
Real-time Visualization of
Unstructured Volumetric CFD Data Sets on GPUs

Mario Höfler∗

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

Real-time visualization and analysis of scalar and vec-
tor fields from massive volumetric data sets require effi-
cient rendering techniques. Irregularly structured Compu-
tational Fluid Dynamics (CFD) cells have to be tetrahe-
dralized prior to rendering on the Programmable Graph-
ics Unit (GPU). The cells are organized within an octree
providing fast search in the spatial, but also in the scalar
function domain. Identification of the cells being part of
the resulting isosurface is possible using the hierarchical
data structure. Taking into account only relevant cells for
rendering reduces time consumption and overhead caused
by data transfers. The gained speedup depends on the dis-
tribution of values and cells in 3D space. Cross-section of
the desired isosurface with a cell leads to the nodes being
used for interpolation per polygon. Interpolation, pseudo-
coloring and shading is done on the GPU using vertex and
fragment shaders. Shifting tasks from CPU to the GPU
increases the framerate and enables customized shading.
The spatial impression of the resulting isosurfaces is in-
creased using Phong shading.

Keywords: Isosurface visualization, In section represen-
tation, Tetrahedralization, Octree, Shading languages

1 Introduction

Volume rendering deals with visualization of sampled
scalar functions of three spatial dimensions [5, 14] and
provides possibilities for visualization of normally unseen
areas at high computational costs. Volume data often
appears in medical applications or scientific simulations
and may be produced by electromagnetic radiation sen-
sor systems like Computer Tomography or comes from
simulation results using mathematical CFD models. In-
direct volume rendering methods like isosurface visualiza-
tion or cross-section of the data with arbitrary functions al-
lows real-time interaction even with huge data sets. Real-
time interaction capabilities also enrich the impression for
changes in the scalar domain by the observer. In section
representations based on resampling the volume onto reg-

∗mario.hoefler@gmx.net

ular grid would cause discontinuities at the grid transitions
which should be avoided. Fast and easy inspection of the
scalar structure of data sets in VR/AR setups is supported
by defining the cutting plane for the in section representa-
tion using a translucent board called personal interaction
panel (PIP).

In this paper we present a method for rendering isosur-
faces and cross-sections consisting of off-line preprocess-
ing stages and on-line real-time rendering tasks. We con-
vert the CFD input cells on irregular meshes into a mesh
of tetrahedra in a preprocessing phase. A hierarchical data
structure is used to organize the cells spatially on CPU
side. To free cycles on the CPU we hand over interpo-
lation and lighting tasks to programmable graphics hard-
ware. GPU shaders allow performing arithmetic floating
point operations on the graphics unit additional to tradi-
tional tasks to be done during rendering within the graph-
ics pipeline.

In Section 2, we give an overview of the related work
done in this area. In Section 3, we present necessary pre-
processing of the given CFD data. In Section 4, we de-
scribe the tasks for identification of relevant data. In Sec-
tion 5, an explanation of the differences between marching
tetrahedra and marching cubes is given followed by Sec-
tion 6, describing our implementation using shading lan-
guages. Results are shown and discussed in Section 7 and
finally, conclusions and future work for improvements can
be found in Section 8.

2 Related Work

Despite the fact, that several fast direct volume rendering
methods like ray-tracing in the image domain, or projec-
tion methods working in object space, exist, the result-
ing images, showing details of the volume using particular
transfer functions, are bought for high memory and time
costs. Scharsach [10] describes an advanced ray-casting
technique.

The second type of direct methods, cell projection, is
based on projection of basic primitives like tetrahedra on
unstructured grid onto view plane in back to front order.
Shirley and Tuchman [11] called this approach Projected
Tetrahedra (PT) algorithm therefore. Displaying multiple

isosurfaces and combination of isosurfaces with projected
volume cells is described by Röttger et al [9]. Textures
are used to store exact color and opacity values instead of
inaccurate value interpolation between vertices. The time
complexity for visualization using 2D or 3D texture map-
ping is at most linear with the number of tetrahedral cells.
A view-independent, hardware-based cell projection sys-
tem was shown by Weiler et al [15]. The big advantage
of this improved version extending the PT method is the
possibility for doing all projections and scan conversions
of tetrahedral cells directly on the GPU because of the ho-
mogeneous processing per cell independent of the camera
position.

