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Abstract 
In research literature and many scientific disciplines, 
solution to the common problem in path planning for an 
autonomous robot has been extensively developed. 
Almost all explored techniques assume the robot has 
complete and detailed overview of the environment he is 
moving in. In addition to, many methods work over the 
graph representation of this environment which can be 
very difficult to construct or obtain in the real 
applications. This paper introduces a hybrid technique 
combining graph and grid representations of an examined 
space and capable of planning paths in known, partially 
known, unknown and dynamic environment at the price 
of the pseudo optimality of results. 
 

1 Introduction 
General problem of finding and planning of an optimal 
path is a highly explored topic in several scientific areas. 
There are many approaches and techniques for solving 
this task. They are in most cases based either on graph or 
grid representation of the examined environment. In 
other words, some algorithms for path planning demand 
graph-like geometric definition of the processed scene 
(e.g., definition of all obstacles and forbidden areas) and 
other algorithms assume the discrete representation of the 
surrounding environment is provided. Most of these 
techniques generally do not distinguish the dimension of 
examined scene - they can be used either in 2D or 3D 
applications without any difficult modifications. Graph 
based approaches usually derive special structures from 
the provided environment description and work with 
them whereas the raster based approaches usually do not 
need such pre-processing and search the path directly in 
the provided grid. 
 

Both ways of environment representation have crucial 
and radical disadvantages. Graph representation of a real 
environment is rarely available and its construction is - if 
possible at all - very complicated and difficult. 
 

 
1pebro@students.zcu.cz 

On the other hand, discrete representation of the 
examined space is much easier accessible and 
measurable but the algorithm itself is in most cases (due 
to the amount of raster elements to inspect) very time-
consuming. In addition, almost all methods for path 
finding and planning need either well-known or static 
environment which is not always available, either.  
 

A great improvement for this type of applications can 
be achieved with the combination of discrete and graph 
environment approaches. Such a technique could use 
adaptive spatial structure as a graph with vertices and 
edges evaluated according to the values from the 
provided grid. Then it would be able to discover pseudo 
optimal path (optimal among all available transitions in 
the graph) and, for example, continuously adapt this 
spatial structure to the actual state of environment and 
other dynamic influences. 
 

In this paper, we propose a possibility for path 
planning over the combined environment representation 
which eliminates (or at least reduces) the disadvantages 
of mentioned conventional approaches at the price of the 
pseudo optimality of results. The content of the paper is 
as follows. Section 2 explains state of the art together 
with the best known techniques. Section 3 describes the 
proposed path planning model and in the section 4, our 
actual solution and implementation is outlined. Section 5 
shows the results gained by our solution and in section 6, 
the future work of the proposed path planning approach 
is presented. 
 

2 State of the art 
Path planning denotes a basic problem of finding an 
optimal path between two specified spots in an abstract 
environment representation. In this context, optimal path 
means a path satisfying one or more given objectives (the 
shortest, the cheapest or the fastest path, etc.). 
Environment can be represented in a variety of ways but 
the path planning algorithms are focusing mainly on 
evaluated graphs and grids. There are many ways these 
environments can be differentiated (dynamic/static or 
known/unknown environments, etc.) which implies a 
similar distinction of path planning techniques according 
to the types of environment they are able to work with. 



First, let us introduce the approaches based on the 
graph representation of the surrounding environment. 
Visibility graph technique [Her87] extends the basic 
provided graph with edges connecting vertices that can 
“see” each other whereas the source and destination 
position is treated as an obstacle, too. New edges 
(together with edges defining sides of each obstacle) then 
represent possible transitions and through them, the 
optimal path can be found. Example of such pre-
processing in 2D application can be seen in Figure 1: 
edges of all obstacles (bricks pattern filling), starting and 
ending position (points labelled S and E) are connected 
according to their mutual visibility and over possible 
transitions (thin lines and obstacles sides), the optimal 
path (dashed lines) is selected. 
 

