
Fast Rendered Animation Compression using
Point of View Data

David Coulthurst

Department of Computer Science

University of Bristol
England

1 Abstract
As the demand for more realistic rendering of images
increases, and the hardware necessary to achieve this
becomes more expensive, rendering has become an off
site and on demand issue. A major challenge of this
remote rendering is the rapid lossless transmission of the
results back to the client. Remote rendered animations
contain Point of View information not traditionally used
for animation compression. This paper presents two
novel algorithms for fast animation compression based
on frame estimation from point of view movement across
frames. A gain of 40-50% lossless compression is
achieved.

Keywords: Image Compression, Remote Rendering,
Rendering on Demand, Motion Compensation

2 Introduction
Rendering in high detail is an extremely computationally
intensive operation. Despite the advent of modern GPU's,
producing individual frames of an animation of this
quality can take hours or even days on a desktop PC.
Parallel processing can be used to significantly reduce
overall rendering times, but getting a cluster of
computers to work together is a complicated process
[CDR02], and the costs of even a moderately sized
cluster are typically beyond the financial resources of
most small media companies. This is especially true as
such expensive clusters are not needed continuously, and
thus stand idle for significant periods of time. This has
led to the growth of "render farms" with dedicated
companies providing large rendering services to clients
when they are needed.

In addition to parallel rendering, exploitation of the
human visual system has also been shown to
significantly reduce overall rendering time, without a
perceptual loss in perceived image quality
[YPG01,CCW03,SDL*05]. The "Rendering on Demand
(RoD)" at the University of Bristol combines work on
visual perception and techniques for parallel rendering,
with an aim of creating a real-time remote rendering
system for high fidelity imagery [CC02].

A key issue that still needs to be addressed, however, is
how to deliver the remotely rendered frames of an
animation to a client rapidly, and without any loss of
detail. There are, of course, a number of compression
algorithms available. The most common of these are the
well known single image JPEG standard [W91], and
video compression standard MPEG [G91, Mpeg94,
Mpeg98]. Both JPEG and MPEG operate on discrete
cosine transformed (DCT) pixel blocks, 8 by 8 for jpeg,
16 by 16 for MPEG. These are then rounded, and this
combined with the DCT leaves a much smaller piece of
data to record. However, the rounding loses data,
resulting in lossy compression. So although a high rate of
compression is achieved, the compressed image contains
less data than the original. Figure 1 (a) shows the original
high-fidelity rendered image of a fire extinguisher, while
(b) shows the same image compressed under JPEG, with
a noticeable loss in data and thus quality. The effect is
the same in MPEG.

Figure 1: Original Figure 2: JPEG
uncompressed image compressed image

MPEG uses a mix of Inter-frame and Intra-frame
compression by matching these blocks. Three types of
frames are used – Intrapictures (I), Predicted pictures (P),
and Bidirectionally Interpolated pictures (B). The I
frames provide random access points, but have less
compression than the other frames. P frames are formed
from references to previous frames (I or P frames) and
thus are also used as references for future predicted
frames. B frames are created from both past and future I
and P frames, but are themselves not used as references.
A typical encoding could have frames:

I B B P B B P B B P B B I
When a frame is created from references, it is with the
use of motion compensation. In the case of MPEG this

means that 16 by 16 blocks are searched for in previous I
and previous and future P frames. It assumes that the
current frame can locally be modelled as a translation of
the picture at some previous time. The term locally is
used because the blocks can be from different positions
in different previous frames. These block matches are
found using a brute force search - it is a brute force
Block Matching Algorithm (BMA).
A lossless motion compensated compression algorithm is
presented by Guenter et al. [GYM93] that uses the
motion of each object in the scene. They calculate and
store all the information needed to compute the optical
flow vector for each pixel. The decoder can reconstruct
the frame by backprojecting each picture from the
previous frame. Although this allows for a wide range of
motions including translations, scalings and rotations, the
overhead associated is large compared to image-based
motion estimation schemes.
Agrawala et al. [ABC95] present an approach that uses
object movement in a scene similar to [GYM93], but
combined with BMA techniques. The algorithm first
calculates the optical flow field based on object
movement. This is then combined for blocks of pixels, to
create a projective matrix that best encodes the motion of
the pixels in the block, determined using a least squares
algorithm.
Jpeg-ls [WSS98] is a newer standard than JPEG, which
allows lossless and near lossless compression to be
achieved. It is as low complexity version of the universal
context modelling paradigm. It matches the modelling
unit it uses – which models how one pixel relates to the
previous pixel in the image – to a simple coding unit –
which codes the model into a file format.

