
Neon Racer: Augmented Gaming

Wolfgang Litzlbauer∗
Ines Stuppacher†

Manuela Waldner‡

Markus Weilguny§

Digital Media
Upper Austria University of Applied Sciences

Hagenberg / Austria

Abstract

Neon Racer is a multi-user Augmented Reality racing
game adapting the simple and powerful gameplay of rac-
ing games to an Augmented Reality tabletop setting. The
game combines an intuitive and tangible interface with
quality content. The active setting for the game is pro-
vided by the real world. Physical objects act as collision
obstacles and influence the course of the race itself. In
this paper we describe the architecture of the game and its
compact hardware setup. The collision detection with real
objects is explained. Furthermore a novel particle system
used in Neon Racer is introduced, which is executed fully
on the graphics card.

Keywords: table-top, AR racing game, tangible user in-
terface, face-to-face, GPU particle system,

1 Introduction

In conventional computer games, users are focused on the
screen rather than the real world. This reduces the range of
actions and social collaboration. Alternate interfaces, such
as cameras and microphones, can change the way we look
at classical computer games. These novel approaches can
help users get more involved in a game quickly. Using in-
tuitive interfaces is also crucial in bringing users together.
For years Augmented Reality (AR) research has redefined
the possibilities of creating applications for entertainment
[1], [6]. AR applications make it possible to enrich virtual
games with the social aspects of traditional board games.
Players can communicate, exchange objects and abide to
a common set of rules [5]. In AR users can share a gam-
ing environment and explore the possibilities of the aug-
mented world together. Games with simple rules, like rac-
ing games, are particularly easy to learn and motivating, as
long as the rules allow each player to develop his individ-
ual style. Players can challenge their own limits while ex-

∗wolfgang.litzlbauer@fh-hagenberg.at
†ines.stuppacher@fh-hagenberg.at
‡manuela.waldner@fh-hagenberg.at
§markus.weilguny@fh-hagenberg.at

Figure 1: Neon Racer is a multi-user racing game which
includes the physical reality as part of the game.

ploring the game world. Players can share both a physical
and virtual environment in Augmented Reality enhancing
the gaming experience. Neon Racer shows a possibility
to boost social interaction in an open environment such as
conferences, festivals, shopping malls or museums.

2 The Neon Racer Game

Neon Racer combines a virtual racing game with physical
interaction (see figure 1). A benefit of transporting racing
games to AR is the ability to include physical objects as
part of the game. Neon Racer creates a rich gaming expe-
rience by using everyday objects as the setting of a racing
game for up to four players. The virtual world contains
the players’ vehicles, which are controlled with gamepads.
Players can use both gamepads and real objects to influ-
ence the game. Virtual vehicles collide with real objects,
allowing players to move in both the physical and virtual
world. The use of two intuitive user interfaces – real ob-
jects and gamepads – bridges the gap between virtual and
physical interfaces.

The virtual vehicles (see figure 2) are steered by up to

Figure 2: The four different vehicles.

four players, who have to maneuver their vehicles through
virtual checkpoints. The aim of the game is to score as
many points as possible by crossing these checkpoints. A
race ends when a time limit has been reached, usually three
to five minutes.

The rules of the game are simple and intuitive. Neon
Racer does not require more than basic knowledge of com-
puter games. Real objects placed on the course act as ob-
stacles in the game. Players have to maneuver their vehi-
cles past these objects and through the checkpoints. Both
users and spectators can move objects around the course,
allowing them to contribute to the game itself. Thus usu-
ally passive bystanders can actively change the outcome of
the race and even take sides. In an exhibition, users used
coffee mugs and mobile phones to play, even left packets
of handkerchiefs and chocolate bars. Neon Racer is suit-
able for up to four players but can also be played alone
with spectators who manipulate the race course. The sim-
ple and cheery nature of the game appeals to a wide range
of cultures and ages.

