
Distributed Collaborative Environment Based on Web3D

Marek Kováč

Faculty of Informatics and Information Technologies, STU Bratislava

Abstract

This work introduces collaborative virtual

environment developed on Java and Web3D platform.

The aim of the project was to develop universal and

extendable virtual environment, using simulation core

and a set of plug-ins. Paper presents the developed

architecture for wide usage in collaborative

simulation and training. Also, several example

applications are provided at the end o stress the

usability of system.

Keywords: Distributed collaborative environment,

VRML, Java, e-learning

1 Introduction

An idea of interaction with three-dimensional scene or

more sophisticated virtual world is as old as first

computers capable of modeling and rendering 3D

objects. Many design, simulation, engineering and

visualization activities would be much harder to

achieve without on-screen representation of real or

imaginary world in any context. Making these worlds

interactive - with feedback to users and various ways

how users can mutually communicate - creates

foundation of the virtual reality (VR). Multi-user

collaborative and simulation environments introduce

new techniques for a collaborative task

accomplishment and work.

Recent progress in hardware technology makes tools

necessary for these environments much more

affordable than few decades ago. This is a reason why

the spectrum of applications and potential users of

these software tools grows.

On-line collaboration can be employed in wide

problem domain including training and learning

applications, collaborative design, reconstruction of

historical artifacts, events, crimes and many

applications of telework and remote assistance.

This paper describes a system for various

collaborative applications and its capabilities are

demonstrated by examples of architectural and

urbanistic design, further extended by e-learning

applications (laboratory experiments and simulations).

The description will mostly be aimed to techniques

and architecture used for development. The key idea

of this project was to design and develop an universal

collaborative environment. It has no particular support

for any kind of applications to be used, as it will be

further clarified. On the other hand, system offers

much extendability.

The product is built on Java platform, using VRML

language for a visualization. While it may seem that

Java is not suitable for applications with extensive

computation, lower Java performance compared with

compiled source code languages (C++ for example) is

not a major bottleneck of the solution, as long as it is

not used in a large-scale simulation. Visualization

with VRML (Virtual Reality Modeling Language)

browser was proved to be an easy way of creating 3D

and interactive content which may be modified and

used without sophisticated and expensive modeling

tools. Moreover, this content can be controlled by EAI

(External Authoring Interface) interface [1]. On the

other hand, VRML can not be practically used for

contemporary 3D graphics commonly presented in

other applications which make direct use of API. Such

approach can utilize hardware capabilities to offer the

better performance, while VRML processing is

constrained by the specification. For this project

XJ3D browser
1
 has been used. This browser is

intended to be a tool capable of browsing X3D scenes,

compatible with VRML specification. X3D is a

relatively new standard and will become a

replacement of VRML language. X3D is specified by

ISO/IEC 19775:200x [2]. XJ3D browser is written in

Java and can be easily integrated into Java application

as user interface component.

2 Related work

One of the first distributed environments allowing

multi-user cooperation was SIMNET [3]. Application

was designed for military simulations. Later, this

project was developed into NPSNET. This

environment was compatible with DIS (Distributed

Interactive Simulation) protocol specification. DIS

protocol is also implemented in Java, in a project

called DIS-Java-VRML [3]. Usage of DIS-Java-

VRML has been explored. As this environment used

security flaws for multicast communication from

internet browser applet, it is not fully functional with

latest versions of Java Runtime Environment. The

causes of malfunctioning and general analysis of

problems with usage of applet-integrated VRML

browser are further analyzed in [4].

1
 available at www.web3d.org/xj3d

For the purpose of preserving data consistency on all

nodes, all the distributed virtual environments systems

utilize different communication and replication

methods. There are various methods of virtual world

distribution among the nodes. Aside from mentioned

environments which served for simulation purposes,

environments for collaborative work appeared

recently. These support multi-user interactivity and

cooperation. One of them, closely related to our

project is M3D [5] which is used for a collaborative

design. Also, many case-oriented systems appeared.

These are generally harder to extend, but offer optimal

handling in means of replication and response.

With the quantity of distributed virtual environments

developed recently, methods of preserving data

consistency and simulated objects distribution

appeared. These methods are not always

straightforward. According to [5], there are three

methods for distributing objects between network

nodes of distributed virtual environment.

• active replication – all objects are copied to

existing sites and method will guarantee

resulting state independent of site and event

order.

• replication on demand – only those sites,

which affect the object will get a copy of it

and all other sites will receive the update.

• migration – objects are distributed but not

duplicated. Distribution algorithm may

involve load balancing. The only information

which is duplicated may be for example

object visual representation, which can not be

transferred to all sites effectively.

