
Generating and Real-Time Rendering of Clouds

Petr Man∗

Czech Technical University in Prague

Czech Republic

Abstract

This paper presents a method for generation and real-time

rendering of static clouds. Perlin noise function generates

three dimensional map of a cloud. We also present a two-

pass rendering algorithm that performs physically based

approximation. In the first preprocessed phase it computes

multiple forward scattering. In the second phase first order

anisotropic scattering at runtime is evaluated.

The generated map is stored as voxels and is unsuitable

for the real-time rendering. We introduce a more suitable

inner representation of cloud that approximates the origi-

nal map and contains much less information. The cloud is

then represented by a set of metaballs (spheres) with pa-

rameters such as center positions, radii and density values.

The main contribution of this paper is to propose a

method, that transforms the original cloud map to the inner

representation. This method uses the Radial Basis Func-

tion (RBF) neural network.

Keywords: Atmospheric Effects Rendering, Clouds,

Light Scattering, Metaball Approximation, Perlin Noise,

Real-Time Rendering, Volume Rendering, RBF Neural

Network

1 Introduction

If we generate images of scenes such as mountain, trees,

house or the Earth, clouds play a very important role. An

outdoor scene without clouds seems to be unnatural. It is

a notorious fact that the shape of clouds is mathematically

indefinable. But there are many various approximations.

We can divide methods of clouds modeling to physically

based and orthogenetic methods.

Physically based methods simulate physical pro-

cesses [16] that cause creation and disappearing of clouds.

Dobashi [20] proposed a computationally inexpensive

method, which is based on a simulation using cellular au-

tomaton. Miyazaki [13] extended this method to simulate

atmospheric fluid dynamics.

Orthogenetic methods do not use physical process.

They try to catch a visual meaning of clouds. Voss [17]

used fractal noise [3] as a density function. There are many

fractal noise methods, the overview is given in [11]. Gard-

ner [4, 5] used a fractal noise approximation to modify

∗manp1@fel.cvut.cz

translucence of quadric surface.

This paper presents the Perlin noise [12] based on

random number generator for generation of 3D cloud

maps [7]. The Perlin noise is mapped to an ellipsoid-

shaped volume. Afterwards, the clouds in scene are cre-

ated by unifying these ellipsoid volumes, that was pre-

sented by Max [9].

Realistic rendering of clouds is difficult. The light pass-

ing through a cloud is physically scattered. Each particle

of a cloud absorbs a part of this light and the rest of the

light is scattered in non-linear way to other particles. This

paper summarizes the method for the real-time rendering

presented by Dobashi et al. [20] and extended by Har-

ris [6]. It uses a two-pass rendering real-time algorithm.

The first pass is a preprocess and it computes illumina-

tion of cloud by multiple forward scattering from light.

The second real-time pass computes first order anisotropic

scattering of illuminated cloud towards to viewer.

Figure 1: An example of a result of our algorithm for

clouds generation.

The direct visualization of the raw 3D map generated

by the Perlin noise would be very hard due to huge data

count. The problem can be solved by using the metaballs

(spheres) with parameters, such as center positions, radii,

and density values [1, 19, 20]. We transform original 3D

map of a cloud to better representation. It means we are

looking for an approximation method, which creates this

representation so that a synthesized image of cloud will

be similar to the original image. The number of metaballs

depends on a level of detail (LOD). This approximation

problem is NP-complete.

This paper proposed an approximation method by Ra-

dial Basis Function (RBF) [14]. Artificial neural networks



are computational systems inspired by biological neural

networks. They consist of highly interconnected process-

ing units called neurons. The artificial neural networks

were designed to solve real complex problems. Most of

them are NP-complete and may require an approximate

solution like multidimensional function approximation,

classification and clustering, prediction etc. The alterna-

tive method of the cloud approximation was presented by

Dobashi et al. [21]. They have used approximation 2D

satellite images by precipitation metabals and its subtrac-

tion from the map. This method can be extended easily to

3D space.

The paper is organized as follows. Section 2 describes

the Perlin noise as a cloud generator. Section 3 propose

the RBF neural network as a metaball approximator. Sec-

tion 4 presents the physically based real-time rendering

algorithm. In Section 5 we discuss experimental results,

Section 6 concludes the paper and presents future work.