The well known Marching Cubes [7] algorithm used for
level surface determination of volume data with scalar val-
ues on regular grid already delivers isosurfaces. Linear
interpolation between grid points with values surrounding
the desired value, and classification of the intersection sit-
uation into one out of 28 possible cases for a cube, leads
to the isosurface. The problem with this algorithm and
its optimization is the required regular 3D structure of the
data. Nevertheless the basic idea of identifying data points
used for linear interpolation through analysis of the cross-
section of a cell with a plane approximating the isosurface
is used also in our approach.

Livnat et al [6] presents span spaces and their organi-
zation in the scalar domain, providing an efficient method
to search for cells intersecting the isosurface. A kd-tree is
used to decompose the span space according to the mini-
mum and maximum value per level. The Marching Cubes
algorithm is used for visualization of the isosurface. We
want to extract cells based on their location for the in sec-
tion representation as well as extraction based on scalar
values. Our approach based on an octree with the addi-
tional scalar value range hierarchy supports this requested
dynamic behavior.

An alternative method for isosurface visualization based
on point based rendering is presented by Co et al [2].

Several methods for visualization of CFD data are in-
troduced by Ebert [3]. The importance of data structures
in real time graphics systems, especially the advantages of
octrees, are investigated by Wilhelms and Gelder [16].

Using a tetrahedral mesh as input to a volume render-
ing system simplifies the interpolation and per primitive
drawings as a result as shown by Carneiro et al [1].

Handing over specific computations from CPU to the
GPU in the context of interactive volume rendering is in-
vestigated by Wylie et al [17], Pascucci [8] and Klein et
al [4]. The necessary processing of all cells of the volume
per frame is the common main disadvantage of the previ-
ously mentioned solutions.

3 Preprocessing

The interaction with the data set in real-time requires an
off-line preprocessing phase. One goal of the first stage

is gathering appropriate information per vertex described
in Section 3.1. A second stage, described in Section 3.2,
is necessary for producing a hierarchical structure used in
the following on-line phase.

3.1 Tetrahedralization

CFD simulation results may consist of scalar- and vector
fields. The spatially unstructured volume mesh of CFD
cells is difficult to analyze directly because there are mul-
tivariate per cell data and the number of nodes per cell
may differ from cell to cell. Therefore the input data need
to be preprocessed in advance to applying our algorithm
to be able to provide homogeneous cell processing mech-
anisms. The tetgen library 1 is used for the tetrahedraliza-
tion of the input data. As this process is constrained by the
boundary of the CFD mesh (a piecewise linear complex),
Steiner points are inserted as needed, and their associated
scalar values are interpolated from the neighbors [12].

Interpolation of gradients, becoming normal vectors,
and node values from neighboring cell values and resam-
pling of the volume of nodes receiving a tetrahedral mesh
of convex cells are the main steps of this first off-line stage.

The tetrahedron as a basic building block for the resam-
pled CFD data has the property that the cross-section with
a plane can only be a triangle or quadrangle. This fact al-
lows us using the OpenGL GL QUAD drawing mode for
every polygon being part of the resulting surface. The
big advantage of the GL QUAD drawing mode is the fact,
that using one vertex twice within one quad automatically
forces OpenGL to treat the geometry as a triangle with-
out any error. Furthermore we are able to build a ho-
mogeneous rendering system independent of the shape of
the surface always expecting four interpolated corners per
tetrahedra cross-section.

We approximate the gradient ∇ f at a point p as

∇ f =
N

∑
i=1

(f (pi)− f (p))
pi −p

||pi −p||2
,

where pi are the centers of the N cells sharing a common
vertex at p, f (pi) are the scalar values computed for these
cells, and f (p) is simply chosen as the average f (p) :=
1
N ∑

N
i=1 f (pi). However, this approximation is not suitable

for highly curved regions. We are currently investigating
other methods to compute the gradient.