In this paper we discuss how Point of View (PoV) data,
which is available, associated with the camera view, in
computer animations, may also be used to reduce the
number of pixels that need to be transmited between a
remote render farm and its client. PoV data is used to
work out how the viewpoint has moved between frames.
This in turn allows estimates of each frame to be created
from the previous frame. By comparing these estimates
to the real frame, compression can be achieved by only
sending the data not contained in an estimate. It can be
considered as a non-brute force BMA, unlike MPEG.
However instead of using the motion of objects in the
scene, as in [GYM93, ABC95], it only uses the PoV
movement derived from the camera. This results in an
algorithm that is simpler and less computationally
intensive.

3 Scene Estimation Algorithm
The movement of the PoV can be considered as a mix of
translation and rotation about each axis. The x-axis is
considered to be horizontal, y-axis to be vertical, and z-
axis to perpendicular to the view plane (Figure 3), with
the point in the centre of the current frame to be (0,0,0).

Figure 3: Scene Figure 4: Point of View
approximation movement along x-axis
co-ordinate system and y-axis

Movement of the PoV along the x-axis m units
corresponds to the appearance of the contents of the
scene moving in a negative direction on the x-axis, by a
factor of m. For example, by moving the PoV left, the
scene will appear to move right(Figure 4). A frame
translated the correct amount along the x-axis thus gives
an estimate of the frame to use for compression.
Translation of the PoV in the y-axis can similarly be
estimated with opposite translation of the frame in the y-
axis.
Movement in the z-axis corresponds to moving in and
out of the scene (Figure 5). In the case of moving into the
scene (a positive translation in the z-axis), the scene
appears to have grown larger, scaling out from the centre
of the frame.

Figure 5: Point of Figure 6: Rotation using
View movement non-uniform adjustment
along z-axis

Rotations around the x-axis and y-axis are handled by
translations of the frame. Rotations require that the edges
of the frame are translated more than the centre. For
example, a rotation around the y axis will have the right
and left edges of the frame translate more than the centre
translates along the x-axis (Figure 6). Rotation about the
z-axis is not approximated in the system, as no fast
algorithm was devised.
For the highest level of accuracy, ideally all of these
operations would be done using floating point
calculations to generate the new pixels of the estimate.
However, for a fast algorithm, integer calculations are
more appropriate. The image is divided into a grid, and
the amount of pixels each square should be translated by
is calculated. For example Figure 7 shows a small
scaling, using a five by five grid. The translation and
rotation operations detailed above can all be
implemented using a grid.

Figure 7: Small scaling using a five by five grid

To get as accurate an approximation, while retaining the
use of integer operation when actually generating the
estimate, the following algorithm was used. Each 'square'
refers to an entry in the matrix E, but is referred to as a
square as it is the operation corresponding to an 8 by 8
square of pixels.

- Calculate Scene distance variable c (based upon how
far away visible objects are and how many squares used
for estimation matrix, can be combined with values for
movement along and rotation around axes before sending
to server).
- Set up overall estimation float matrix E, all values set to
(0,0)
- Calculate scaling float matrix S - each square is (X,Y),
where:
X = No. of squares from centre square in x co-ordinates *
distance moved along z-axis * c).
Y = (No. of squares from centre square in y co-ordinates
* distance moved along z-axis * c).
- Sum E and S into E.
- Calculate movement float matrix M - each square is
(X,Y), where X = movement along x-axis * c and Y =
movement along y-axis * c.
- Sum E and M into E.
- Calculate rotation matrix R. For each axis, if the image
is to be rotated such that it brings an edge forward, start
from the opposite edge. For example positive rotation
around the y axis brings the right edge of the frame
forward, so calculate X co-ordinate shifts of pixels from
the left is given by:
X = (1 + q2) * c / 10
Where q is the number of squares in from the edge.
- Sum E and R into E.
- Cast E from a floating point matrix to an integer matrix
I.
- Apply I to previous frame to get and estimate frame (as
in Figure 8).

