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Abstract

In this paper we describe a new approach to quantita-
tive measurements on muscle cell images. Our algo-
rithm processes gray scaled images obtained from electron
microscopy (12000× magnification). By means of dis-
crete Fourier transform we detect the orientation of mus-
cle fibers. Afterwards, applying our thresholding method,
we detect boundaries between constituents of myofibrils
(A band, I band and Z line). From these boundaries we
estimate lengths of each myofibril constituent, since these
lengths define the type of a muscle cell. Finally, we com-
pare data measured by our algorithm, with data estimated
manually.
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1 Introduction

Recovery of geometric shapes from images of biologi-
cal objects represent a challenging as well as complicated
theme in Computer Vision.

According to electron microscopic (EM) studies of
muscle cells, there is a need to define muscle cell char-
acteristics from EM images. With respect to the stereolog-
ical and morphometric measurements, image processing
methods are mainly based on manual processing [2].

Previously much effort has been spent on developing
general image processing algorithms, however develop-
ment of algorithms suitable for microscopic images has
been neglected. Recently, just several algorithms were
proposed to solve specific problems in muscle cell mor-
phometry.

For purpose of a diagnosis of neuromuscular diseases,
Dryden et al. [1] studied cross-sectional images of mus-
cle cells. They proposed to apply Bayesian method for the
segmentation of muscle fibre images approximated by a
Dirichlet tessellation. The segmented image is represented
by Voronoi polygons, where a single Voronoi polygon cor-
responds to a single fiber.

According to studies of muscle cell mitochondria, elec-
tron microscopy images of longitudinal sections are of-
ten used. Guo et al. [4] proposed an automated algorithm
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for mitochondria detection, based on application of a two-
dimensional matched filter to trace the borders of mito-
chondria. Vendelin et al. [11] found that mitochondria are
arranged in crystal-like patterns and they also evaluated
distances between pairs of mitochondria. In fact, both [4]
and [11] analyze only spot-shaped mitochondria, and ne-
glected long ones.

In the field of image processing, several applications
were developed that simplify morphometrical measure-
ments, and also attempt to aim at their automatization. To-
day, numerous image processing tools exist for different
applications. In most cases, they are oriented on 3D visu-
alization and often have high requirements on hardware.
Additionally they can be efficiently used on very specific
types of images.

One of the powerful tool is the open source project
ImageJ [7], an image processing toolkit written in Java.
It runs on any platform, supports many file formats and
allows to write user-specified macros and plugins. It
provides standard image processing functions, geometric
transformations and image statistics.

Another powerful image processing tool is analySIS
from Soft Imaging System [9]. It is a commercial product
with plenty of automatic and manual processing features.

Ellipse [10] is an image analysis tool that allows draw-
ing and editing of images, manual and interactive segmen-
tation and further calculations of parameters such as the
area and the perimeter of desired image objects.

All mentioned systems provide image processing func-
tions for universal application, but do not offer the required
specific functions for morphometric muscle cell analysis.

2 Muscle cell morphology

Muscles are divided into three basic types according to
their structure: striated, cardiac and smooth muscles. With
respect to the user requirements this work is oriented to
skeletal muscles.

The basic unit of skeletal muscle is the muscle cell—
fiber (Figure 1), which is a multinucleated cell tightly sur-
rounded by a surface membrane—sarcolemma. It con-
sists of organelles, from which myofibrils, mitochondria,
t-tubules and sarcoplasmatic reticulum are the most impor-
tant ones.



Figure 1: Muscle fiber. Original illustration taken from
http://herkules.oulu.fi/isbn9514271521/html/x451.html

Myofibrils are thin and long contractile fibres, organized
in parallel bundles, spanning the whole length of the cell.
They are longitudinally divided into A band, I band and Z
line, which show the striated pattern under the microscope.
More than 50% of the muscle cell volume is occupied by
myofibrils.

Each myofibril is made up of bunch of parallel fila-
ments. The thick filaments have a diameter of about 15
nm. They are composed of the protein myosin and pro-
duce the dark A band. The A bands are bisected by the H
zone. The H zone is that portion of the A band where the
thick and thin filaments do not overlap. The thin filaments
have a diameter of about 5 nm and they create the light I
band. I bands are bisected by Z lines.

The thick and thin filaments create a bundle which can
be separated into repeated patterns—sarcomere. Sarco-
mere is defined as the segment between two Z lines.