 
Figure 1: An example of scene processing with the 

“Visibility graph” technique 
 
 

Minkowski sum [Ram96] is a similar approach that 
(unlike the previous method) considers the shape of 
passing object and “inflates” borders of obstacles so that 
the collision-free path can be solved. Example of such 
pre-processing is presented in Figure 2: the same 
obstacles as in Figure 1 are inflated with the radius of 
obstacle (gray areas) and the collision-free path (dashed 
lines) between starting and ending position (spheres 
labelled S and E) is selected. With the special structure 
prepared, both approaches can use Dijkstra’s algorithm 
[DPV04] or similar to find the appropriate path. 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: An example of path planning with the 

“Minkowski sum” method 
 
 

Second, we are providing insight into the techniques 
based on the grid representation. Such a grid can be 
precomputed (if not provided) or modified at the 
beginning of the algorithm. In reference to the 
modification of the explored grid, a potential field 
model [War90] can be used for filling the grid with 
discrete values of a specific potential field created by all 
obstacles – passing through the grid elements with the 
lowest potential values then ensures finding the path with 
the maximal clearance among all obstacles. Most known 
techniques for searching itself are for example A* (for 
well-known environment; [Bat04]) and D* (for 
unknown, partially known or changing environment; 
[Ste94]) algorithms. Figure 3 documents the manner of 
such path finding in the grid: obstacles from Figures 1 
and 2 are now splitted into the grid and in this grid, 
optimal path between starting and ending position (cells 
labelled S and E) over the grid cells is illustrated. 
 
 

 
Figure 3: An example of the raster based path planning 

 
 



3 The proposed solution 
To provide a suitable method for the applications where 
the mentioned techniques fail, we are focussing on a 
general path planning technique that works in the known, 
partially known or unknown discrete environment and is 
designed for the virtual reality with the support of the 
exploring avatars. 
 

In the proposed solution, we come out of a general 
idea of a fictive terrain exploration with the help of 
autonomous robots that are controlled from a specific 
kind of headquarters (HQ). These robots (also called 
scouts or agents) are equipped with specific sensors 
(dependent on the type of the application) and explore 
certain locations of the examined terrain according to the 
orders from HQ. Such headquarters keep specific „paper 
maps“ to sketch in the discovered obstacles and other 
threats which are then periodically complemented and 
updated with actual values measured by the scouts. 
Agents are then guided to the unexplored locations or to 
the important locations according to the actual state of 
these maps. After certain time, the static obstacles are 
fully mapped throughout the explored space, the safest 
paths (in term of the maximal clearance among all 
obstacles) are known and the scouts are then guided only 
to locations with a suspicion of possible threats. Figure 4 
represents an example of such environment exploration 
in 2D application: 4 agents in the terrain collect and send 
the information about the obstacles (bricks pattern 
filling) and specific kinds of threats (angry face) to the 
headquarters and there, the measured values are logged 
into the obstacles map (impassable areas) and into the 
threats map (a potential field of discovered threat). 
 
 

 
Figure 4: Preview of 2D terrain sensor-based exploration 

with the autonomous robots 
 
 

 
 
 

Following the mentioned idea of the sensor based 
terrain exploration with the autonomous agents, we 
advance in the development of a general model for the 
real-time and adaptive path planning that was pioneered 
by R. A. Apu in [AG05]. The proposed model can be 
used for both 2D and 3D applications (the only 
difference lies in the undermentioned adaptive graph-like 
structures) and works in a complex and dynamic 
environment which is assumed to be provided in the 
raster representation and can be well known, partially 
known or even unknown. The described path planning 
system is based on three main headstones: 
 
• A graph-like spatial structure (hereafter referred 

to as a mesh) that adapts itself to the examined 
environment and defines all available positions 
and crossings with its vertices and edges. 

 
• A grid structure for discrete representation of 

certain environment hazards (hereafter referred to 
as a map), e.g., proximity to an obstacle or 
dynamic threats. 

 
• An autonomous AI entity (hereafter referred to as 

an agent) for the real-time space exploration and 
influencing the mesh adaptation with its 
behaviour. 

 
The main approach uses two separate maps of the 

same size for the environment description. The first one, 
called obstacles map, represents danger weights as 
proximities to the nearest obstacle in the mapped space 
and the second one, called threats map, represents 
potential fields of all located and observed threats in the 
space. In the following, the algorithm keeps a mesh that 
is „widespread over each map“ and defines all available 
paths the agents can travel during their exploration. This 
mesh continuously copes with the changes in both maps 
and with behaviour of all agents. Such an adaptation is 
achieved by refinement of the mesh in the places with 
higher error values (calculated from the obstacles map 
and threats map) and by merging of the mesh in the least 
visited and unimportant places. 
 