Neon Racer offers several action-packed features such
as photon torpedoes, exploding sheep, and turbo-fields.
Besides their entertainment value, these extras allow ad-
vanced players to engage opponents on a more tactical
level. Health-packs make sure that there is always a sur-
prise up someone else’s sleeve when things get close.

2.1 Game Development

Neon Racer is based on a simple but powerful racing game
engine which can be played on any modern computer. The
engine has a modular interface to communicate with a sep-
arate obstacle detection system. This system detects the
physical objects on top of the table and informs the game if
a vehicle is colliding. The obstacle detection is described
in detail in section 3.2.

2.1.1 2D-Sprite engine

The core of the game is a multi-purpose 2D-sprite en-
gine. It has been created in OpenGL and supports partial
transparency, sprite- and frame-by-frame animation. Each
sprite has a position, size and an alpha-value. These values
can be smoothly changed over time. The frames of an ani-
mation must be stored side by side in one texture. The en-
gine automatically switches between the frames. This en-
ables stunning animations like the explosions in the game.

OpenGL shifts the efforts of calculating drawing from the
CPU to the graphics card. This is important for proper exe-
cution of the extensive obstacle detection system. A novel
particle system displays a trail behind the vehicles, caused
by their power unit. The particle system is also fully exe-
cuted on the graphics card and is described in section 4.

2.1.2 Physics engine

An important aspect of the game is the physically correct
behaviour of the vehicles. A self-contained physics en-
gine handles the movement and bounciness of the vehicles.
Each virtual object in the game, for example a vehicle or a
rocket, is represented as a circle. Most entities in the game
are round, for example the vehicles have a shield protect-
ing them. This reduces the efforts of detecting a collision.
Each object has an individual velocity stored as a direc-
tion vector (see figure 3 (1) and (2)). Each frame their
positions are recalculated according to their velocity. The
objects are moved by applying forces. A force pushes the
object in a given direction and increases the velocity.

If two virtual objects collide, a realistic bouncing be-
haviour is simulated (see figure 3 (3)). A new velocity for
the objects is calculated according to the impact angle and
the collision strength. The physics engine also considers
the real obstacles on the top of the table. Therefore the
separate obstacle detection system is asked if a vehicle is
colliding with a real obstacle. The system returns a nor-
mal of the obstacle’s border line if a collision occurs (see
section 3.2). This normal is necessary for the calculation
of the rebound.

Because Neon Racer takes place in space, the vehicles
are weightless. Hence they have lazy flight characteristics.
In space there is no aerodynamic resistance. Therefore the
vehicles veer easily in curves.

�����

���	
�

���	�������������
�	��
����	
���

���

���

���

Figure 3: Each object is represented as a circle and has
an individual velocity. The two objects in (1) and (2) are
moving in different directions. The lengths of the velocity
vectors are also dissimilar. In (3) two objects collide and a
new velocity is calculated.

2.1.3 Sound effects

The soundtrack in Neon Racer is more than music that sup-
ports the game. The soundtrack is created and influenced
by the number of vehicles involved in the game and their
speed. Each vehicle creates a part of the soundtrack as it
moves. A vehicle’s sound is loud when it moves quickly
and almost inaudible when it is standing still. This way
players shape the soundtrack as they play. Additionally the
sounds of the moving ships merge with a specially com-
posed background-beat to form an all-embracing compo-
sition.

2.1.4 Additional features

Beyond the broad range of existing features, the software
design of the game is easily extendable. This makes it pos-
sible to add new features, such as bonus-extras or shader
networks, quickly. Stability and robustness were also im-
portant goals during development. In prior exhibitions the
game has run smoothly for a long time without any notice-
able drawbacks.

2.2 Table-based Setup

A special rear-projection table-based setup is used for
Neon Racer. The compact setup offers enough space to
accomodate a projector, a camera and a computer. It also
allows us to detect objects on the table’s surface, while dis-
playing the virtual game without occlusion caused by ob-
jects or players. To gain enough distance for the projector
to fill the rear-projection screen and to avoid overheating,
a mirror redirects the image. Figures 4 and 5 show the
hardware setup of Neon Racer.

