
Path planning in combined 3D grid and graph environment

Petr Brož1

Department of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

Abstract
In research literature and many scientific disciplines,
solution to the common problem in path planning for an
autonomous robot has been extensively developed.
Almost all explored techniques assume the robot has
complete and detailed overview of the environment he is
moving in. In addition to, many methods work over the
graph representation of this environment which can be
very difficult to construct or obtain in the real
applications. This paper introduces a hybrid technique
combining graph and grid representations of an examined
space and capable of planning paths in known, partially
known, unknown and dynamic environment at the price
of the pseudo optimality of results.

1 Introduction
General problem of finding and planning of an optimal
path is a highly explored topic in several scientific areas.
There are many approaches and techniques for solving
this task. They are in most cases based either on graph or
grid representation of the examined environment. In
other words, some algorithms for path planning demand
graph-like geometric definition of the processed scene
(e.g., definition of all obstacles and forbidden areas) and
other algorithms assume the discrete representation of the
surrounding environment is provided. Most of these
techniques generally do not distinguish the dimension of
examined scene - they can be used either in 2D or 3D
applications without any difficult modifications. Graph
based approaches usually derive special structures from
the provided environment description and work with
them whereas the raster based approaches usually do not
need such pre-processing and search the path directly in
the provided grid.

Both ways of environment representation have crucial
and radical disadvantages. Graph representation of a real
environment is rarely available and its construction is - if
possible at all - very complicated and difficult.

1pebro@students.zcu.cz

On the other hand, discrete representation of the
examined space is much easier accessible and
measurable but the algorithm itself is in most cases (due
to the amount of raster elements to inspect) very time-
consuming. In addition, almost all methods for path
finding and planning need either well-known or static
environment which is not always available, either.

A great improvement for this type of applications can
be achieved with the combination of discrete and graph
environment approaches. Such a technique could use
adaptive spatial structure as a graph with vertices and
edges evaluated according to the values from the
provided grid. Then it would be able to discover pseudo
optimal path (optimal among all available transitions in
the graph) and, for example, continuously adapt this
spatial structure to the actual state of environment and
other dynamic influences.

In this paper, we propose a possibility for path
planning over the combined environment representation
which eliminates (or at least reduces) the disadvantages
of mentioned conventional approaches at the price of the
pseudo optimality of results. The content of the paper is
as follows. Section 2 explains state of the art together
with the best known techniques. Section 3 describes the
proposed path planning model and in the section 4, our
actual solution and implementation is outlined. Section 5
shows the results gained by our solution and in section 6,
the future work of the proposed path planning approach
is presented.

2 State of the art
Path planning denotes a basic problem of finding an
optimal path between two specified spots in an abstract
environment representation. In this context, optimal path
means a path satisfying one or more given objectives (the
shortest, the cheapest or the fastest path, etc.).
Environment can be represented in a variety of ways but
the path planning algorithms are focusing mainly on
evaluated graphs and grids. There are many ways these
environments can be differentiated (dynamic/static or
known/unknown environments, etc.) which implies a
similar distinction of path planning techniques according
to the types of environment they are able to work with.

First, let us introduce the approaches based on the
graph representation of the surrounding environment.
Visibility graph technique [Her87] extends the basic
provided graph with edges connecting vertices that can
“see” each other whereas the source and destination
position is treated as an obstacle, too. New edges
(together with edges defining sides of each obstacle) then
represent possible transitions and through them, the
optimal path can be found. Example of such pre-
processing in 2D application can be seen in Figure 1:
edges of all obstacles (bricks pattern filling), starting and
ending position (points labelled S and E) are connected
according to their mutual visibility and over possible
transitions (thin lines and obstacles sides), the optimal
path (dashed lines) is selected.

Figure 1: An example of scene processing with the

“Visibility graph” technique

Minkowski sum [Ram96] is a similar approach that
(unlike the previous method) considers the shape of
passing object and “inflates” borders of obstacles so that
the collision-free path can be solved. Example of such
pre-processing is presented in Figure 2: the same
obstacles as in Figure 1 are inflated with the radius of
obstacle (gray areas) and the collision-free path (dashed
lines) between starting and ending position (spheres
labelled S and E) is selected. With the special structure
prepared, both approaches can use Dijkstra’s algorithm
[DPV04] or similar to find the appropriate path.

