
Fast Rendered Animation Compression using               
Point of View Data 

David Coulthurst 
 

 
Department of Computer Science 

University of Bristol 
England 

1 Abstract 
As the demand for more realistic rendering of images 
increases, and the hardware necessary to achieve this 
becomes more expensive, rendering has become an off 
site and on demand issue. A major challenge of this 
remote rendering is the rapid lossless transmission of the 
results back to the client. Remote rendered animations 
contain Point of View information not traditionally used 
for animation compression. This paper presents two 
novel algorithms for fast animation compression based 
on frame estimation from point of view movement across 
frames. A gain of 40-50% lossless compression is 
achieved. 
 
Keywords: Image Compression, Remote Rendering, 
Rendering on Demand, Motion Compensation 

2 Introduction 
Rendering in high detail is an extremely computationally 
intensive operation. Despite the advent of modern GPU's, 
producing individual frames of an animation of this 
quality can take hours or even days on a desktop PC. 
Parallel processing can be used to significantly reduce 
overall rendering times, but getting a cluster of 
computers to work together is a complicated process 
[CDR02], and the costs of even a moderately sized 
cluster are typically beyond the financial resources of 
most small media companies. This  is especially true as 
such expensive clusters are not needed continuously, and 
thus stand idle for significant periods of time. This has 
led to the growth of "render farms" with dedicated 
companies providing large rendering services to clients 
when they are needed. 
 
In addition to parallel rendering, exploitation of the 
human visual system has also been shown to 
significantly reduce overall rendering time, without a 
perceptual loss in perceived image quality 
[YPG01,CCW03,SDL*05]. The "Rendering on Demand 
(RoD)" at the University of Bristol combines work on 
visual perception and techniques for parallel rendering, 
with an aim of creating a real-time remote rendering 
system for high fidelity imagery [CC02]. 
 

A key issue that still needs to be addressed, however, is 
how to deliver the remotely rendered frames of an 
animation to a client rapidly, and without any loss of 
detail. There are, of course, a number of compression 
algorithms available. The most common of these are the 
well known single image JPEG standard [W91], and 
video compression standard MPEG [G91, Mpeg94, 
Mpeg98]. Both JPEG and MPEG operate on discrete 
cosine transformed (DCT) pixel blocks, 8 by 8 for jpeg, 
16 by 16 for MPEG. These are then rounded, and this 
combined with the DCT leaves a much smaller piece of 
data to record. However, the rounding loses data, 
resulting in lossy compression. So although a high rate of 
compression is achieved, the compressed image contains 
less data than the original. Figure 1 (a) shows the original 
high-fidelity rendered image of a fire extinguisher, while 
(b) shows the same image compressed under JPEG, with 
a noticeable loss in data and thus quality. The effect is 
the same in MPEG. 
 

    
Figure 1: Original  Figure 2: JPEG  
uncompressed image  compressed image 

 
MPEG uses a mix of Inter-frame and Intra-frame 
compression by matching these blocks. Three types of 
frames are used – Intrapictures (I), Predicted pictures (P), 
and Bidirectionally Interpolated pictures (B). The I 
frames provide random access points, but have less 
compression than the other frames. P frames are formed 
from references to previous frames (I or P frames) and 
thus are also used as references for future predicted 
frames. B frames are created from both past and future I 
and P frames, but are themselves not used as references. 
A typical encoding could have frames:  

I B B P B B P B B P B B I 
When a frame is created from references, it is with the 
use of motion compensation. In the case of MPEG this 



means that 16 by 16 blocks are searched for in previous I 
and previous and future P frames. It assumes that the 
current frame can locally be modelled as a translation of 
the picture at some previous time.  The term locally is 
used because the blocks can be from different positions 
in different previous frames. These block matches are 
found using a brute force search - it is a brute force 
Block Matching Algorithm (BMA).  
A lossless motion compensated compression algorithm is 
presented by Guenter et al. [GYM93] that uses the 
motion of each object in the scene. They calculate and 
store all the information needed to compute the optical 
flow vector for each pixel. The decoder can reconstruct 
the frame by backprojecting each picture from the 
previous frame. Although this allows for a wide range of 
motions including translations, scalings and rotations, the 
overhead associated is large compared to image-based 
motion estimation schemes.  
Agrawala et al. [ABC95] present an approach that uses 
object movement in a scene similar to [GYM93], but 
combined with BMA techniques. The algorithm first 
calculates the optical flow field based on object 
movement. This is then combined for blocks of pixels, to 
create a projective matrix that best encodes the motion of 
the pixels in the block, determined using a least squares 
algorithm. 
Jpeg-ls [WSS98] is a newer standard than JPEG, which 
allows lossless and near lossless compression to be 
achieved. It is as low complexity version of the universal 
context modelling paradigm. It matches the modelling 
unit it uses – which models how one pixel relates to the 
previous pixel in the image – to a simple coding unit – 
which codes the model into a file format.  