��
������

�	��
�

�������
���	
��������

������

�������

�������

���������
�
���������

Figure 4: Neon Racer’s table-based setup.

A camera situated inside the table records the table sur-
face from below. We use an infrared filter to avoid the

Figure 5: View inside the table.

camera image being polluted by the projected image. If
the environment is too dark for the camera, infrared spots
are mounted above the table to provide additional light –
invisible to the human eye. Figure 6 shows the resulting
camera image.

Figure 6: Infrared-image from the camera inside the table.

3 Integrating Real Obstacles

3.1 Camera Calibration

There is an offset between the camera image and the pro-
jector image, due to the different positions and focal at-
tributes of the camera and projector. Correct collision de-
tection requires the real world to be aligned exactly with
the projected game world.

To eliminate the offset between the two images, a spe-
cial camera calibration program was created. The basic
idea is to find four corresponding points in camera space
((x1,y1) to (x4,y4)) and game space ((x′1,y

′
1) to (x′4,y

′
4)).

The points are used to calculate a projective mapping ma-
trix, which can map the objects’ line vertex coordinates
(x,y) from camera space to game space (see equation 1).
As the projective mapping matrix is a 2D matrix, we in-
troduced a uniform column and row for the z-axis to keep
the z-value unchanged.

⎛
⎝

h′x′
h′y′
h′

⎞
⎠ =

⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 1

⎞
⎠

⎛
⎝

x
y
1

⎞
⎠ (1)

To calculate the matrix, we need to detect four corre-
sponding point pairs in camera and game space. We thus
define four points in game space as our target points and
need to find the corresponding camera points. As we can-
not see the projected image on the camera image due to the
infrared filter, marks are projected on the defined positions
in game space. When small objects like coins are placed
onto these marks, they are detected and their centre coordi-
nates are saved as corresponding points in camera space.
In addition, the corners of the rear-projection screen are
also detected on the camera image to extract the borders
of the race course.

The original corner points in camera space (x1,y1) to
(x4,y4) are first mapped to a uniform quad. Afterwards,
they are mapped to the target points in game space (x ′

1,y
′
1)

to (x′4,y
′
4). This additional step simplifies the calculation

of the values a11 to a32 for the matrix using the eight for-
mulas in equation 2 et sqq.

a31 =
(x′1 − x′2 + x′3 − x′4)(y′4 − y′3)− (y′1 − y′2 + y′3 − y′4)(x′4 − x′3)

(x′2 − x′3)(y
′
4 − y′3)− (x′4 − x′3)(y

′
2 − y′3)

(2)

a32 =
(y′1 − y′2 + y′3 − y′4)(x

′
2 − x′3)− (x′1 − x′2 + x′3 − x′4)(y

′
2 − y′3)

(x′2 − x′3)(y
′
4 − y′3)− (x′4 − x′3)(y

′
2 − y′3)

(3)

a11 = x′2 − x′1 +a31x′2 (4)

a21 = y′2 − y′1 +a31y′2 (5)

a12 = x′4 − x′1 +a32x′4 (6)

a22 = y′4 − y′1 +a32y′4 (7)

a13 = x′1 (8)

a23 = y′1 (9)

Spherical distortion of the camera image can lead to
misalignment of the real obstacles. Near the border edges
of the table, the fisheye lens can lead to distortions of up
to 5 mm (see figure 6). In the case of Neon Racer, this can
be omitted because the error is usually imperceptible. The
vehicles appear to collide accurately with real obstacles.

3.2 Collision Detection

The collision detection in Neon Racer calculates events
between virtual vehicles and physical objects, besides han-
dling intersections of virtual entities. To detect physical
objects, the obstacle detection system receives a grayscale
camera image and first creates a binary image using an ad-
justable threshold. A contour following filter is applied to
the binary image to detect the borders of the objects on the
table. The pixel coordinates of the borders are saved but
we cannot use the pixel-based collision detection due to
performance issues. To accelerate collision detection the
objects’ pixel borders are simplified by partitioning them

into lines. The start and end points for these lines are de-
fined by significant border pixels.