Figure 8: Sub-region re-sampling to generate estimates

Figure 8 shows how this is used to generate an estimate.
For each square in the estimate frame the pixel values are
generated from a square in the previous frame. So in the
estimate frame the square A, is generated by copying the
pixels of the square in the previous frame, offset by the
amount in the integer matrix – square B. If more than one
estimate is required the procedure is repeated.

4 Compression Algorithms
Two compression algorithms were developed. Both work
on each band of an image at a time, with one byte
samples per pixel per band. Both work by comparing the
data frame - the frame to be compressed - with one or
more estimate frames – created from the previous data
frame using the scene estimation algorithm. The user can
create the same estimate frames as the estimates the
server has created. The user just runs the same code that
decides which estimates are created that the server uses.
As the PoV motion data is the same by definition the
same estimate frame are created.

Table 1: Example data and estimates

Position
Data

Frame
Estimate

1
Estimate

2
0 43 23 23
1 84 185 185
2 145 186 186
3 35 7 7
4 23 64 64
5 98 98 47
6 185 86 86
7 146 146 25
8 54 54 54
9 92 186 92
10 51 51 51
11 214 214 214
12 153 153 153
13 120 120 120
14 195 45 45
15 35 65 37

The first algorithm, the gap-match algorithm works by
considering the data frame compressed and the one to
four estimate frames as a stream of integers. The data is
scanned through for sufficiently long matches between
the data frame and one of the estimates. A match is
sufficiently long, if encoding the match requires less
bytes than recording the data.

The encoding works by recording the gap to the next
match, and then the number of bytes of a match. One
byte is used for each of the values. If using more than
one estimate, the estimate the match comes from must
also be recorded. The result of this is that a match must
be four bytes long before any compression is achieved.
Gaps or matches that are longer than 255 are handled by
having a gap-match pair of 255,0 or 0,255 respectively.

Figure 9: Tree structure showing how each number maps
to a region of samples

Table 1 shows a small example of a portion of the stream
of data. The matches at positions 5 and 7 for estimate 1
are ignored because they are too short to give
compression. In this example the match from 8 to 13 in
estimate 2 would be chosen. The gap-match pair of 8,6
would be recorded, then the data from positions 0 to 7
recorded. Decompression is simple. The gap-match pair
is read. The number of bytes given by the gap is read in.
The number of bytes given by the match is read from the
estimate created on the user.
The second algorithm uses a tree-based implementation
and uses one byte to describe a match. This means that
the minimum size of a match is two, rather than the four
needed for the gap-match algorithm. The image is split
into eight by eight pixel squares. To represent possible
combinations of matched squares, the tree structure in
Figure 9 is used. Layer Zero represents the actual 64
samples in the eight by eight square. However, we are
using matches or length two or more. Layer Two through
Four show the numbers used and the regions they
correspond to. This tree structure uses six bits to record
the number of a matched region. This means that there
are two bit left from a byte to use to denote which
estimate frame the region is from. Two bits denotes four
possible frames, one of which must be no-match rather
than an estimate frame.

Figure 10: Example 8 by 8 square

Figure 11 Encoded Regions

A byte can be used at the beginning of the encoding of
the square to denote how many regions we are
specifying. Then we can not specify some regions, and
have this denote another estimate frame. This gives four
estimates frames and no-match. This idea can be taken
even further. The frame that has the highest number of
regions (this can be an estimate frame or no-match) is
denoted by not specifying a region. This means the

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 33 34 35
4
36 37 38 39

16 17 51
20 21
24 25
28 29

largest quantity of regions for a square are written by
implication rather than use of actual bytes. To do this
there must be an encoding to show which estimate frame
or no-match is to be denoted by not specifying. This can
be combined with the number of regions, and encoded
into a single byte. No-match is denoted 0, estimate
frames from 1 to 4. The number of the frame that is
inferred is removed, and higher numbers shifted down.
So if frame 2 was to be ignored, frame 3 would be denote
2, and frame 4 denoted 3. This is so the number stay in
the range 0 to 3.
Figure 10 shows a typical 8 by 8 square, with the white
regions denoting no-match, and the various grey
denoting matches to different estimates. Figure 11 shows
the regions that are actually encoded, and the numbers
denoting those regions. So the square could be encoded
thus. First the inferred frame (in this example frame 3 as
it is the most frequent), and then the number regions
specified are recorded. After this the frame number–
region pairs are recorded. {x,y} denotes 2 numbers
encoded as a single byte. The encoding would be:
{3,11} {0,4} {0,34} {0,36} {0,37} {0,39} {1,35}
{2,16}{2,21} {2,24} {2,29} {3, 51}
This would be followed by the 18 bytes of unmatched
data. So 64 bytes is encoded into 30 bytes (12 bytes of
encoding data and 18 bytes of non-matched data).