2 Clouds generating by the Perlin

noise

The Perlin noise function ℘ generates clouds by simply

adding up noisy functions h at a range of different scales

(frequencies), Figure 2. Each frequence ω can be accen-

tuated or suppressed of its amplitudes ϕ . There are many

parameters for setting, therefore we define a new parame-

ter s (persistence) for replacing of these parameters. The

Perlin noise function will be:

℘(x,y,z) = |
Z−1

∑
i=0

ϕh(ωx,ωy,ωz)|, ϕ = si, ω = 2i, (1)

where Z is the number of frequencies contained in the

noise. It is important to choose it carefully, because a very

high frequency can not be displayed due to a pixel size. An

absolute value is used according to mapping output values

from < −1,1 > to < 0,1 >. The function h is continuous

and based on random numbers. For creating it we need

to make interpolation for a noise function f taking integer

numbers.

Figure 2: Perlin noise - adding noisy functions at a range

of different scales (s = 0.5)

The function f is based on a deterministic random num-

ber generator g. It takes three integers as parameters in 3D

space, and returns a random number based on that param-

eters. If we pass the same parameters twice, it produces

the same random number. We can use the following equa-

tion [7]:

g(x,y,z) = 1− (2)

((15731n2 +789221)n+1376312589)∧0x7 f f f f f f f

1073741823
,

n = (m ≪ 13)m,

m = x+57y+572z,

where ≪ means bitwise operator ”round left shifting” and

∧ means bitwise operator ”and”. f takes integer parame-

ters and produces random numbers between -1 and 1.

The function g could be used as noise function, but it

contains big changes that are not in real clouds. Therefore

it needs smoothing (figure 3). The following discrete noise

function produces a weighted average of a neighbourhood:

f (x,y,z) = αg(x,y,z)+βcorners+ γsides+δdgSides,
(3)

corners = g(x−,y−,z−)+g(x+,y−,z−)+g(x−,y+,z−)+

g(x+,y+,z−)+g(x−,y−,z+)+g(x+,y−,z+)+

g(x−,y+,z+)+g(x+,y+,z+),

sides = g(x−,y,z)+g(x+,y,z)+g(x,y−,z)+g(x,y+,z)+

g(x,y,z−)+g(x,y,z+),

dgSides = g(x−,y,z−)+g(x+,y,z−)+g(x,y+,z−)+

g(x,y−,z−)+g(x−,y,z+)+g(x+,y,z+)+

g(x,y+,z+)+g(x,y+,z+)+g(x−,y−,z)+

g(x+,y−,z)+g(x−,y+,z)+g(x+,y+,z),

where the upper index x+ means x is incremented by one

and the upper index x− means x is decremented by one.

Parameters α,β ,γ and δ are constants driving process of

smoothing. They must be choosen with regard to the con-

straint that the maximum function f equals 1. We experi-

mentally choosed values with the best visual appearance:

α =
9

18
, β =

2

8×18
, γ =

4

6×18
, δ =

3

12×18
.

The Perlin noise function f needs to take a non-integer

values as a parameter, therefore it is needed to make a

smooth interpolation between the values. We can use one

of these interpolations (figure 3):

linear(a,b,x) = a(1− x)+bx (4)

cosine(a,b,x) = a(1−0.5F)+0.5bF, (5)

F = (1− cos(πx))

cubic(v0,v1,v2,v3,x) = Px3 +Qx2 +Rx+S, (6)

P = (v3 − v2)− (v0 − v1),

Q = v0 − v1 −P,



Figure 3: Interpolating functions - linear (up left), cosine

(up right), cubic (down left) and comparison of a function

and its smoothing (dashed curve) by the function f (x,y,z)
(down right)

R = v2 − v0, S = v1

Linear (4) and cosine (5) interpolation functions return a

value between a and b based on the value x, which takes

value between 0 and 1. Cubic (6) interpolation uses four

parameters: v1 = the point before a, v2 = the point a, v3 =

the point b, v4 = the point after b. They are ordered from

the fastest one to the best one.