A vehicle’s circular shield is used for collision detec-
tion, which is also the bounding circle of the vehicle. A
collision between a virtual vehicle and a real object can
happen anywhere between the current and the future vehi-
cle position. For collision detection with the real objects,
several points on the bounding circle are defined and con-
necting lines between these points on the circle of the cur-
rent and the future position of the vehicle are created (see
figure 7). Each vehicle line is tested to determine whether
it is completely or partly inside an object’s axis aligned
bounding box. If this is the case, line-line intersection is
used to test for an intersection with each of the object’s
border lines. When an intersection occurs, the normal vec-
tor of the object’s border line is used to calculate a correct
collision response. If there is more than one intersection,
the intersection closest to the centre of the bounding cir-
cle of the vehicle’s current position is chosen as the final
collision point. Figure 8 shows an example program rep-
resenting the vehicle as its bounding circle and the real
object as border edges.

���	���������� �����	��������

�����������	�������	
�

Figure 7: A vehicle, represented by its bounding circle,
colliding with a real object, represented as border edges.
The lines connecting the vehicle’s current and future po-
sition are used to determine the point of collision. In this
case the result is the closest point, shown in black.

Line-based collision detection works faster than pixel-
based collision detection. Especially when the vehicles
move fast and thus make bigger steps the pixel-based col-
lision detection needs to check a huge number of pixels, in
contrast to the line-based collision detection whose com-
plexity is independent from the vehicles’ step width. On
the other hand the pixel-based collision detection is more
precise and we could discriminate against the vehicle be-
ing ”inside” or ”outside” the real object. In favour of cal-
culation time we disregard impreciseness resulting from
the simplification. At the four border edges of the table we
additionally use circle-line intersection, to avoid vehicles
getting stuck at the border of the race course. However,
in contrast to exclusive line-line intersection this would
consume too much calculation time to check each object’s
border for a collision.

Figure 8: The collision between a virtual vehicle and a
real object in an example program. The crosses mark the
vehicle’s centre and the collision point; the vertical line
represents the normal vector of the object’s border at the
collision point.

4 GPU-Particles

4.1 Motivation and overview

To enhance the speed feeling for the player, we decided to
render motion lines behind the moving vehicles. As our
application includes a number of computer vision tasks
that are done on the CPU, we decided to compute the mo-
tion lines on the GPU. Actually the motion lines are done
using a simple particle system. An example for rendering
particles on the GPU may be found in [4].

Our particle system is able to form motion lines behind
the moving vehicles. Particle emitters are located at the
vehicles’ positions and move with them. Each frame, par-
ticles are emitted at the vehicle’s current position. The par-
ticles stay where they have been emitted until their death.
During their lifespan they only change their alpha value.
After the particle has died, it is emitted again at the cur-
rent position of its emitter.

4.2 The particle algorithm

The particle system requires knowledge of the position and
age of each particle and should be calculated entirely on
the GPU. Using a fragment shader it is possible to write
floating-point values (e.g. xyz-coordinates) into a texture.
The OpenGL extensions for vertex and pixel buffer objects
offer ideal support for this method because vertex data
saved in an array can be interpreted as rgb-information of
a texture (see [2] and [3]). Conversely, it is possible to
read an rgb-value as an xyz-vertex position. To maintain
the accuracy of the vertex position, it is necessary to save
the rgb-value as floating points. This is achieved using
floating point textures.

The whole algorithm to display the particles is divided
into three render passes:

1. Creating the emitterPositionTexture.
Render the emitters’ current positions into the texture
emitterPositionTexture.

2. Computing the particles.
Render the particles and increase their age. If
necessary, compute new particle position using the
emitterPositionTexture.