3.2 Spatial Partitioning

Efficient identification of tetrahedra being used for visu-
alization requires spatial subdivision of the volume for in
section representation and a span space of the scalar- or
vector field for the level- or isosurface extraction. We
use an octree for the hierarchical structuring. The cen-
ter of gravity per tetrahedron is used for assigning it to an
octant. Each octant is either empty or consists of eight

1http://tetgen.berlios.de

sub-octants, or contains one tetrahedra. Attempts to in-
sert another tetrahedron into an already occupied octant
forces recursive splits into eight sub-octants. The octants
do not overlap whereas the tetrahedra may overlap octant
bounds. The covered space of each subtree is defined us-
ing a conservative bounding sphere of the corresponding
parent node of the subtree. Bounding spheres are used be-
cause their volumetric capacity is more adequate for tetra-
hedra compared to axis aligned bounding boxes. All nodes
of subtree tetrahedra define a common center of gravity
which becomes the center of the bounding sphere. The ra-
dius of the used bounding sphere is equal to the distance of
the farthest tetrahedron vertex with respect to the common
center of gravity. Additionally to the spatially covered re-
gion, each tree item also stores the covered value range per
scalar- and vector field of the tetrahedra lying in the cov-
ered spatial region of the subtree. In our implementation
we export the octree nodes into a index-array as a last step
of the preprocessing phase. Working only with the simple
array increases the performance of the on-line cell search
and decreases dynamic memory consumption.

4 On-line Tetrahedra Extraction

The static octree representation has to be searched for
cells being used for the visualization starting afterwards.
Searching for k cells being part of the resulting surface
of totally n tetrahedra in the octree takes O(k + k · log(n

k))
time [6]. Isosurface visualization requires a cell search
based on value ranges whereas in section representation
requires spatial intersection tests. Anyway the result of
each individual search described in sections 4.1 and 4.2 is
an array of extracted tetrahedra indices. Constant isoval-
ues or functions for the in section representation require
only one extraction at the beginning of the visualization
independent of the viewing parameters. Each update of
the desired isovalue or plane forces a new tetrahedra ex-
traction.

4.1 Level Surface Visualization

Identification of tetrahedra with contributions to the iso-
surface is the first step after receiving a new isovalue.
Equation 1 shows the necessary condition for points on the
isosurface (see Figure 1) with f (x) being a spatial function
such as temperature, velocity or pressure.

f (x)− isovalue = 0 (1)

The required informations to interpolate an isosurface are
vertex positions, their associated values and the isovalue.

4.2 In Section Representation

The difference to the previously described mode is the in-
dependence of node values. In section representation (see

Figure 1: The isosurface visualization of the temperature
during combustion within an engine (see data set 2 in Table
2). The slider at the top of the image is used for changing
the isovalue interactively. A big advantage of this kind of
visualization is the fast and concise overview of the struc-
ture of scalar fields in 3D space.

Figure 2: In section representation using a cutting plane re-
quires the user to enter the orientation of the cutting plane
together with the perpendicular distance from origin. The
color bar gives a hint for color/temperature encoding. This
kind of representation can be used if the cross-section of
volumes with cutting planes may give valuable informa-
tion about flows or the structure of scalar fields.

Figure 2) of the volume data set for a given plane is com-
posed by connecting the plane-edge intersections of edges
between tetrahedra nodes lying in different half spaces
with respect to the given cutting plane.

< x,n> −d = 0 (2)

Equation 2 shows the necessary condition for points on the
in section surface with vertex x, plane normal n and per-
pendicular distance d from plane to the origin in the world
coordinate system. Again only tetrahedra surrounding the
cutting plane have to be taken into account. The required
informations for this representation are vertex positions,
their associated values and the cutting plane parameters.

5 Marching Tetrahedra

Marching tetrahedra is a method, similar to the well-
known marching cubes algorithm, leading to 24 = 16 pos-
sible in section regions in case of simple cutting planes in-
cluding the two trivial cases, all nodes in front or back of
the plane. The main advantage of working with tetrahedral
cells instead of cubes are less cross-section cases leading
to simpler algorithms with less ambiguity configurations.
Another important criterion is the convexity of the tetra-
hedral mesh which cannot be guaranteed by the original
CFD cells. The intersection of a tetrahedron with a plane
can only result in a triangle or quadrangle (see Figure 3).