Figure 2: An example of path planning with the

“Minkowski sum” method

Second, we are providing insight into the techniques
based on the grid representation. Such a grid can be
precomputed (if not provided) or modified at the
beginning of the algorithm. In reference to the
modification of the explored grid, a potential field
model [War90] can be used for filling the grid with
discrete values of a specific potential field created by all
obstacles – passing through the grid elements with the
lowest potential values then ensures finding the path with
the maximal clearance among all obstacles. Most known
techniques for searching itself are for example A* (for
well-known environment; [Bat04]) and D* (for
unknown, partially known or changing environment;
[Ste94]) algorithms. Figure 3 documents the manner of
such path finding in the grid: obstacles from Figures 1
and 2 are now splitted into the grid and in this grid,
optimal path between starting and ending position (cells
labelled S and E) over the grid cells is illustrated.

Figure 3: An example of the raster based path planning

3 The proposed solution
To provide a suitable method for the applications where
the mentioned techniques fail, we are focussing on a
general path planning technique that works in the known,
partially known or unknown discrete environment and is
designed for the virtual reality with the support of the
exploring avatars.

In the proposed solution, we come out of a general
idea of a fictive terrain exploration with the help of
autonomous robots that are controlled from a specific
kind of headquarters (HQ). These robots (also called
scouts or agents) are equipped with specific sensors
(dependent on the type of the application) and explore
certain locations of the examined terrain according to the
orders from HQ. Such headquarters keep specific „paper
maps“ to sketch in the discovered obstacles and other
threats which are then periodically complemented and
updated with actual values measured by the scouts.
Agents are then guided to the unexplored locations or to
the important locations according to the actual state of
these maps. After certain time, the static obstacles are
fully mapped throughout the explored space, the safest
paths (in term of the maximal clearance among all
obstacles) are known and the scouts are then guided only
to locations with a suspicion of possible threats. Figure 4
represents an example of such environment exploration
in 2D application: 4 agents in the terrain collect and send
the information about the obstacles (bricks pattern
filling) and specific kinds of threats (angry face) to the
headquarters and there, the measured values are logged
into the obstacles map (impassable areas) and into the
threats map (a potential field of discovered threat).

Figure 4: Preview of 2D terrain sensor-based exploration

with the autonomous robots

Following the mentioned idea of the sensor based
terrain exploration with the autonomous agents, we
advance in the development of a general model for the
real-time and adaptive path planning that was pioneered
by R. A. Apu in [AG05]. The proposed model can be
used for both 2D and 3D applications (the only
difference lies in the undermentioned adaptive graph-like
structures) and works in a complex and dynamic
environment which is assumed to be provided in the
raster representation and can be well known, partially
known or even unknown. The described path planning
system is based on three main headstones:

• A graph-like spatial structure (hereafter referred

to as a mesh) that adapts itself to the examined
environment and defines all available positions
and crossings with its vertices and edges.

• A grid structure for discrete representation of

certain environment hazards (hereafter referred to
as a map), e.g., proximity to an obstacle or
dynamic threats.

• An autonomous AI entity (hereafter referred to as

an agent) for the real-time space exploration and
influencing the mesh adaptation with its
behaviour.

The main approach uses two separate maps of the

same size for the environment description. The first one,
called obstacles map, represents danger weights as
proximities to the nearest obstacle in the mapped space
and the second one, called threats map, represents
potential fields of all located and observed threats in the
space. In the following, the algorithm keeps a mesh that
is „widespread over each map“ and defines all available
paths the agents can travel during their exploration. This
mesh continuously copes with the changes in both maps
and with behaviour of all agents. Such an adaptation is
achieved by refinement of the mesh in the places with
higher error values (calculated from the obstacles map
and threats map) and by merging of the mesh in the least
visited and unimportant places.

The whole algorithm is based on real-time
development of the adaptive mesh in particular iterations.
According to the recorded values in the maps, mesh
structure is refined in the locations with a higher
importance (the darker locations in the obstacles map and
the threats map in the Figure 4) and it is merged in the
places with a lower importance (in the least visited graph
vertices). In the proposed path planning system, the
adaptive mesh is used only to define the available
waypoints and transitions for the movement and
navigation of the agents, not for visualization. Therefore,
T-vertices in the mesh do not bring any problems typical
for them in the visualisation of meshes (they may cause
creases in the model). Foldovers in the mesh are not

possible in our case as vertices are not moved, just
refined.

In the mentioned fictive application, continuous

prospecting of the environment was a task of the robots
but in our approach and demonstrating application, we
assume the obstacles in the environment are completely
explored - the obstacles map is filled with weights at the
beginning of the algorithm with an IDT (Image Distance
Transform) technique based on the Voronoi diagrams
[Rou98]. Concretely, the elements of the obstacles map
are evaluated according to their proximity to the nearest
obstacle with the real value from 0 (maximal proximity)
to 1 (minimal proximity or the obstacle itself). The
elements of the threats map are then evaluated in a
similar manner during the mesh adaptation.