We have choosen the cosine interpolation to achieve

compromise between speed and quality. Final noise func-

tion h uses a three dimensional interpolation

h(x,y,z) = cosine(iz, iZ,z f ), (7)

iz = cosine(iyz, iY z,y f ), iZ = cosine(iyZ, iY Z,y f ),

iyz = cosine(xyz,Xyz,x f ), iY z = cosine(xY z,XY z,x f ),

iyZ = cosine(xyZ,XyZ,x f ), iY Z = cosine(xY Z,XY Z,x f ),

xyz = f (xi,yi,zi),Xyz = f (x+
i ,yi,zi),xY z = f (xi,y

+
i ,zi),

XY z = f (x+
i ,y+

i ,zi),xyZ = f (xi,yi,z
+
i ),XyZ = f (x+

i ,yi,z
+
i ),

xY Z = f (xi,y
+
i ,z+

i ),XY Z = f (x+
i ,y+

i ,z+
i ),

where the upper index x+ means x increment by one, the

lower index xi means an integer part of x and the lower

index x f means a decimal fraction of x.

Function ℘ can generate clouds density everywhere in

3D space. For displaying one elementary cloud, it is more

suitable to use a simply mathematically described volume

representation as an ellipsoid. We will map the Perlin

noise to the ellipsoid. But then the mapped cloud looks

unrealistic because of existing discontinuous changes at

the borders. A better solution is to add transparency mod-

ulation with respect to position in the ellipsoid to the map-

ping function. This modulation does not change density

at the center, sets it to zero value at the border and makes

a nonlinear interpolation between the center and the bor-

der. Both, the mapping and the modulation functions are

included in the ellipsoid equation.

Q(x,y,z) = q1x2 +q2y2 +q3z2 +q4xy+q5yz+ (8)

+q6xz+q7x+q8y+q9z+q0

where q0 −q9 are constants determining size, position and

rotation of the ellipsoid. The cloud volume is delimited

according to the following condition (mapping function):

0 ≤ Q(x,y,z) ≤ 1 (9)

and the cloud density is computed by (transparency mod-

ulation):

D(x,y,z) =

{

dQ(x,y,z), Q(x,y,z) ≥ t

0, Q(x,y,z) < t
(10)

t ∈< 0,1),d ∈ (0,1 >

where the limit parameter t is used for highlighting empty

spaces in the cloud and by parameter d we can set the dy-

namics of the cloud (the difference between maximal and

minimal density of cloud). In the figure 4 there are t = 0.1
and d = 1.

Figure 4: The cloud generated by the Perlin noise function,

with Z = 4 and s = 0.5.

3 Metaball approximation of a cloud

by the RBF neural network

We can generate a nice 3D map of cloud by using method

described in section 2. But their direct displaying is diffi-

cult. More realistic rendering requires complex cloud map.

A cloud in figure 4 is made of 11000 voxels. Therefore it

is important to choose more suitable inner representation

that will be able to reduce complexity and that will approx-

imate the original cloud map. Such an inner representation

can be a set of metaballs M [1, 19, 20] with the parame-

ters, such as the center position~c, the radius R and density

value ρ .

M = {~mi}, i = 0, ...,N, ~mi = (~ci,Ri,ρi), ~ci = (xi,yi,zi),
(11)

where N is number of metaballs. This representation is

able to simplify voxel burst by one metaball. A density

inside a metaball is not constant. It is defined by a basis

function f . It defines the density at the center equal ρ and

falling nonlinear with increasing distance from the center

to zero at the border of the metaball. There are several pos-

sibilities to choose the basis function, for example, a Gaus-

sian density function [18] (formula 15). We have choosen



another function proposed by Wyvill et al. [19] to achieve

slower growth:

f (Ri,ri) =







1
k
(− 4

9
a6 + 17

9
a4 + 22

9
a2 +1), ri ≤ Ri

0, ri > Ri

(12)

a = ri/Ri, k =
748

405
πRi

where ri is the distance from the center of the metaball

to calculation point P and k is used for the normalization.

These functions are depicted in figure 5. An intensity at

point P defined by this representation can be computed by:

ρ(P) ≈
N

∑
i=1

ρi f (Ri,ri). (13)

Figure 5: Basis functions - Gaussian, σ = 0.6 (left) and

f (Ri,ri) (right).