(a) Code e.g. ‘1110B = 14D’ or
’0001B = 1D’

(b) Code e.g. ‘1010B = 10D’ or
’0101B = 5D’

Figure 3: Tetrahedron in section representations. The ver-
tex arrangement is the same over all images. The code or
bit mask is true (positive logic) for a vertex with a higher
value compared to the isovalue, or for a vertex lying within
the cutting plane half-space. The bit corresponding to V0
is at the LSB position in the bit mask unlike V3 which
affects the MSB. The edges to be used for interpolation
are colored red. Subscript B refers to a binary notation,
whereas D refers to the decimal notation.

Figure 3 also shows different triangle or quadrangle
slices together with their hit codes. A hit code represents
the intersection situation of the tetrahedron with a plane.
The four bits of the code stands for tetrahedron nodes and
their relative position given a plane. The equations 1 and 2
are used to determine the bit value during tetrahedra ex-
traction. For the isosurface extraction, node values higher

than the isovalue lead to a one for the corresponding node
bit in the bit mask. In the in section representation case,
the one is assigned to nodes within the half-space of the
given cutting plane. Using the hit code all vertices used
for interpolation can be identified uniquely. We use lookup
tables returning edge indices for a given hit code.

6 Surface Extraction and Shading

We use the C for graphics (Cg) toolkit from NVIDIA
as shading language because of its high-level program-
ming language capabilities and its portability through plat-
form profiles. Interpolation of polygon vertices per poly-
gon representing a subsurface of the desired isosurface, or
the in section surface, is done by different vertex shaders
bound at runtime. The shader selection depends on the
visualization mode selected by the user.

Instead of transferring single vertices with their nor-
mal vectors from CPU to GPU, a Vertex Buffer Object
(VBO) is used. After extraction of relevant tetrahedra,
end point informations per edge, along to interpolate us-
ing node values or vertex positions, are written into the
VBO. Table 1 shows the layout for a single VBO edge en-
try. Transferring edges between CPU and GPU instead of
vertices causes a little memory overhead because several
edges may be connected to a single vertex dependent on
the topology of the tetrahedral mesh. The advantage of
this method is that the VBO is initialized once at start-
up and rendering only requires providing edge indices.
The OpenGL glMultiDrawElements mode is used
to trigger rendering the resulting surface. The binding be-
tween OpenGL and Cg for the 2 ·4+2 ·3 = 14 variables is
done using standard client states for vertices, texture coor-
dinates, normals and colors.

Listing 1 shows the vertex shader for the position inter-
polation whereas Listing 2 is used to interpolate scalar val-
ues given the intersection. The vertex shaders are executed
per edge delivering one of maximal four end points of the
quadrangle representing the tetrahedron cross-section. v1
is the first vertex of the edge, v2 the second, with g1 and
g2 as the corresponding normal (gradient) vectors.

v e r t 2 f r a g main (
{

f l o a t 4 v1 : POSITION ,
f l o a t 4 v2 : TEXCOORD0,
f l o a t 3 g1 : NORMAL,
f l o a t 3 g2 : COLOR,
un i fo rm f l o a t 4 x 4 mod view ,
un i fo rm f l o a t 4 x 4 mod v iew i t ,
un i fo rm f l o a t 4 x 4 mod view pro j ,
un i fo rm f l o a t i s o v a l u e ,
un i fo rm f l o a t max va lue

)
{

v e r t 2 f r a g OUT;
f l o a t a l p h a =

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Start node End node

Edge Vertex Normal Scalar Vertex Normal Scalar
x y z x y z x y z x y z

Table 1: VBO edge entry layout

(i s o v a l u e −v1 .w) / (v2 . w−v1 .w) ;
f l o a t 3 p o s i t i o n =

l e r p (v1 . xyz , v2 . xyz , a l p h a) ;
f l o a t 3 g r a d i e n t =

normal ize (l e r p (g1 , g2 , a l p h a)) ;
OUT. p o s i t i o n c a m = mul (

mod view , f l o a t 4 (p o s i t i o n , 1)) ;
OUT. normal cam = mul (

mod v iew i t , f l o a t 4 (g r a d i e n t , 0)) . xyz ;
OUT. c o l o r = i s o v a l u e / max va lue ;
OUT. p o s i t i o n = mul (

mod view pro j , f l o a t 4 (p o s i t i o n , 1)) ;
re turn OUT;