One iteration of the mesh adaptation in the fictive
application consists of the following general steps
(similar as in [AG05]):

1. Maps completion and updating
The current sensor readings are evaluated in the
close neighbourhood of each agent and the
corresponding map elements are updated or
eventually complemented with the measured values.

2. Influence depletion and replenishment

An importance of the recorded values (so called
influence) of each vertex in the adaptive mesh is
partially depleted and then again partially
replenished according to the count and distance of
the agents near this vertex. The more agents are in
the proximity of the vertex, the bigger is the amount
of the influence replenishment.

3. Error function evaluation and refinement

The specific error function with the values from the
obstacles map, threats map and influences is
evaluated for each block (in [AG05], the blocks are
called engrams in a specific spatial structure ASM
– Adaptive spatial mesh) of the adaptive mesh and
according to the result, the blocks are merged,
splitted or left. Figure 5 shows a single stage of the
adaptive mesh for the 2D scene presented in the
Figure 4: the mesh is refined in important regions
(above the obstacles and nearby the threat) and
coarsened in less important or unexplored regions.

4. Orders execution

Each agent executes its orders – he finds an optimal
path to the goal position with the provided cost
function or follows already computed waypoints (if
the path cannot be travelled due to the refinements
of the mesh, the path is recomputed to the last
waypoint).

5. Exploration
If all goals are reached, agents ensure an
exploration of unvisited locations in the examined
space – they automatically plan the path to the
vertices with no values recorded.

Figure 5: Example of the stage of the adaptive mesh for

the same type of the explored terrain

With this approach, after a certain time, the mesh is
fully adapted to the static obstacles and copes only with
the dynamic influences – threats. A pseudo optimal path
for the user can then be computed using Dijkstra’s
algorithm with the cost function similar to the function
used by robots during their exploration in [AG05].

4 Our solution & implementation
This section provides an overview of our implementation
of the path planning model and closely describes the
implementation details. Therefore, the readers interested
in the algorithm only can skip it. At this moment, our
solution does not fulfil the first mentioned requirement –
use of an adaptive spatial structure for the graph part –
and so it is degraded to the basic type of raster-based
path planning methods. Implementation fundamentals for
this structure have been prepared and we will mske this
generalization in the near future.

The main implementation of path planner is realized
in C# language and the whole proposal is designed for
providing high-level modularity – for each structure
required by the proposed algorithm an interface is
prepared. Each interface defines basic operations the
concrete implemented structure must provide. Figure 6
shows basic elements of scene mapping part:
IRasterMap interface must be implemented by every
mapping structure used in the path planning algorithm.
In compliance with the interface definition, such
mapping structure must be able to provide weight of

mapped space in a certain area or position. Classes
ThreatsMap and ObstaclesMap implement this
interface while work in different way. ThreatsMap
keeps only a list of threats (instances of class that
implements IThreat interface) and ObstaclesMap class
keeps 3D array for whole mapped space.

Basic elements of adaptive mesh part are shown in

Figure 7: Generic class Mesh implements IGraph
interface (presented in Figure 8) and so provides basic
operations for passing the graph such as passing all
vertices or passing the descendants of the specified
vertex. Engram class is for internal use of the Mesh
class and the delegate labelled BlockWeight defines the
only way for adaptation of the mesh - BlockWeight is a
specific kind of a safe pointer to the function and
requires method that is able to compute weight of certain
area of mapped space. Genericity of the Mesh class
ensures that the class works with any type of vertices.
Only condition for each class of vertex is implementation
of the IVertex interface presented in Figure 8.

Figure 8 documents top-level elements of proposed
path planning algorithm. Main class Dispatcher requires
above all instance of adaptive mesh class implementing
the generic interface IGraph and list of instances for
mapping the examined space (instances of a class
implementing the IRasterMap interface).

Figure 6: Class diagram of interfaces and classes in the

mapping part of path planner

Figure 7: Class diagram of interfaces and classes in the

part for adaptive mesh

Figure 8: Class diagram of interfaces and classes in the

main path planner

The proposed model provides solution for
applications in known, partially known or unknown
discretized environment at the price of the pseudo
optimality of the final path. It comes to this, that this
consequent path is optimal “only” with respect to the
adaptive mesh.

5 Experiments & results

0

200

400

600

800

1000

1200

14 18 22 26 30 34 38 42 46 50

Rank of the non-adaptive mesh [-]

El
ap

se
d

tim
e

fo
r t

he
 p

at
h

fin
di

ng

[m
s]

To survey our current solution, we have prepared a test
application that creates a space with obstacles and uses
the proposed technique for finding the path between two
constant positions. Figure 9 shows the discovered pseudo
optimal path in the space with the obstacles in the form
of spheres with different radii. In the zoom, the same
scene snapshot with weight markers is presented (lighter
markers represent a low level of danger and darker
markers represent a high level of danger).