3. Rendering visible output.
Render the particles as point sprites.

There are three shaders, one for each render pass. The
shader which calculates the next render pass uses the out-
put from the previous render pass. The output of render
passes one and two is written into PBuffers. These buffers
have the advantage that they can be bound as textures. This
is more efficient than copying the result of the render pass
from the framebuffer into a texture. The resulting textures
are used as input for the following pass. In addition the us-
age of PBuffers is crucial because the framebuffer cannot
store floating point values.

The particle system has a fixed number of particles
which does not change during runtime. Changing the
number of particles is not necessary in the application, but
with a few modifications this would also be possible. Each
emitter has the same number of particles. Originally each
moving object had its own particle system. As there are
only four vehicles in Neon Racer, we made some modifi-
cations to use only one particle system for all four vehicles.

4.2.1 Creating the emitterPositionTexture

To be able to retrieve each emitter’s position in a fragment
shader, the position must be rendered into a texture (see
figure 9). The rgb-values of the texture can be referred to
as the xyz-values of the emitters.

���

���
	����	����������	����	

	����	����	���
	�

� ! �

� !��

��! �

��!��

Figure 9: On the left side, a quad with eight emitter ver-
tices is shown. During the first render pass the positions of
the eight emitters are stored into a texture like the one on
the right.

4.2.2 Computing the particles

After updating the particle emitters’ positions, the parti-
cles’ new positions and ages are computed. Properties of
the particles are stored in three vertex buffer objects. The
first vertex buffer object stores position and age. It is also
defined as a pixel buffer object. This makes it possible for
rgb-values of a PBuffer to be copied into the buffer object
and then interpreted as xyz-values. In the second vertex
buffer object, the particles’ color are saved. The emit-
ter determines a particle’s color. The third vertex buffer
object contains the texture coordinates to read from the
emitterPositionTexture. These coordinates de-
termine which emitter a particle belongs to.

A shader cannot read and write the same texture simul-
taneously, thus there are two floating point textures that
save the previous and current positions and ages of all par-
ticles. Figure 10 shows an example of a texture containing
the particle positions and their ages. A particle’s age is
encoded in the texture’s alpha-channel.

Particles who have died are emitted again in an infinite
loop. In the shader, the previous position and age of the
particle is retrieved. Each frame, the age is decreased.
If the result is smaller or equal to 0, the particle is dead
and has to be emitted again. To do this, the age is re-
set to 1 and the particle’s new position is set to the emit-
ters’ current position. This position is fetched from the
emitterPositionTexture using the texture coordi-
nate that defines which emitter the particle belongs to. The
retrieved value is then set as the particle’s new position
(see cg code in 11).

Figure 10: This floating point texture stores the positions
and ages of all particles. The position is saved in the rgb-
channel and the age in the alpha-channel.

// get position and age of last frame
outcolor = texRECT(prevPosition, texCoord);
// reduce life
outcolor.a -= deltaLife;

if (outcolor.a <= 0.0) { // rebirth of particle
// get new position and set full life
// (saved in alpha value of
// emitterPositions texture)
outcolor =

texRECT(emitterPositions,
texRECT(emitterNumber, texCoord).xy);

}

Figure 11: The cg code for updating the emitter’s position
and age.

4.2.3 Render visible output

In the final render pass, the updated particle system is ren-
dered. The current particle positions are read from the tex-
ture as vertex data and used to draw the particles. To ren-
der the particles efficiently, they are displayed as sprites,
using the GL ARB point sprite extension (see figure
12).

Figure 12: Motion lines and skidmarks made with the par-
ticle system. When speed-up items are activated, the par-
ticles are baked to leave skidmarks on the ground.

4.3 Skidmarks

Vehicles leave skidmarks on the ground if they use a
speed-up item. A skidmark is a trail of particles which
stays on the ground until the end of the game (see figure
12). This is accomplished by rendering a snapshot of the
particles emitted by the vehicle into a PBuffer. The snap-
shot is then blended over the background-texture.