}

Listing 1: Vertex shader for the isosurface visualization

v e r t 2 f r a g main (
f l o a t 4 v1 : POSITION ,
f l o a t 4 v2 : TEXCOORD0,
un i fo rm f l o a t 4 x 4 mod view ,
un i fo rm f l o a t 4 x 4 mod v iew i t ,
un i fo rm f l o a t 4 x 4 mod view pro j ,
un i fo rm f l o a t 3 p l a n e n o r m a l ,
un i fo rm f l o a t p l a n e d i s t a n c e ,
un i fo rm f l o a t max va lue
)

{
v e r t 2 f r a g OUT;
f l o a t d i s t a n c e = −p l a n e d i s t a n c e ;
f l o a t 3 e d g e d i r e c t i o n = v2 . xyz − v1 . xyz ;
f l o a t d e n o m i n a t o r = dot (

p l a n e n o r m a l , e d g e d i r e c t i o n) ;
f l o a t a l p h a = (− d i s t a n c e − dot (

p l a n e n o r m a l , v1 . xyz)) / d e n o m i n a t o r ;
f l o a t 3 p o s i t i o n =

v1 . xyz + a l p h a ∗ e d g e d i r e c t i o n ;
f l o a t v a l u e = l e r p (v1 . w , v2 . w , a l p h a) ;

OUT. p o s i t i o n c a m = mul (
mod view , f l o a t 4 (p o s i t i o n , 1)) . xyz ;

OUT. normal cam = mul (mod v iew i t ,
f l o a t 4 (p l a n e n o r m a l , 0)) . xyz ;

OUT. c o l o r = v a l u e / max va lue ;
OUT. p o s i t i o n = mul (

mod view pro j , f l o a t 4 (p o s i t i o n , 1)) ;
re turn OUT;

Listing 2: Vertex shader for the cutting plane visualization

For lighting reasons the gradient or normal vectors are
of great interest. The fragment shader is used to map the

scalar value to a color using a one-dimensional transfer
function. Local Phong illumination and shading is imple-
mented to visualize specular effects. In the Phong reflec-
tion model the pixel color is determined using the inter-
polated normal vector. One can get depth cues using this
kind of shading and spatial impressions through specular
highlights if (R ·V) is high (see Figures 7 and 9). Dur-
ing in section representation of the data, specular lighting
is disabled because a 2D cutting plane does not require
spatial impression and the color of the interpolated values
per pixel are of interest independent of the camera position
(see Figures 8 and 10). View dependent lighting does not
make sense on a plane since high values for (R ·V) results
in whitening the hole plane, which is of no help during
analysis of volumetric data sets.

7 Results

The presented method for real-time visualization of un-
structured CFD data sets is capable of calculating and ren-
dering 30k plane/tetrahedron intersections with more than
50 frames per second and performing Phong shading on
each pixel based on normal vector or gradient direction
and the direction of light. Due to the hierarchical data
structure the total number of tetrahedra within the tetrahe-
dral mesh might be much higher since the rendered tetra-
hedra are extracted prior to rendering identified to be a part
of the resulting surface. We use the data sets listed in Ta-
ble 2 for testing on a Intel Pentium 4 3GHz CPU with 2MB
cache, 1GB RAM and NVIDIA GeForce 7800 GPU.

Id Tetrahedra Nodes Edges Octree depth
1 625k 132.6k 772.6k 8
2 44.1k 8.7k 56.7k 10

Table 2: The data sets used for testing. Data set 1 is created
synthetically (see Figure 9). Data set 2 represents the CFD
simulation result of the temperature during combustion in
a two-stroke engine.