The main problem is to get this representation from the

cloud map. This section proposes the RBF neural network

as approximator of the 3D cloud map. The set of metaballs

M is obtained using the neural network.

A basic artificial neuron model used in artificial neural

networks has several inputs and one output. It computes an

inner potential ϕ of inputs that are transformed by transfer

function ψ and the result is distributed to other neurons by

the output junction. Many artificial neural networks have a

layered structure. It means that there exist groups of neu-

rons of a similar function. The artificial neural network

benefits of learning process when it is trained to input data.

The training process uses an arbitrary training algorithm to

modify weight values stored in connections between neu-

rons in the network - so called synapses. Our training set is

a set of voxels and the network helps us to approximate the

data set and creates a desired representation of the clouds.

The RBF neural network [14] in figure 6 consist of two

neuron layers. A hidden layer connected to the network

input and an output layer connected to the hidden layer.

The network input (sometimes called input layer) holds

and distributes input data to hidden layer. The hidden layer

is fully connected with the network input using weighted

(w) synapses.

The hidden layer contains N RBF neurons. The RBF

neurons are the key to the solution of the problem of re-

ducing amount of voxels in the final result. Each of neuron

Network Input

Hidden Layer

Output neuron (layer)

Figure 6: RBF neural network architecture. The RBF neu-

ral network has three dimensional input passing to a hid-

den layer consisting of RBF neurons. The RBF neurons

are connected to an output layer consisting of one neuron,

which output is the cloud intensity.

represents a required metaball ~m. The number of RBF neu-

rons (metaballs) can be chosen manually and it depends on

level of detail (LOD) approximation. The k-th RBF neu-

ron has three inputs, that contains weights wk
x, wk

y and wk
z .

Let ~wk = (wk
x,w

k
y,w

k
z). These weights are the center coor-

dinates of the k-th metaball

~ck = ~wk. (14)

The RBF neural network uses Euclidean metric for com-

puting the inner potential ϕ1 =‖ ~w −~x ‖, where ~x is an

input vector sent from the network input (voxel position).

The transfer function is Gaussian:

ψ1(ϕ1,σ) : e
− ϕ2

σ2 = y∗, (15)

where y∗ is the output of a neuron and σ is a parameter set

at the learning process. It is used for calculation the radius

of the k-th metaball

Rk = uσk, u > 0, (16)

where u is a constant, that drives overlapping of nearby

metaballs. In Figure 8 there is the approximated cloud

with u = 2.

The output layer contains only one output neuron and

it is fully connected with the hidden layer. This neuron

integrates output of all RBF neurons to a value, which is

used to represent intensity of the cloud in our task. Output

of the neuron is the output of the whole network.

The neuron has N inputs and one output. Junctions be-

tween hidden and output layer contain output weights vk.

The inner potential is

ϕ2 :
N

∑
k=1

vky∗ = y, (17)

where y is output of the neuron. The weights vk are used

for computing intensity of the metaballs similar to the ra-

dius:

ρk = tvk, t > 0, (18)



where t is a constant, that drives level of the cloud inten-

sity.

The principle of the radial basis function derives from

the theory of functional approximation. We are looking

for a function g of the form:

g(~x) =
N

∑
k=1

vkψ1(ϕ1,σk), (19)

It is an approximation of the K given pairs ~x j,y j from the

training set and therefore it minimize the following error

function:

H[g] =
K

∑
j=1

(y j −g(~x j))
2, (20)

where K is the number of voxels in the training set.

Now, we know how a RBF network looks like and how

we can get the required representation of the cloud. Now,

we describe training process, that minimize function H by

setting input weights ~wk, output vk weights and parameters

hidden neurons σ .

The learning process consists of three phases. The input

weights ~wk are set in the first phase by the k-means algo-

rithm [14]. The second phase computes the parameters σ
of hidden neurons. Algorithms in both phases use only

input information like the positions of voxels, therefore

the algorithm performs unsupervised clustering. The third

phase sets the output weights vk by the gradient method. It

uses all of parameters from training set. It is a supervised

method, which means that the training algorithm knows

correct output of the trained system - the RBF network. It

is the cloud intensity in our case.