The obstacles map is precomputed at the beginning of
the algorithm and so the rank of this map (a count of the
grid elements in each dimension) does not affect the time
needed for the path planning itself. On the other hand,
rank of (for the present) non-adaptive mesh has a great
impact on this time. Functional dependence of the
elapsed time on the mesh rank is evaluated and presented
in the figure 10. The considered example finds a path in
the same scene as in Figure 9 with obstacles map rank
equal to 64. The computer configuration is disposed with
AMD Athlon XP 1.67 GHz and 512 MB DDR RAM.

Figure 11 demonstrates using of the proposed path
planning system in 2D applications and indicates the
dependence of the path optimality on the rank of the
mesh. Optimality of the path increases with the
punctuality of the mesh (Figure 11 presents examples for
the ranks 24, 36 and 48). Increase of the rank implicates
the growth of the memory usage.

Figure 9: Mapped space with the obstacles and found
path (in the zoomed snapshot with weight markers)

Figure 10: Elapsed time for the path finding dependent

on the rank of the used non-adaptive mesh

Figure 11: The discovered path for the different ranks of
the adaptive mesh

6 Conclusion & future work
We have proposed hybrid and real-time path planning
technique for real applications with the ability to read
information about environment through the specific
devices equipped with sensors. The provided method can
be used in both 2D and 3D applications and works in
known, partially known or unknown environment. We
cooperate on research with authors of this technique in
the team from the University of Calgary.

In the future, we are going to improve several parts of
the algorithm solution:

• Enhancement of a method for filling the obstacles
map according to the scene description: In our
solution, we use unoptimized code for filling the
obstacles map. If we want our technique to be
usable in computer defined and abstract
environment, we must assume the scene will be
provided in one of the description formats. So it
would be better to improve the way the map grid
is created and filled from this scene
representation.

• Enhancement of the adaptive structure: The way

the adaptive structure copes with changes in
mapped space is another great factor of algorithm
performance. Topology and adaptation behaviour
of this structure are main ways we want to focus
on.

• Interleaving the waypoints of the found path with

a specific curve is another step to make the path
planning results look more human-like. While
creating this curve, we must keep the collision-
free property of found path and that will be
another way of development we are going to take.

Acknowledgements
This work was done in cooperation with the University
of Calgary in Canada. I would like to thank to Dr. M.
Gavrilova and Mr. R. A. Apu for providing me the
starting knowledge, 2D implementation of their solution
and advices to continue in this project. I would also like
to thank to Dr. I. Kolingerova from the University of
West Bohemia, Pilsen, Czech Republic, for supervision
and help with the paper preparation.

References
[AG05] R.A. Apu, M. Gavrilova. Adaptive Spatial

Memory Representation for Real-Time Motion
Planning. Proceedings of the 8th International
Conference on Computer Graphics and
Artificial Intelligence, 2005.

[Her87] John Hershberger. Finding the Visibility Graph
of a Simple Polygon in Time Proportional to its
Size. Annual Symposium on Computational
Geometry, Proceedings of the third annual
symposium on Computational geometry, 1987.

[Ram96] G.D. Ramkumar. An Algorithm to Compute the
Minkowski Sum Outer-face of Two Simple
Polygons. Annual Symposium on
Computational Geometry, Proceedings of the
twelfth annual symposium on Computational
geometry, 1996.

[War90] C.W. Warren. Multiple Path Coordination using
Artificial Potential Fields. Proceedings of the
IEEE International Conference on Robotics and
Automation, 1990.

[Ste94] Anthony Stentz. Optimal and Efficient Path
Planning for Partially-Known Environments.
Proceedings of the IEEE International
Conference on Robotics and Automation, 1994.

[Rou98] J. O’Rourke. Computational geometry in C (2.
edition) (http://maven.smith.edu/
~orourke/books/compgeom.html). Cambridge
University Press, 1998.

[DPV04] S. Dasgupta, C.H. Papadimitriou,
U.V. Vazirani. Paths in graphs
(http://inst.cs.berkeley.edu/~cs170/sp04/notes/
dijkstra.pdf).

[Bat04] Ch. Batten. Algorithms for Optimal Assembly
(http://www.mit.edu/~cbatten/work/ssbc04/
optassembly-ssbc04.pdf).

http://maven.smith.edu/
http://inst.cs.berkeley.edu/~cs170/sp04/notes/
http://www.mit.edu/~cbatten/work/ssbc04/

	Abstract
	Introduction
	State of the art
	The proposed solution
	Our solution & implementation
	Experiments & results
	Conclusion & future work
	Acknowledgements
	References