 
In this paper we discuss how Point of View (PoV) data, 
which is available, associated with the camera view, in 
computer animations, may also be used to reduce the 
number of pixels that need to be transmited between a 
remote render farm and its client. PoV data is used to 
work out how the viewpoint has moved between frames. 
This in turn allows estimates of each frame to be created 
from the previous frame. By comparing these estimates 
to the real frame, compression can be achieved by only 
sending the data not contained in an estimate. It can be 
considered as a non-brute force BMA, unlike MPEG. 
However instead of using the motion of objects in the 
scene, as in [GYM93, ABC95], it only uses the PoV 
movement derived from the camera. This results in an 
algorithm that is simpler and less computationally 
intensive. 

3 Scene Estimation Algorithm 
The movement of the PoV can be considered as a mix of 
translation and rotation about each axis. The x-axis is 
considered to be horizontal, y-axis to be vertical, and z-
axis to perpendicular to the view plane (Figure 3), with 
the point in the centre of the current frame to be (0,0,0).  

                     
Figure 3: Scene   Figure 4: Point of View 
approximation   movement along x-axis 
co-ordinate system and y-axis 

 
Movement of the PoV along the x-axis m units 
corresponds to the appearance of the contents of the 
scene moving in a negative direction on the x-axis, by a 
factor of m. For example, by moving the PoV left, the 
scene will appear to move right(Figure 4). A frame 
translated the correct amount along the x-axis thus gives 
an estimate of the frame to use for compression. 
Translation of the PoV in the y-axis can similarly be 
estimated with opposite translation of the frame in the y-
axis. 
Movement in the z-axis corresponds to moving in and 
out of the scene (Figure 5). In the case of moving into the 
scene (a positive translation in the z-axis), the scene 
appears to have grown larger, scaling out from the centre 
of the frame.  

          
Figure 5: Point of  Figure 6: Rotation using 
View movement   non-uniform adjustment 
along z-axis  
 
Rotations around the x-axis and y-axis are handled by 
translations of the frame. Rotations require that the edges 
of the frame are translated more than the centre. For 
example, a rotation around the y axis will have the right 
and left edges of the frame translate more than the centre 
translates along the x-axis (Figure 6). Rotation about the 
z-axis is not approximated in the system, as no fast 
algorithm was devised. 
For the highest level of accuracy, ideally all of these 
operations would be done using floating point 
calculations to generate the new pixels of the estimate. 
However, for a fast algorithm, integer calculations are 
more appropriate. The image is divided into a grid, and 
the amount of pixels each square should be translated by 
is calculated. For example Figure 7 shows a small 
scaling, using a five by five grid. The translation and 
rotation operations detailed above can all be 
implemented using a grid. 



 
Figure 7: Small scaling using a five by five grid 

 
To get as accurate an approximation, while retaining the 
use of integer operation when actually generating the 
estimate, the following algorithm was used. Each 'square' 
refers to an entry in the matrix E, but is referred to as a 
square as it is the operation corresponding to an 8 by 8 
square of pixels. 
 
- Calculate Scene distance variable c (based upon how 
far away visible objects are and how many squares used 
for estimation matrix, can be combined with values for 
movement along and rotation around axes before sending 
to server). 
- Set up overall estimation float matrix E, all values set to 
(0,0) 
- Calculate scaling float matrix S - each square is (X,Y), 
where:  
X = No. of squares from centre square in x co-ordinates * 
distance moved along z-axis * c). 
Y = (No. of squares from centre square in y co-ordinates 
* distance moved along z-axis * c). 
- Sum E and S into E.  
- Calculate movement float matrix M - each square is 
(X,Y), where X = movement along x-axis * c and Y = 
movement along y-axis * c. 
- Sum E and M into E. 
- Calculate rotation matrix R. For each axis, if the image 
is to be rotated such that it brings an edge forward, start 
from the opposite edge. For example positive rotation 
around the y axis brings the right edge of the frame 
forward, so calculate X co-ordinate shifts of pixels from 
the left is given by:  
X = (1 + q2) * c / 10 
Where q is the number of squares in from the edge.  
- Sum E and R into E. 
- Cast E from a floating point matrix to an integer matrix 
I. 
- Apply I to previous frame to get and estimate frame (as 
in Figure 8). 
 

 
Figure 8: Sub-region re-sampling to generate estimates 

 
Figure 8 shows how this is used to generate an estimate. 
For each square in the estimate frame the pixel values are 
generated from a square in the previous frame. So in the 
estimate frame the square A, is generated by copying the 
pixels of the square in the previous frame, offset by the 
amount in the integer matrix – square B. If more than one 
estimate is required the procedure is repeated. 