The whole algorithm is based on real-time 
development of the adaptive mesh in particular iterations. 
According to the recorded values in the maps, mesh 
structure is refined in the locations with a higher 
importance (the darker locations in the obstacles map and 
the threats map in the Figure 4) and it is merged in the 
places with a lower importance (in the least visited graph 
vertices). In the proposed path planning system, the 
adaptive mesh is used only to define the available 
waypoints and transitions for the movement and 
navigation of the agents, not for visualization. Therefore, 
T-vertices in the mesh do not bring any problems typical 
for them in the visualisation of meshes (they may cause 
creases in the model). Foldovers in the mesh are not 



possible in our case as vertices are not moved, just 
refined. 

 
In the mentioned fictive application, continuous 

prospecting of the environment was a task of the robots 
but in our approach and demonstrating application, we 
assume the obstacles in the environment are completely 
explored - the obstacles map is filled with weights at the 
beginning of the algorithm with an IDT (Image Distance 
Transform) technique based on the Voronoi diagrams 
[Rou98]. Concretely, the elements of the obstacles map 
are evaluated according to their proximity to the nearest 
obstacle with the real value from 0 (maximal proximity) 
to 1 (minimal proximity or the obstacle itself). The 
elements of the threats map are then evaluated in a 
similar manner during the mesh adaptation. 
 

One iteration of the mesh adaptation in the fictive 
application consists of the following general steps 
(similar as in [AG05]): 
 

1. Maps completion and updating 
The current sensor readings are evaluated in the 
close neighbourhood of each agent and the 
corresponding map elements are updated or 
eventually complemented with the measured values. 

 
2. Influence depletion and replenishment 

An importance of the recorded values (so called 
influence) of each vertex in the adaptive mesh is 
partially depleted and then again partially 
replenished according to the count and distance of 
the agents near this vertex. The more agents are in 
the proximity of the vertex, the bigger is the amount 
of the influence replenishment. 

 
3. Error function evaluation and refinement 

The specific error function with the values from the 
obstacles map, threats map and influences is 
evaluated for each block (in [AG05], the blocks are 
called engrams in a specific spatial structure ASM 
– Adaptive spatial mesh) of the adaptive mesh and 
according to the result, the blocks are merged, 
splitted or left. Figure 5 shows a single stage of the 
adaptive mesh for the 2D scene presented in the 
Figure 4: the mesh is refined in important regions 
(above the obstacles and nearby the threat) and 
coarsened in less important or unexplored regions. 

 
4. Orders execution 

Each agent executes its orders – he finds an optimal 
path to the goal position with the provided cost 
function or follows already computed waypoints (if 
the path cannot be travelled due to the refinements 
of the mesh, the path is recomputed to the last 
waypoint). 

 
 
 

5. Exploration 
If all goals are reached, agents ensure an 
exploration of unvisited locations in the examined 
space – they automatically plan the path to the 
vertices with no values recorded. 

 
 

 
Figure 5: Example of the stage of the adaptive mesh for 

the same type of the explored terrain 
 
 

With this approach, after a certain time, the mesh is 
fully adapted to the static obstacles and copes only with 
the dynamic influences – threats. A pseudo optimal path 
for the user can then be computed using Dijkstra’s 
algorithm with the cost function similar to the function 
used by robots during their exploration in [AG05]. 
 

4 Our solution & implementation 
This section provides an overview of our implementation 
of the path planning model and closely describes the 
implementation details. Therefore, the readers interested 
in the algorithm only can skip it. At this moment, our 
solution does not fulfil the first mentioned requirement – 
use of an adaptive spatial structure for the graph part – 
and so it is degraded to the basic type of raster-based 
path planning methods. Implementation fundamentals for 
this structure have been prepared and we will mske this 
generalization in the near future. 
 

The main implementation of path planner is realized 
in C# language and the whole proposal is designed for 
providing high-level modularity – for each structure 
required by the proposed algorithm an interface is 
prepared. Each interface defines basic operations the 
concrete implemented structure must provide. Figure 6 
shows basic elements of scene mapping part: 
IRasterMap interface must be implemented by every 
mapping structure used in the path planning algorithm.  
In compliance with the interface definition, such 
mapping structure must be able to provide weight of 



mapped space in a certain area or position. Classes 
ThreatsMap and ObstaclesMap implement this 
interface while work in different way. ThreatsMap 
keeps only a list of threats (instances of class that 
implements IThreat interface) and ObstaclesMap class 
keeps 3D array for whole mapped space. 