Depending on the distribution method used, there are

several approaches for preserving data consistency

and multiple access to objects by more than one

process at time. Basically, the consistency approach

may be strict, and does not allow unresolved conflicts

to occur, or relaxed one. Relaxed approach allows

local consistency conflicts occurrence, but reduces the

cost of communication.

Multiple access to objects may be considered as the

most significant source of consistency problems.

There are many methods to ensure correct multiple

access. These methods vary from centralized

processing, and exclusive object locks to reversible

update execution [5].

Communication topology and protocol is another key

issue to be solved with a respect to scalability and

responsiveness of environment. Basically, it can be

considered as a tradeoff between these parameters of

designed collaborative virtual environment. While a

point-to-point communication can be suitable for

small applications, performance may degrade

significantly when a number of nodes involved in

simulation grows. Multicast and one-to-many

approaches are more suitable for the large scaled

experiments, but the consistency model performance

may be inhibited by unreliable multicast protocols. In

[6], partial solutions involving a selective reliability of

transferred messages is presented. Selective reliability

is however not always suitable, as it has tightly related

to a behavior models of simulated objects in virtual

environment.

As most universal topology for virtual environments,

client-server architecture may be considered, unless

there are no requirements for multiple message round

trips while processing a single message. This

approach enforces centralization of some system

components on the server.

Such approach enables using the active replication,

because event order and updates construction can be

done by the server. Consistency control is strict. It

uses exclusive object locks to prevent inconsistencies.

3 System architecture

Developed system described in this paper is basically,

a multi-user client-server application. Clients are

nodes in which users can interact with a scene, and

parts of world are simulated. Object updates are

distributed to the nodes, which contain replicated

simulation objects. These passively accept parameter

updates and collect the input from user. The server

application serves as a model data provider. All

available objects for the simulation are stored and

distributed by the server application. Therefore, server

application provides an access to object gallery, which

serves as data repository for clients to download

model and graphical data.

3.1 Model and scene separation

Efforts have been made to separate the simulation and

the model representation from its visualization.

VRML offers ways to use scripting or programming

structures directly inside the VRML scene. These

mechanisms are called EAI (External Authoring

Interface, providing an access from outside browser)

and SAI (Script authoring interface, providing the

access to objects inside the scene as a part of a scene

definition). These mechanisms are supported only for

a limited number of languages, although VRML

specification does not limit them. (namely, JavaScript

for SAI and Java for both EAI and SAI). This

approach makes impossible to use an alternative

visual platform, what is a major disadvantage.

Developed system uses rendering and input sensor

capabilities of VRML only. Input and output events

are further transferred by EAI used in the visualization

layer. No direct processing of events inside scene

nodes is performed. Therefore, the behavior of objects

is defined outside the scene and VRML browser can

be viewed as a visualization and input platform only.

It reduces several interdependencies between the core

and visualization.

3.2 Network communication

The communication is built on connection-based

TCP/IP sockets, which guarantee message delivery

and order. The major advantage is avoiding complex

message delivery verification and ordering when

compared to the UDP multicast. The only problem is a

redundancy of transferred messages, as these must be

distributed by server for every existing connection.

This creates otherwise unnecessary network

bandwidth consumption.

Connection based communication is suitable for

transferring static model data, including the VRML

models and textures, where bandwidth is not as

critical as in simulation messages exchange. These

data can be cached on local client node, provided that

the application verifies whether there are not new

versions in server gallery.

3.3 World distribution

Server application contains critical synchronization

information and runs implementations of simulation

objects. The application logic of these objects is

executed on the server. Client nodes contain only

proxy objects with current parameter values. Client

nodes can contain additional application logic not

directly related to the objects in simulation, which is

realized by plug-ins. These will be described later.

Client nodes are responsible for sending all updates of

objects' state performed locally to the server. Server

then redistributes updates to other nodes.

 Although this is a simplest distribution which

could be used, it solves majority of problems with

consistency.

3.4 Data persistence

It is possible to store current state of selected objects

or whole virtual world for later use. This enables users

to continue with once started experiments even after

the simulation ends and model is discarded. Also, this

approach allows users to store and later reuse parts of

model within the same scene. For instance, if there is

a scene with building architecture with recurrent

components, these can be stored and copied to make

the composition of the building. When node is

connected to the simulation which is already running,

it obtains current state of the simulation model and

after setting up a local copy, it receives updates

occurred meanwhile.

3.5 Model composition

System was designed to be open for any extensions

concerning kinds of objects that can be a part of the

simulated model. These objects are called entities.