4 Compression Algorithms 
Two compression algorithms were developed. Both work 
on each band of an image at a time, with one byte 
samples per pixel per band. Both work by comparing the 
data frame - the frame to be compressed - with one or 
more estimate frames – created from the previous data 
frame using the scene estimation algorithm. The user can 
create the same estimate frames as the estimates the 
server has created. The user just runs the same code that 
decides which estimates are created that the server uses. 
As the PoV motion data is the same by definition the  
same estimate frame are created. 

 
 

 
Table 1: Example data and estimates 

 
 

Position   
Data 

Frame 
Estimate 

1 
Estimate 

2 
0   43 23 23 
1   84 185 185 
2   145 186 186 
3   35 7 7 
4   23 64 64 
5   98 98 47 
6   185 86 86 
7   146 146 25 
8   54 54 54 
9   92 186 92 
10   51 51 51 
11   214 214 214 
12   153 153 153 
13   120 120 120 
14   195 45 45 
15   35 65 37 



The first algorithm, the gap-match algorithm works by 
considering the data frame compressed and the one to 
four estimate frames as a stream of integers. The data is 
scanned through for sufficiently long matches between 
the data frame and one of the estimates.  A match is 
sufficiently long, if encoding the match requires less 
bytes than recording the data.  
 
The encoding works by recording the gap to the next 
match, and then the number of bytes of a match. One 
byte is used for each of the values. If using more than 
one estimate, the estimate the match comes from must 
also be recorded. The result of this is that a match must 
be four bytes long before any compression is achieved. 
Gaps or matches that are longer than 255 are handled by 
having a gap-match pair of 255,0 or 0,255 respectively.  

Figure 9: Tree structure showing how each number maps 
to a region of samples 

Table 1 shows a small example of a portion of the stream 
of data. The matches at positions 5 and 7 for estimate 1 
are ignored because they are too short to give 
compression. In this example the match from 8 to 13 in 
estimate 2 would be chosen. The gap-match pair of 8,6 
would be recorded, then the data from positions 0 to 7 
recorded. Decompression is simple. The gap-match pair 
is read. The number of bytes given by the gap is read in. 
The number of bytes given by the match is read from the 
estimate created on the user. 
The second algorithm uses a tree-based implementation 
and uses one byte to describe a match. This means that 
the minimum size of a match is two, rather than the four 
needed for the gap-match algorithm. The image is split 
into eight by eight pixel squares. To represent possible 
combinations of matched squares, the tree structure in  
Figure 9 is used. Layer Zero represents the actual 64 
samples in the eight by eight square. However, we are 
using matches or length two or more. Layer Two through  
Four show the numbers used and the regions they 
correspond to. This tree structure uses six bits to record 
the number of a matched region. This means that there 
are two bit left from a byte to use to denote which 
estimate frame the region is from. Two bits denotes four 
possible frames, one of which must be no-match rather 
than an estimate frame.  
 

 
 
 
 
 
 
 
 
 
 

Figure 10: Example 8 by 8 square 
 

 
 
 
 
 
 
 
 
 

 
Figure 11 Encoded Regions 

 
A byte can be used at the beginning of the encoding of 
the square to denote how many regions we are 
specifying. Then we can not specify some regions, and 
have this denote another estimate frame. This gives four 
estimates frames and no-match. This idea can be taken 
even further. The frame that has the highest number of 
regions (this can be an estimate frame or no-match) is 
denoted by not specifying a region. This means the 

0 1 2 3 4 5 6 7 
8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 
32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 
48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63 

0   33   34   35   
4               
36   37   38   39   
                

16   17   51       
20   21         
24   25         
28   29           



largest quantity of regions for a square are written by 
implication rather than use of actual bytes. To do this 
there must be an encoding to show which estimate frame 
or no-match is to be denoted by not specifying. This can 
be combined with the number of regions, and encoded 
into a single byte. No-match is denoted 0, estimate 
frames from 1 to 4. The number of the frame that is 
inferred is removed, and higher numbers shifted down. 
So if frame 2 was to be ignored, frame 3 would be denote 
2, and frame 4 denoted 3. This is so the number stay in 
the range 0 to 3. 
Figure 10 shows a typical 8 by 8 square, with the white 
regions denoting no-match, and the various grey 
denoting matches to different estimates.  Figure 11 shows 
the regions that are actually encoded, and the numbers 
denoting those regions. So the square could be encoded 
thus. First the inferred frame (in this example frame 3 as 
it is the most frequent), and then the number regions 
specified are recorded. After this the frame number–
region pairs are recorded. {x,y} denotes 2 numbers 
encoded as a single byte. The encoding would be:  
{3,11} {0,4} {0,34} {0,36} {0,37} {0,39} {1,35} 
{2,16}{2,21} {2,24} {2,29} {3, 51} 
This would be followed by the 18 bytes of unmatched 
data. So 64 bytes is encoded into 30 bytes (12 bytes of 
encoding data and 18 bytes of non-matched data). 