Figure 7: The result of the K-means algorithm, where the

number of metaballs K is 1000.

Figure 8: The cloud map approximated by 1000 metaballs.

Figure 9: The cloud map approximated by 100 metaballs.

Figure 10: The cloud map approximated by 30 metaballs.

In the first phase we can choose from various methods

for setting weights ~wk - metaball centers. The simplest

method is the direct setting to uniform or random selected

patterns from the training set. Chen et al. [15] use method

of orthogonal least squares learning for minimizing the

network error. Our approach uses self-organizing adap-

tive K-means clustering [8, 10] (figure 7), which is widely

used algorithm for learning RBF neural networks. In the

first step of this method we set direct weights ~wk to random

selected patterns from the training set. In the second step

we find the nearest center ~wk for every input data vector ~x j

and we move it according to:

~wk = ~wk +η(~x j − ~wk), j = 1, ...,K, (21)

where η is an adaptation speed. We call it epoch when

one training cycle for all data vectors from the data set ~x j

is performed. The adaptation speed is decreased by every

other epoch. The number of epoches is limited by the min-

imal adaptation speed. We selected a square root method

introduced by Darken and Moody [2]:

η(t) =
1

√

n(t)
, (22)

where t is the number of epoch and n is the number of

the patterns that have been assigned to the center up to the

epoch t.

In the second phase we compute parameters σ of hidden

neurons by the root mean square of distances (figures 8, 9

and 10):

σk =

√

√

√

√

1

Q

Q

∑
q=1

‖~wk −~xq‖2, (23)



where ~xq is q-th pattern belonging to a cluster with the

center ~wk.

In the third phase we compute the output weights vk by

gradient algorithm. We will repeatedly change the weights

vk for minimizing the error function H by:

∆vk = −λ∇H, (24)

where λ is adaptation speed similar to η . End of training

the third phase is decreasing a value of the error function

H below a specified limit.

4 Real-Time rendering

The algorithm is based on the physical light scattering.

The cloud is created using a huge amount of water par-

ticles. The light passed though the cloud is scattered by

the particles. The part of the light impacted on a parti-

cle is absorbed (changed to a heat energy) and the the rest

of light is reradiated (scattered) to neighbouring particles.

The physical scattering of these particles can be approxi-

mated using following Rayleigh phase function:

p(Θ) =
3

4
(1+ cos2 Θ), (25)

where Θ is an angle between the incident and the scat-

tered light flow. A light passing through the cloud is sub-

sequently partially absorbed by individual particles. But

due to multiple scattering the light is scattered many times

and therefore the cloud appears to be much more bright

then the sky. The amount of the light impacted to the par-

ticle is computed by:

g(~x,~l) =
aτ p(Θ)I(~x,−~l)

4π
, (26)

where ~x is a position of the particle, ~l is a light direction,

I is the amount of the light scattered from the direction −~l
to position ~x, τ is optical depth (a measure of how much

light is absorbed in traveling through a medium) and a is

a constant (Albedo [6]), that determines the percentage of

attenuation by extinction. The values a=0.9 and τ = 8 are

recommended in [6]. The metaballs represent these par-

ticles and the rendering algorithm displays them in two

passes.

4.1 The first pass

In the first pass the algorithm computes the amount of light

sources incident to the every metaball as depicted in fig-

ure 11. It uses physical multiple scattering approximation

[6] that reflects the light impacted from more directions.

The light passing trough the cloud is subsequently sub-

dued by the particles. To compute the light intensity of

every metaball it is needed to sort these according to the

distance from the light. Sorting is done to scatter the light

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 11: First pass of rendering algorithm

onto next visible metaball only. The algorithm uses hard-

ware acceleration by a blending function and back reading

pixels from a framebuffer (a memory stores the rendered

picture).

In the first step the framebuffer is filled with white color

that represents intensity of the non-absorbed light. The

algorithm uses the rendering metaballs to the framebuffer

and their back reading for checking the amount of light

impacted to the next particle. Therefore, it needs to move

the camera to the light position.