Figure 4 shows the separate timings for cell extraction
and isosurface visualization for data set 1. Searching for
cells is significantly faster than pure rendering, therefore
our combined approach is balancing the workload between
the CPU and the GPU quite well. Figure 5 shows the sep-
arate timings for cell extraction and in section represen-
tation for the same data set. The linear relationship be-
tween the number of extracted cells and the framerate is
not as easy to see as in the previous Figure 4 because the

number of cells, in section with the cutting plane, is the
same for the most cases. Either a minimum or a maximum
in case of axis parallel cuts with respect to the volume.
Therefore the number of samples between this minimum
and maximum number of hit cells is too small in order to
be representative. Finally, Figure 6 shows the total tim-
ings for tetrahedra extraction and surface visualization for
both cases, isosurface visualizations and in section repre-
sentations. The framerate for the combination might be
higher than in the cell extraction only case, because here
cell search is only executed if changes of the isovalue or
the cutting plane parameters occur. Note that the framer-
ate is above 50 frames per second in most cases even if
the number of extracted tetrahedra is above 32 ·103 given
625 ·103 total tetrahedra.

Figure 4: Timings for octree traversal (blue), done on the
CPU, and interpolation and shading (magenta), done on
the GPU, are shown for isosurface visualizations of data
set 1.

Figure 5: Timings for octree traversal (blue), done on the
CPU, and interpolation and shading (magenta), done on
the GPU, are shown for in section representations of data
set 1.

Figure 6: The total framerates for isosurface visualizations
(red), and in section representations (green), of data set 1
are shown here.

A crucial performance impact results from the spatial
and thematic distribution of the data. If the data is degen-
erated in terms of isosurfaces, built from nearly all cells
within the data set, the octree traversal will run with low
performance. Therefore the depth= Ω(log8 n) of the oc-
tree is an important parameter for checking the distribution
of the data.

Floating-point intrinsics, provided by recent CPUs, are
used to speedup parallel dot-product calculations follow-
ing the SIMD principle during hit-code generation whilst
octree traversal. SIMD Streaming Extensions (SSE3) pro-
vide 128 bit length registers allowing four floating-point
operations to be processed in parallel. Using SSE3, the
hit-code determination can be done using the CPU for lit-
tle additional cost to cell extraction already done on the
CPU using the octree.

8 Conclusions and Future Work

Using the tetrahedron as basic primitive for interpolation
of cross-sections simplifies the information transfer from
CPU to GPU and supports a stable and homogeneous so-
lution.

The performance of the presented visualization system
depends on the spatial data distribution. Equally dis-
tributed vertices over the volume, with equally distributed
values over the hole value range, are advantageous precon-
ditions for isosurface visualization methods to be efficient.
In our case the depth of the octree is minimal and the scalar
value ranges are consistent allowing fast searches for data
set distributions mentioned above.

Caused by using VBO technology for the data transfer
from main memory to video memory, we have to trans-
fer edge indices from the CPU to the GPU using OpenGL
commands. The set of edges of the tetrahedral mesh is
generated in an off-line stage.

(a) Isovalue = 2.71 (b) Isovalue = 2.99 (c) Isovalue = 3.12 (d) Isovalue = 3.62

Figure 7: Isosurface examples for an artificial data set generated from addition of five terms of the form: ci
‖x·pi‖+di

.

(a) Distance = -0.99 (b) Distance = -0.01 (c) Distance = 0.51 (d) Distance = 0.99

Figure 8: Cutting plane example for another artificial data set with constant cutting plane normal.

(a) Isovalue = -51.10 (b) Isovalue = 0.0 (c) Isovalue = 28.50 (d)

Figure 9: Isosurface variations for artificial data set 1 (see Table 2). Compare Sub-figures (b) and (d). Sub-figure (d)
shows the SuSE Linux 8.2 Professional Edition Title Surface.

(a) Isovalue = 0.1 (b) Distance = -0.01 (c) Isovalue = 0.09 (d) Isovalue = 0.12

Figure 10: Isosurfaces and in section representation of the engine data set 2 (see Table 2).

View-frustum culling can be implemented through de-
tection of visible areas given the actual camera position
using the octree. This culling technique may lead to higher
framerates especially during observation of details (zoom-
ing) via clipping invisible areas as early as possible during
octree traversal. The octree can be further optimized for
memory- and cache efficiency using contiguous address
spaces.