5 Results 
The system was tested on two animations, Animation 1 
and Animation 2. Both of the animations are the work of 
Veronica Sundstedt, as part of a paper on Visual 
Attention [SDL*05]. They were chosen as they are both 
very high detail rendered images, typical of the type of 
animation the RoD system is aimed at. 
Animation 1 (frame 1 is shown in Figure 12) consists of 
moving from a room into a corridor, and then turning 
around a corner. Animation 2 (frame 1 is shown in 
Figure 13) consists of moving down a corridor at a faster 
pace and then moving through a door out into a room. 
Both are 600 by 600 pixel tiffs, with three bands (Red, 
Green Blue), each band having 1 byte per sample. 
Tables 2 and 3 show the time per frame and the 
percentage compression achieved for each compression 
method and number of estimate frames. Figure 14 Is a 
graphical representation of the overall system results 
data. 

 
 

Figure12: Animation1 Frame 1 [S05] 
 

Figure 13: Animation 2 Frame 2 [S05] 

Table 2: Overall system Results Animation 1 
 

 
Table 3: Overall System results Animation 2 

 
 
 
 



Figure 14: Overall system results presented 
graphically 

 
The results in Table 2 and Figure 12 show us that the 

compression rates can be achieved in between 0.2 and0.5 
of a second per frame. This is short of what is needed for 
real-time, by about a factor of ten. However, there are 
two important points to note. Firstly, the timing results 
were gathered from a high-end desktop. The full RoD 
system however is envisaged as running on a server, with 
far more processing power than a desktop. Secondly the 
algorithm is implemented in a high level language (Java). 
It is expected that a low level language version, or even a 
hardware version would be used if implemented 
commercially.  

 

 
Figure 15:  Matching results for Animation 1 

 

 
Figure 16:  Matching results for Animation 2 

 
Figures 15 and 16 show the percentage of matches for 
each animation, depending on the number of estimate 
frames used. 10 Estimates is included because above this, 
there is insignificant increase in matching. Figure 17 
shows pictorially a typical level of matching for a frame. 
The black areas are where all three channels (R,G,B) 
match. The pink yellow or turquoise areas have 2 bands 
matching. The red, green and blue areas have 1 match. 
The white areas have no matches in and bands. 

 
Figure 17 – Graphical Representation of a typical match 

 
These results show several things. Firstly, there is a 
moderate amount of matching between each previous 
frame and the next, ~40% in Animation 1, and ~35% in 
Animation 2. Secondly, the use of the scene 
approximation algorithm increases the amount of 
matches, and the more estimates we use, the more 
matches are achieved. With four estimate frames (the 
maximum used in the compression algorithms), around 
70% matching for Animation 1, and around 65% 
matching for Animation 2 was achieved. Thirdly the 
increase in matches with increased number of estimate 
frames is not linear, and slows off (the increase in 
matches between 3 to 4 estimations, and 4 to 10 
estimations is roughly the same). 
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6 Conclusion 
Designing a compression algorithm for a RoD system 
has the opportunity to take advantage of scene data not 
present in video compression. The results show 
compression based on PoV movement can field 
significant benefits. 
The first new algorithm designed is the scene 
approximation algorithm. The algorithm performs well 
matching highly (Table 2 and 3, Figure 14 ), although as 
a stand alone device it is not that helpful. The output s 
frames are not smoothed, and if considered as stand 
alone images appear split with lines where the edges of 
the moved samples are. However this is not what it is 
intended for, it is designed to be the input stage to the 
compression algorithms, and as this it performs very 
well. 
The compression algorithms both show potential for 
expansion. The compression achieved is achieved 
without the use of conventional image compression 
techniques such as that in JPEG-LS [WSS98] This is 
significant as it should allow the techniques used here to 
be combined with current work on image compression to 
gain a level of compression higher than either separately. 
Also useful is the fact that the time spent carrying out 
compression can be traded off against the amount of 
compression achieved. The performance of the 
algorithms is significant, achieving 40-50% compression 
(Table 2 and 3, Figure 14 ), which is comparable to the 
rates achieved in[WSS98]. Coupled with the scene 
estimation algorithm they provide a significantly 
increased amount of compression over a traditional video 
conferencing (running losslessly) style of streaming. 
To achieve real-time speeds, it will be necessary to run 
the compression algorithms on a server rather than a 
desktop computer, or implement them in hardware, 
however this is the expected environment of the system. 
One flaw in the scene estimation algorithm is the 
inability to handle rotations in the z-axis. This is an issue 
that does need addressing, although a fast integer 
approximation of the rotation operation could not be 
devised in the time. 
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