Every type of entity is defined by its XML

description, implementation class and if needed,

geometrical and visual representation written in

VRML. Implementation class is a class written in Java

language. This class implements a behavioral logic of

the entity and has direct methods for setting and

retrieving object parameter values. The XML

definition contains information about entity

implementation class, complete parameter list, list of

parameters which affect the visual representation.

Such definition is called type template. Instantiation

with parameter values creates an instance, which can

be a part of model, or in serialized form, part of object

gallery.

VRML definition of entity appearance is not

compulsory, there may be non-visible entities in

model. VRML object is written as a PROTO

definition (which may be repeated in the scene) and an

instantiated node with name, which is composed from

the entity identification. These nodes are inserted and

removed dynamically during the execution of the

simulation, using EAI API. As the standard EAI

specification does not allow direct node removal,

removing node is performed as re-composition of

world without omitted node, what may be sometimes

ineffective.

When the entity instance is created on the node, object

creation request is sent to the server. After an object

has been successfully loaded, new object information

is spread to active nodes, which download graphical

content on demand (if local cache does not contain

current copy). Implementation class instance is

loaded and initialized.

As the entities of simulated model are completely

standalone objects, some mechanism for

communication between them is needed. Entities

should not be aware of other objects existence.

Therefore, a mechanism of parameter links has been

developed. Parameter link is a logical connection

between value of parameter of source entity and value

of parameter of destination entity. Parameters must be

of the same type. When a value of source changes, the

destination parameter is updated to a new value. This

concept was borrowed from VRML ROUTE

statement [1]. Basically, it allows an interaction

between objects without being aware of it. Parameter

links are unidirectional.

3.6 Consistency control

As more than one user can manipulate an object,

mechanism for securing consistency in object state is

required. It is enforced by an exclusive lock granted

by the server to client node which changes the state of

object. Lock can be granted when an attempt for

parameter modification of the object is made and no

other client node is the owner of lock. After user stops

manipulating the object, after certain amount of time,

lock is released and server can grant it to another or

the same node. Although this approach may appear

restricting, it is generally possible to build the

simulation object in such manner that it does not

directly disturb the usage inside simulation.

3.7 Plug-in architecture

For better extendibility, architecture of core and plug-

in has been used. Core described in above paragraphs

contains basic functionality for distributed

collaborative environment without any support for

specific kind of applications. Support for applications

is realized through plug-ins. These are application

modules that operate inside the server and client

application. The server and client plug-in module

communicates through the standard client connection

by data which are not interpreted by the core, but

dispatched to plug-ins. Plug-ins communicate with

application through a standardized interface of client

and server application which is called context object.

Plug-ins provide various functionality, for example,

dynamically generated user interface used for

modifying parameters otherwise inaccessible from

visual scene, specialized geometry generators, refresh

of parameters, or bounding box selection (for the

architectural studies).

The mentioned plug-ins are loaded on demand as

specified in object type template. Also, with the

specification of a loaded plug-in, context data are

contained in type template, they may be used for the

initialization of plug-in at server or client side.

4 Applications

In this part, example applications and their description

will be shown.

4.1 Urbanistic study example

Following example demonstrates usage of the virtual

environment in a collaborative decision concerning

placement of railroad segment through residential

zone. Model contains prepared scene with buildings

and rail segments can be inserted. All objects can be

positioned, added or removed from scene. Multiple

participants can gradually go to the decision, where to

lay the track.

Application uses selection box plug-in to allow group

modification of transformations of the objects. There

are two modes in which the selection may be used. It

can behave as a simple block which is scaled, moved

or transformation changes can be applied to all

selected objects separately. Figure 4.1 shows the

window of client application.

Figure 4.1: Laying track railway segment

4.2 Surface wave interference

In this application, client-side generated geometry of

water surface is disturbed by parametrized wave

sources controllable by the experiment participants.

Surface is visualized and allows participants to

observe the wave interference effects. It is possible to

enable and disable wave sources. Due to maintainable

performance, water surface is a matrix of 32x32

vertices, where only elevation of vertex is being

recalculated.

Wave source has an adjustable frequency and

amplitude, moreover its position on the water surface

can be further modified. System allows modifications

of several objects at one time.

Phase of waves is not synchronized on client nodes,

as no transition effects are simulated. Any wave

source can be accessed by a participant. Wave sources

are distinguished by colors. Situation is displayed on

figure 4.2.

Water surface object has parameters of four wave

sources linked for immediate reflection of source state

change.