5 Results
The system was tested on two animations, Animation 1
and Animation 2. Both of the animations are the work of
Veronica Sundstedt, as part of a paper on Visual
Attention [SDL*05]. They were chosen as they are both
very high detail rendered images, typical of the type of
animation the RoD system is aimed at.
Animation 1 (frame 1 is shown in Figure 12) consists of
moving from a room into a corridor, and then turning
around a corner. Animation 2 (frame 1 is shown in
Figure 13) consists of moving down a corridor at a faster
pace and then moving through a door out into a room.
Both are 600 by 600 pixel tiffs, with three bands (Red,
Green Blue), each band having 1 byte per sample.
Tables 2 and 3 show the time per frame and the
percentage compression achieved for each compression
method and number of estimate frames. Figure 14 Is a
graphical representation of the overall system results
data.

Figure12: Animation1 Frame 1 [S05]

Figure 13: Animation 2 Frame 2 [S05]

Table 2: Overall system Results Animation 1

Table 3: Overall System results Animation 2

Figure 14: Overall system results presented
graphically

The results in Table 2 and Figure 12 show us that the

compression rates can be achieved in between 0.2 and0.5
of a second per frame. This is short of what is needed for
real-time, by about a factor of ten. However, there are
two important points to note. Firstly, the timing results
were gathered from a high-end desktop. The full RoD
system however is envisaged as running on a server, with
far more processing power than a desktop. Secondly the
algorithm is implemented in a high level language (Java).
It is expected that a low level language version, or even a
hardware version would be used if implemented
commercially.

Figure 15: Matching results for Animation 1

Figure 16: Matching results for Animation 2

Figures 15 and 16 show the percentage of matches for
each animation, depending on the number of estimate
frames used. 10 Estimates is included because above this,
there is insignificant increase in matching. Figure 17
shows pictorially a typical level of matching for a frame.
The black areas are where all three channels (R,G,B)
match. The pink yellow or turquoise areas have 2 bands
matching. The red, green and blue areas have 1 match.
The white areas have no matches in and bands.

Figure 17 – Graphical Representation of a typical match

These results show several things. Firstly, there is a
moderate amount of matching between each previous
frame and the next, ~40% in Animation 1, and ~35% in
Animation 2. Secondly, the use of the scene
approximation algorithm increases the amount of
matches, and the more estimates we use, the more
matches are achieved. With four estimate frames (the
maximum used in the compression algorithms), around
70% matching for Animation 1, and around 65%
matching for Animation 2 was achieved. Thirdly the
increase in matches with increased number of estimate
frames is not linear, and slows off (the increase in
matches between 3 to 4 estimations, and 4 to 10
estimations is roughly the same).

Animation 2

0

10

20

30

40

50

60

70

80

90

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287
Frame Number

P
er

ce
n

ta
ge

 o
f

V
al

ue
s

M
at

ch
ed

10 Estimates

4 Estimates

3 Estimates

2 Estimates

1 Estimate

0 Estimates

1 Est. 2 Est.

3 Est.
4 Est.

1 Est.
2 Est.

3 Est.

4 Est.

1 Est. 2 Est.

3 Est.
4 Est.

1 Est.
2 Est.

3 Est.

4 Est.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

Time per Frame (milliseconds)