 
Basic elements of adaptive mesh part are shown in 

Figure 7: Generic class Mesh implements IGraph 
interface (presented in Figure 8) and so provides basic 
operations for passing the graph such as passing all 
vertices or passing the descendants of the specified 
vertex. Engram class is for internal use of the Mesh 
class and the delegate labelled BlockWeight defines the 
only way for adaptation of the mesh - BlockWeight is a 
specific kind of a safe pointer to the function and 
requires method that is able to compute weight of certain 
area of mapped space. Genericity of the Mesh class 
ensures that the class works with any type of vertices. 
Only condition for each class of vertex is implementation 
of the IVertex interface presented in Figure 8. 
 

Figure 8 documents top-level elements of proposed 
path planning algorithm. Main class Dispatcher requires 
above all instance of adaptive mesh class implementing 
the generic interface IGraph and list of instances for 
mapping the examined space (instances of a class 
implementing the IRasterMap interface). 
 

 
Figure 6: Class diagram of interfaces and classes in the 

mapping part of path planner 
 
 
 
 
 
 

 
Figure 7: Class diagram of interfaces and classes in the 

part for adaptive mesh 
 
 

 
Figure 8: Class diagram of interfaces and classes in the 

main path planner 
 
 

The proposed model provides solution for 
applications in known, partially known or unknown 
discretized environment at the price of the pseudo 
optimality of the final path. It comes to this, that this 
consequent path is optimal “only” with respect to the 
adaptive mesh. 

 
 



5 Experiments & results 
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To survey our current solution, we have prepared a test 
application that creates a space with obstacles and uses 
the proposed technique for finding the path between two 
constant positions. Figure 9 shows the discovered pseudo 
optimal path in the space with the obstacles in the form 
of spheres with different radii. In the zoom, the same 
scene snapshot with weight markers is presented (lighter 
markers represent a low level of danger and darker 
markers represent a high level of danger). 
 

The obstacles map is precomputed at the beginning of 
the algorithm and so the rank of this map (a count of the 
grid elements in each dimension) does not affect the time 
needed for the path planning itself. On the other hand, 
rank of (for the present) non-adaptive mesh has a great 
impact on this time. Functional dependence of the 
elapsed time on the mesh rank is evaluated and presented 
in the figure 10. The considered example finds a path in 
the same scene as in Figure 9 with obstacles map rank 
equal to 64. The computer configuration is disposed with 
AMD Athlon XP 1.67 GHz and 512 MB DDR RAM.  
 

Figure 11 demonstrates using of the proposed path 
planning system in 2D applications and indicates the 
dependence of the path optimality on the rank of the 
mesh. Optimality of the path increases with the 
punctuality of the mesh (Figure 11 presents examples for 
the ranks 24, 36 and 48). Increase of the rank implicates 
the growth of the memory usage. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 9: Mapped space with the obstacles and found 
path (in the zoomed snapshot with weight markers) 

 
Figure 10: Elapsed time for the path finding dependent 

on the rank of the used non-adaptive mesh 
 

Figure 11: The discovered path for the different ranks of 
the adaptive mesh 

 



6 Conclusion & future work 
We have proposed hybrid and real-time path planning 
technique for real applications with the ability to read 
information about environment through the specific 
devices equipped with sensors. The provided method can 
be used in both 2D and 3D applications and works in 
known, partially known or unknown environment. We 
cooperate on research with authors of this technique in 
the team from the University of Calgary. 
 

In the future, we are going to improve several parts of 
the algorithm solution: 
 

• Enhancement of a method for filling the obstacles 
map according to the scene description: In our 
solution, we use unoptimized code for filling the 
obstacles map. If we want our technique to be 
usable in computer defined and abstract 
environment, we must assume the scene will be 
provided in one of the description formats. So it 
would be better to improve the way the map grid 
is created and filled from this scene 
representation. 

 
• Enhancement of the adaptive structure: The way 

the adaptive structure copes with changes in 
mapped space is another great factor of algorithm 
performance. Topology and adaptation behaviour 
of this structure are main ways we want to focus 
on. 

 
• Interleaving the waypoints of the found path with 

a specific curve is another step to make the path 
planning results look more human-like. While 
creating this curve, we must keep the collision-
free property of found path and that will be 
another way of development we are going to take. 
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