In the second step the algorithm computes light inten-

sity for each metaball. It reads amount of the light I from

previous metaballs by the back reading of a framebuffer

area. Size of the area is defined by a projection of the pro-

cessed metaball to the framebuffer. The amount of light

multiple scattered to the processed metaball equals to av-

erage of back read values. The impacted light I is par-

tially absorbed and the rest of the light can be computed

by the function g(~x,~l), formula (26). The phase function

p(Θ) can be approximated by value 1.5 that corresponds

the Rayleigh function for the angle 180 degrees. The pre-

sented can be described by following recurrent formula:

Ik =

{

gk−1 +Tk−1Ik−1, 2 ≤ k ≤ K

I0, k = 1
(27)

Tk−1 = eτk−1 ,

where Ik−1 is the amount of the light scattered to the pro-

cessed metaball that scatters the light Ik, I0 is the origi-

nal non-absorbed light represented by white color in the

framebuffer, K is the number of metaballs along the light

direction~l and Tk−1 is the transparency of the metaball.

In the third step the algorithm renders the metaball with

the light intensity computed by formula (27) to the frame-

buffer. The rendering process uses the splatting of the

map defined by formula (12) directly to the framebuffer.

The metaball defines proportions of the map. It has round



shape, see figure 5. The formula (27) can exploit a hard-

ware implementation of the blending function:

cresult = fsrccsrc + fdestcdest , (28)

where the fsrc and fdest are blending factors, cdest is an

original value defined in the framebuffer, csrc is a new

value used for modifying the framebuffer and cresult is re-

sult value written to the framebuffer. We define cresult = Ik,

fsrc = 1, csrc = gk−1, fdest = Tk−1 and cdest = Ik−1.

�
�
�
�

Figure 12: Second pass of rendering algorithm

4.2 The second pass

The second phase of the algorithm is similar (figure 12).

The camera is in the original position. The metaballs are

sorted according to distance between the camera and the

processing metaball positions in descent order, since the

metaballs are sources of the light not the camera. The

amount of the light excited by the metaball is:

I∗k = g∗k +TkI∗k−1,1 ≤ k ≤ K∗, (29)

where K∗ is the number of metaballs along the view di-

rection. Function g∗ is computed for the angle between

the camera view and the light direction~l. I∗k−1 is the light

intensity scattered by the previous metaball and computed

in the first phase of the algorithm without the phase func-

tion. The phase function would be computed twice - first

in the light direction and second in the current view di-

rection. This phase is computed in real-time, therefore it

uses only first order anisotropic scattering. The amount of

the light impacting to the following metaball is not com-

puted by an average value of back read values like in the

first phase but it is computed by mixing own light to the

previous light impacting to the metaball by the blending

function presented in formula (28).

The anisotropic scattering means that a non-constant

scatter in various directions defined by function g is used.

It gives the clouds their characteristic ”silver lining” when

viewed looking into the sun. The clouds looks more real-

istic. Usage of the function g can be compared in figures

- anisotropic (figure 14) and constant 1 used - isotropic

(figure 13).

Computation of a color light must be solved for every

color component separately. If we use more light sources

then the result intensity is defined by a sum of their con-

tributions. Faster solutions by means of impostors is pre-

sented in [6].

Figure 13: Shading using isotropic scattering.

Figure 14: Shading using anisotropic scattering.

5 Implementation and results

We have implemented three independent programs - a gen-

erator, an approximator, and a visualizator. The generator

creates a cloud map file using the Perlin noise function. It

takes several parameters, such as cloud diameters, the per-

sistence and the number of frequencies. The approximator

is an implementation of the RBF neural network. It takes

the cloud map file created by generator, approximates by

the metaballs and saves the output to a cloud file. The

visualizator is 3D engine programmed using the OpenGL

and the Glut libraries. It takes the cloud file generated by

the approximator and it visualizes the cloud by the pre-

sented two-pass rendering algorithm. We have overtake



just the first and the second phases of the approximation

algorithm. Therefore the approximated cloud on the figure

8 does not have defined the density values. We tested real-

time rendering of a cloud scene. We used the notebook

Dell Latitude C840 (CPU 1.6GHz P4, NVidia GeForce 4

video card 64MB, resolution 1024x768). The cloud scene

with 1200 metaballs ran at 43fps without using optimizing

methods. Other scene with 10000 metaballs ran at 7fps.