Last but not least data reduction would be an efficient
method for increasing the performance of our method
through mesh simplification and vertex clustering includ-
ing edge removals during preprocessing [13].

9 Acknowledgments

Many thanks to my adviser Markus Grabner 2 for his great
support during carrying out this work. I also thank Oliver
Labs for providing functions based on E. Stagnaro quin-
tic functions to generate nice artificial data sets used for
testing 3.

References

[1] Carneiro B.P., Silva C., and Kaufman A.E. Tetra-
cubes: an algorithm to generate 3d isosurfaces based
upon tetrahedra. volume 9, pages 205–210. Proceed-
ings of SIGGRAPH 96, Aug 1996.

[2] Christopher S. Co, Bernd Hamann, and Kenneth I.
Joy. Iso-splatting: A point-based alternative to iso-
surface visualization. In Proceedings of the Eleventh
Pacific Conference on Computer Graphics and Ap-
plications - Pacific Graphics 2003, pages 325–334,
October 2003.

[3] David S. Ebert, Roni Yagel, Jim Scott, and Yair
Kurzion. Volume rendering methods for compu-
tational fluid dynamics visualization. In VIS ’94:
Proceedings of the conference on Visualization ’94,
pages 232–239. IEEE Computer Society Press, 1994.

[4] T. Klein, S. Stegmaier, and T. Ertl. Hardware-
accelerated Reconstruction of Polygonal Isosurface
Representations on Unstructured Grids. In Proceed-
ings of Pacific Graphics ’04, pages 186–195, 2004.

[5] M. Levoy. Display of surfaces from volume data. In
Computer Graphics and Applications, volume 8 of 3,
pages 29–37, May 1988. Volume Rendering.

[6] Yarden Livnat, Han-Wei Shen, and Christopher R.
Johnson. A Near Optimal Isosurface Extraction Al-
gorithm Using the Span Space. IEEE Trans. Vis.
Comput. Graph., 2(1):73–84, 1996.

2grabner@icg.tu-graz.ac.at
3http://www.oliverlabs.net/suse

[7] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3d surface construction
algorithm. In SIGGRAPH ’87: Proceedings of the
14th annual conference on Computer graphics and
interactive techniques, pages 163–169. ACM Press,
1987.

[8] V. Pascucci. Isosurface computation made sim-
ple: Hardware acceleration, adaptive refinement and
tetrahedral stripping. pages 293–300, 2004.

[9] Stefan Röttger, Martin Kraus, and Thomas Ertl.
Hardware-accelerated volume and isosurface render-
ing based on cell-projection. In IEEE Visualization,
pages 109–116, 2000.

[10] Henning Scharsach. Advanced GPU Raycasting. In
Proceedings of CESCG 2005, pages 69–76, 2005.

[11] P. Shirley and A. A. Tuchman. Polygonal approx-
imation to direct scalar volume rendering. In Pro-
ceedings San Diego Workshop on Volume Visualiza-
tion, Computer Graphics, volume 24, pages 63–70,
1990.

[12] Hang Si and Klaus Gärtner. Meshing Piecewise Lin-
ear Complexes by Constrained Delaunay Tetrahe-
dralizations. In Proceedings of the 14th International
Meshing Roundtable, September 2005.

[13] Graham M. Treece, Richard W. Prager, and An-
drew H. Gee. Regularised marching tetrahedra: im-
proved iso-surface extraction. Computers & Graph-
ics, 23(4):583–598, 1999.

[14] A. Watt and M. Watt. Advanced Animation and Ren-
dering Techniques: Theory and Practice. Addison-
Wesley, New York, 1992.

[15] Manfred Weiler, Martin Kraus, Markus Merz, and
Thomas Ertl. Hardware-based view-independent cell
projection. IEEE Transactions on Visualization and
Computer Graphics, 9(2):163–175, 2003.

[16] Jane Wilhelms and Allen Van Gelder. Octrees for
faster isosurface generation. ACM Trans. Graph.,
11(3):201–227, 1992.

[17] B. Wylie, K. Moreland, L.A. Fisk, and Crossno P.
Tetrahedral projection using vertex shaders. pages
7–12, Oct 2002.

