3D Object Oriented Rendering Engine.
http://ogre3d.org.

[17] Open Source Computer Vision Library.
http://www.intel.com/technology/computing/

opencv/index.htm.

[18] The CAVE project.
http://cave.ncsa.uiuc.edu.

[19] The Geowall Consortium.
http://geowall.geo.lsa.umich.edu.

[20] TwinView Dual-Display Architecture.
http://www.nvidia.com/object/feature

twinview.html.

[21] Xinerama, X Window System exension project page.
http://sourceforge.net/projects/xinerama.

All URLs are last visited at 2006-03-12.