6 Conclusion and Future Work

The Perlin noise is an interesting method for generating

clouds map. Concering performed experiments we say

that it produces visually plausible cloud images. It is suit-

able for generating clouds - such as cumulus. The RBF

neural network reduces complexity of the cloud map pre-

serving its the almost origin shape. The presented methods

are suitable for static clouds only. The real-time rendering

algorithm provides quick and realistic method of clouds

visualization. It can be used even for clouds animation,

but there is one basic problem. If the state of metaball po-

sition or light source will change, slow first pass have to

be recomputed. Final result is shown on figure 1.

Future work will deal with implementation of third

phase of approximating method, finding improving meth-

ods for the cloud visualization and developing methods for

generating the metaball representation directly.

7 Acknowledgements

The author would like to thank to Jan Koutnik for his help

with the neural network, Radek Marik for his help with

the problem solving, Jiri Zara for his advice, and Bedrich

Benes for supervising.

References

[1] G. Wyvill B. Wyvill, C. McPheeters. Data Structure

for Soft Objects. The Visual Computer, 1986.

[2] Moody J. Darken, C. Fast adaptive k-means clus-

tering: Some empirical results. Int. Joint Conf. on

Neural Networks, 1990.

[3] Musgrave F. K. Peachey D. Perlin K. Ebert, D. S. and

S. Worley. Texturing and Modeling. A procedural

Approach. Second edition. AP Professional, 1998.

[4] G. Y. Gardner. Simulation of Natural Scenes Using

Textured Quadratic Surfaces. Computer Graphics,

1984.

[5] G. Y. Gardner. Visual Simulation of Clouds. Com-

puter Graphics, 1985.

[6] Mark J. Harris. Real-Time Cloud Rendering for

Games. Game Developers Conference, 2002.

[7] Jerzy Karczmarczuk. Functional Approach to Tex-

ture Generation. 2002.

[8] J. B. MacQueen. Some Methods for classification

and Analysis of Multivariate Observations. Proceed-

ings of 5-th Berkeley Symposium on Mathemati-

cal Statistics and Probability, Berkeley, University of

California Press, 1967.

[9] N. Max. Efficient Light Propagation for Multiple

Anisotropic Volume Scattering. Photorealistic Ren-

dering Techniques. Springer-Verlag, 1995.

[10] Mashor Mohd, Yusoff. Improving the Performance

of K-Means Clustering Algorithm to Position the

Centres of RBF Network. 1998.

[11] H-O. Peitgen and D. Saupe. The Science of Fractal

Images. Springer-Verlag, 1988.

[12] K. Perlin. An Image Synthesizer. Computer Graph-

ics, 1985.

[13] Y. Dobashi T. Nishita R. Miyazaki, S. Yoshida. A

Method for Modeling Clouds based on Atmospheric

Fluid Dynamics. Pacific Graphics, 2001.

[14] Haykin S. Neural Networks, A Comprehensive Foun-

dation. IEEE Press, 1994.

[15] C. F. N. Cowan S. Chen and P. M. Grant. Orthogo-

nal least squares learning algorithm for radial basis

function networks. IEEE Transactions on Neural net-

works, 1991.

[16] Gustav Taxen. Cloud Modeling for Computer Graph-

ics. Masters thesis, Royal Institute of Technology,

Stockholm, Sweden, 1999.

[17] R. F. Voss. Fractals in nature: From characteriza-

tion to simulation. The Science of Fractal Images.

Springer-Verlag, 1988.

[18] L. Westover. Footprint evaluation for volume render-

ing. SIGGRAPH, Black City, 1990.

[19] G. Wyvill and A. Trotman. Ray-tracing soft ob-

jects. Springer-Verlag New York, Inc., New York,

NY, USA, 1990.

[20] H. Yamashita T. Okita Y. Dobashi, K. Kaneda and

T. Nishita. A Simple, Efficient Method for Realistic

Animation of Clouds. SIGGRAPH, 2000.

[21] H. Yamashita T. Okita Y. Dobashi, T. Nishita. Model-

ing of Clouds from Satellite Images Using Metaballs.

Proceedings of the 6th Pacific Conference on Com-

puter Graphics and Applications, 1998.