4.4 Results

On an nVidia GeForce6800, the algorithm renders 8192
particles at 50 fps. With more particles the CPU us-
age increases. This could be fixed by using the GL-
ARB point parameters extension. Rendering only

points, without using the GL ARB point sprites ex-
tension, there were approximately 65,000 particles at 60
fps.

It would be possible to change the position of the par-
ticles and give them velocity, by including an additional
render pass (or multiple render targets). Special effects
such as explosions could be achieved this way.

5 Summary

In this paper we have examined possibilities for future
AR entertainment applications and described a sample ap-

plication. Neon Racer offers important features for en-
tertainment installations, such as technical robustness, a
user-friendly interface and engaging gameplay (see figure
13). Neon Racer uses a novel approach for controlling the
game by incorporating both physical and “digital” inter-
action. Each player and spectator can use real objects to
influence the race, while players steer the vehicles with
traditional gamepads. This combines a widely familiar
computer game control with an intuitive physical interface.
Both direct physical contact and gamepad participation are
necessary to be successful. Neon Racer enhances not only
the classical racing game, but creates a setup which allows
for direct physical interaction with the game world.

Figure 13: People playing Neon Racer at ISMAR 05 in
Vienna.

The technical setup is an all-in-one table which is fairly
easy to configure without major adjustments. The game’s
technology is conveniently built into the table, with the
effect that users more openly engage the game without fo-
cusing on the technical setup. Through the use of infra-red
image processing Neon Racer is employable in different
lighting conditions. Locations can be both bright or dark.
The game setup is flexible and can be placed in bars, exhi-
bitions, shopping malls etc.

Neon Racer was demonstrated successfully at the Pix-
elspaces Exhibition 05, part of the Ars Electronica festival
in Linz, the ISMAR 05 and the EUROPRIX Multimedia
Top Talent festival 05 in Vienna (see figure 14). Even af-
ter intense play, no drawbacks in performance occurred.
We were amazed by the consistently positive feedback of
the audience. Neon Racer appears to have bridged a gap
between entertainment and technological research.

People of all ages enjoyed the game. We observed that
handling of gamepads needs some practise. Players not
used to them had difficulties to control their vehicles. Ad-
vanced users are interacting more with the objects on the
table to influence the game. If someone started to move
objects around other players and spectators also joined in.
People were amazed that objects they put on the table are
integrated into the game.

Future considerations for Neon Racer focus mostly on

Figure 14: The Neon Racer table at the Top Talent Festival
05 seen from above.

simplifying the vehicle’s control. Graphical enhancements
with custom shaders and physical models can improve the
pace and make Neon Racer more challenging. Integrating
different levels may tempt to replay the game more often.

6 Acknowledgements

The authors would like to express their gratitude to Man-
dala Weber of Circled Cube for the sound design and Horst
Hörtner of the Ars Electronica Futurelab for supplying
hardware for the first table-based setup. We would also
like to thank Thomas Weilguny for additional graphics and
Jürgen Zauner and Peter Brandl for their great dedication.
For help with organisation we thank Michael Haller.

References

[1] Steve Benford, Carsten Magerkurth, and Peter
Ljungstrand. Bridging the physical and digital in per-
vasive gaming. Commun. ACM, 48(3):54–57, 2005.

[2] NVIDIA Corporation. Using vertex buffer objects
(vbos), 2003.

[3] Silicon Graphics. Opengl extension registry. URL,
http://oss.sgi.com/projects/ogl-sample/registry/, 2003.

[4] Lutz Latta. Building a million particle system. URL,
http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf,
2004.

[5] Carsten Magerkurth, Timo Engelke, and Maral
Memisoglu. Augmenting the virtual domain with
physical and social elements: towards a paradigm shift
in computer entertainment technology. Comput. En-
tertain., 2(4):12–12, 2004.

[6] Wayne Piekarski and Bruce Thomas. Arquake: the
outdoor augmented reality gaming system. Commun.
ACM, 45(1):36–38, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