P
er

ce
n

ta
g

e
C

o
m

p
re

ss
io

n

GM method Animation 2 TB method Animation 2

GM method Animation 1 TB method Animation 1

Animation 1

0

10

20

30

40

50

60

70

80

90

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290
Fra m e Num be r

P
er

ce
nt

ag
e

of
 V

al
ue

s
M

at
ch

ed

10 E s tim ates

4 E s tim ates

3 E s tim ates

2 E s tim ates

1 E s tim ate

0 E s tim ates

6 Conclusion
Designing a compression algorithm for a RoD system
has the opportunity to take advantage of scene data not
present in video compression. The results show
compression based on PoV movement can field
significant benefits.
The first new algorithm designed is the scene
approximation algorithm. The algorithm performs well
matching highly (Table 2 and 3, Figure 14), although as
a stand alone device it is not that helpful. The output s
frames are not smoothed, and if considered as stand
alone images appear split with lines where the edges of
the moved samples are. However this is not what it is
intended for, it is designed to be the input stage to the
compression algorithms, and as this it performs very
well.
The compression algorithms both show potential for
expansion. The compression achieved is achieved
without the use of conventional image compression
techniques such as that in JPEG-LS [WSS98] This is
significant as it should allow the techniques used here to
be combined with current work on image compression to
gain a level of compression higher than either separately.
Also useful is the fact that the time spent carrying out
compression can be traded off against the amount of
compression achieved. The performance of the
algorithms is significant, achieving 40-50% compression
(Table 2 and 3, Figure 14), which is comparable to the
rates achieved in[WSS98]. Coupled with the scene
estimation algorithm they provide a significantly
increased amount of compression over a traditional video
conferencing (running losslessly) style of streaming.
To achieve real-time speeds, it will be necessary to run
the compression algorithms on a server rather than a
desktop computer, or implement them in hardware,
however this is the expected environment of the system.
One flaw in the scene estimation algorithm is the
inability to handle rotations in the z-axis. This is an issue
that does need addressing, although a fast integer
approximation of the rotation operation could not be
devised in the time.

7 References
[ABC95] M. Agrwala, A.C. Beers, N. Chadda. “Model-

based motion estimation for syntetic
animations.” In: Proceedings of the 3rd ACM
International Conference on Multimedia ’95.
ACM, New York, pp. 477-488.

[CC02] A. Chalmers and K. Cater. “Realistic Rendering
in Real-Time”. In: Euro-Par 2002 Parallel
Processing, pp 21 – 28. Springer Lecture Notes
in Computer Science, August 2002

[CCW03] K. Cater, A Chalmers and G. Ward. “Detail to

Attention: Exploiting Visual Tasks For
Selective Rendering”, In: EuroGraphics
Symposium on Rendering 2003, pages 270—
280. ACM, June 2003.

[CDR02] A.Chalmers, T. Davis and E. Reinhard.
“Practical Parallel Rendering”, AK Peters Ltd.
July 2002.

[W91] G.K. Wallace, “The JPEG still picture

compression standard”, Commun. ACM 34 (4)
(April 1991) 30--44.

[WSS98] arcelo J. Weinberger, Gadiel Seroussi,

Guillermo Sapiro. “The LOCO-I Lossless Image
Compression Algorithm: Principles and
Standardization into JPEG-LS” In: IEEETIP:
IEEE Transactions on Image Processing, 1998

[GYM93] B. Guenter, H. Yun, R. Mersereau. Motion

compensated compression of computer
animation frames. In James T. Kajiya, editor:
Computer Graphics (SIGGRAPH ’93
Proceedings), volume 27, pages 297 – 304,
August 1993.

[G91] D. Gall, "MPEG: A video compression standard

for multimedia applications, " Commun. ACM,
vol. 34, pp. 46--58, Apr. 1991.

[Mpeg98] MPEG1 - ISO/IEC 11172-2, “Information

Technology – Coding of Moving Pictures and
Associated Audio for Digital Storage Media at
up to about 1,5 Mbit/s – Video”, Geneva, 1993

[Mpeg94] MPEG2 - ISO/IEC FTC1/SC29/WG11 N0702

Rev, “Information Technology – Generic
Coding of Moving Pictures and Associated
Audio, Recommendation H.262” Draft
International Standard, Paris, 25 March 1994.

[SDL*05] V. Sundstedt, K. Debattista, P. Longhurst, A.

Chalmers and T. Troscianko. “Visual Attention
for Efficient High-Fidelity Graphics.” In:
Spring Conference on Computer Graphics
(SCCG 2005), May 2005.

[YPG01]H. Yee, S. Pattanaik and D. Greenberg.

“Spatiotemporal sensitivity and Visual Attention
for efficient rendering of dynamic
Environments”, In ACM Transactions on
Computer Graphics, Vol. 20, No. 1, 39-65,
2001.

[S05] Veronica Sundstet – Animation created for
[SDL*05] – copyright 2005, image used with
permission.