Figure 4.2: Wave interference experiment

4.3 Resistance characteristics

The experiment allows students to measure a

characteristics of electrical resistor. Scene contains

adjustable voltage source, ampermeter and resistor

with parametrized resistance curve. An instructor can

set up this characteristics to allow the measurement

by students. Virtual electrical devices have selectable

range. Situation is demonstrated on figure 4.3.

Figure 4.3: Measurement of resistance characteristics

4.4 Sail boat simulator

This application allows basic training in sail boat

navigation. The task of instructor is to control a

destination of navigation, wind strength and direction.

The student uses rudder and sail displacement for

navigation towards the destination. Navigation data

can be viewed at compass which is situated in the

scene together with sail ship model. Wind, ship and

destination directions are displayed. Ship rotates

around vertical axis but stays fixed at the position in

scene. Latitude and longitude is calculated internally.

Situation is demonstrated on figure 4.4.

Figure 4.4: Sail ship simulator, student's view

5 Conclusion

Although majority of collaborative virtual

environments are implemented on native platform, as

performance can be a major issue, this project has its

greatest advantage in platform independence.

Integrated browser utilizes Java3D or OpenGL

rendering engine. These are implemented on various

platforms as well as runtime environment for Java.

However, it has to be mentioned, that the performance

against native rendering is lower by an order. Also,

the attractiveness of content is limited by use of the

low-detail modelling.

Efforts have been made to make the system as generic

as possible. This means an abandonment of various

optimizing techniques used in single-purpose

environments. Specific features of system are

implemented as extensions (implementation classes of

entity types, plug-ins), using the common simulation

core and communication technique.

Although there are no performance bottlenecks in the

extent the system was used, using Java3D rendering

engine causes considerable initialization delays and

memory expenses.

Scalability of the system may be impaired by

extendability as large-scale optimizing techniques are

not used. In installation of about twenty network

nodes with relatively simple scene degrading

performance can be observed due to lack of any

optimizing techniques.

6 Further work

As the development of this system has been finished

as a product of master thesis, following suggestions

outline problems, which basically are missing features

in the system.

Currently, any participant has unlimited access to any

object. This could be a problem when roles of

participants are distinguished in the application. The

problem in it's basic form shows up when using

environment for laboratory experiment simulation

with involvement of instructor, where basically any

student can perform his task. Also, for tele-presence

applications it may be not desirable to allow any

operation of any participant over any object.

Therefore, it would be appropriate to extend the

system with participant role. This mechanism could be

based on defining the access profiles for entity

contained in the model and then associating access

profiles with identified users.

Recently, new standard specification which is a

successor of VRML97 has been published by Web3D

consortium. This standard is called X3D and currently

used browser supports both of these standards.

Transition to X3D involves re-implementing of layer

connecting simulation model and VRML EAI

interface. Visual representations of entities need to be

rewritten into X3D. In time, when visualization layer

was implemented, there were no documents

describing X3D SAI (scene authoring interface)

available. Also, there are not many model authoring

tools for X3D yet. Such step could improve

accessibility of scene content and possibly quality of

graphic design. The only problem is that there can be

less X3D modeling tools than for VRML.

Although system is highly extendable, when adding

new functionality with implementation classes or

plug-ins, knowledge of Java language is required.

This may be unacceptable for model designer.

Therefore, usage of scripting language could serve

this purpose. As interfaces for communication with

system core are defined, upon having access to Java

calls from script, scripting language could be used. As

a good example Python for Java would suit this

purpose well.

7 References

[1] VRML97 Functional specification and VRML97

External Authoring Intergace (EAI) International standard

Specification, ISO / IEC 14772-1:1997

at http://tecfa.unige.ch/guides/vrml/vrml97/spec/

[2] Extensible 3D (X3D) ISO / IEC FDIS 19775:200x

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-

FDIS-X3dAbstractSpecification/index.html

[3] Brutzman Don: DIS-Java-VRML.

http://web.nps.navy.mil/~brutzman/vttp/dis-java-vrml

[4] Horváth, Ľuboš: Viacpoužívateľské kooperatívna

prostredie pre prácu s VRML modelom. Diploma work.

FIIT STU Bratislava 2003.

[5] Galli R., Data Consistency Methods for Collaborative

3D Editing, Palma de Mallorca: Universitat de les Illes

Balears, 2000. 231 pages. Dissertation work.

[6] Shirmohammadi, S: Collaborating in 3D Virtual

Environments: A Synchronous Architecture. Ottawa:

University of Ottawa.

[7] Watt A., Policarpo F. 3D Games Real-time Rendering

and Software Technology. Addison-Wesley, 2000. 800

pages. ISBN 0-201-61921-0