Mitochondria are membrane enclosed organelles of ir-
regular smooth shape and variable size. Mitochondria are
in skeletal muscles either arranged in pairs on both sides
of the Z line or form columns in the longitudinal direction
in the interfilament space [5]. Mitochondria, depending on
the cell type, take 5–40% of the muscle cell volume.

Sarcoplasmatic reticulum is membranous structure con-
sisting of terminal cisterns that are closely related to the
T-tubules. T-tubules are long and thin tubes formed from
sarcolemma. They form a network around myofibrils, per-
pendicular to the cell surface.

3 Automatic analysis of muscle cells

Morphometry represents an important category of cell
analysis tools and comprises methods of extracting quan-
titative objects characteristics from shapes. Morphometry
enables to quantitatively characterize biological ’forms’ of
interest, which in our case are muscle cell organelles. Es-
pecially, we are interested in computation of lengths of
sarcomere and its constituents (A band, I band and Z line).
These lengths help in characterizing the muscle type and

revealing adaptational changes at the level of contractile
filaments [3].

According to these requirements we implemented an
automatic image processing tool which encapsulates seg-
mentation of these three myofibril constituents.

It processes gray scale longitudinal sections images of
about 1500 × 2000 pixels in three steps:

- Detect the longitudinal direction of a fiber

- Detection of region boundaries in the image, and

- Measurement of sarcomere, A band and Z line
lengths

3.1 Estimation of the longitudinal direction

Figure 2: A muscle fiber model obtained from [6]. m -
main axis of fiber, t - transversal axis, λ - longitudinal
section of muscle

The longitudinal direction is defined by a main axis of
the fiber (see Figure 2), i.e., by the orientation of myofib-
rils. With respect to the fact that myofibrils take the most
part of the image, we can extract this longitudinal direc-
tion automatically. Following the noticeable periodicity of
thin filaments in a given image (Figure 3a), it is suitable
to use two dimensional discrete Fourier transform (DFT)
(Figure 3b) to detect this direction.

Using point by point conjugate multiplication of image
in frequency domain, we achieve better sharpenning of di-
rection in an image. Consequently we apply inverse DFT.

The resulting image now includes only a few parallel
stripes in the longitudinal direction, and, moreover, one
of them certainly passes through the center of image (ac-
cording to the centricity attribute of DFT). We use the con-
volution mask (the matrix 1) to make the resultant image
clearer (Figure 3c).
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The longitudinal direction is defined by a line passing
through the center of such modified image. We find the
equation for the central line by searching two end-points A
and B of the desired line (Figure 3d). Starting in the center



of the image we follow the high intensity points in both
directions (up and down) as long as the intensity is above
a specified threshold value.

(a) (b)

(c) (d)

Figure 3: Direction detection. (a) The original image. (b)
Fourier transform of the image in (a). (c) After squaring,
inverse transform and applying the convolution mask. (d)
Detection of longitudinal direction.

3.2 Mask based thresholding

A frequently used technique for image segmentation is an
operation of thresholding. Thresholding is a non-linear
operation that converts a gray-scale image into a binary
image where the two levels are assigned to pixels that are
below and above the specified threshold value. We modify
the basic thresholding scheme by computing a mean value
in a neighborhood defined by a mask. From the statistical
distribution of intensities in our sets of images we found
out that the mean image intensity is a suitable threshold
value to segment the given image in light (I band) and dark
zones (A band and Z line). The image mean m intensity is
as follows:

m =
1

wh

w

∑
i=0

h

∑
j=0

xi j (2)

where w and h are width and height of the image.
We introduce five types of masks (M1, M2, M3, M4, M5)

with dimensions equal to M1 = 26× 26, M2 = 28× 28,
M3 = 30×30, M4 = 32×32, M5 = 34×34 points.

For each image point Ii j we estimate all 5 mean intensi-
ties mk

i j, k = 1, . . . ,5 corresponding to each of these masks.
By comparing to the mean m we get a three-level (yellow,

red, green) thresholded image T (Figure 4) where:

Ti j =





yellow if ∃k : mk
i j = m

red else if at least 3 mk
i j are less than m

green else if at least 3 mk
i j are more than m

By means of the standard deviation we define the
’threshold step’ to obtain more iso-levels derived from the
threshold value (Figure 4b).

(a) (b)

Figure 4: Thresholding. (a) The original image. (b) The
thresholded image. Using the threshold step: the more
levels are in red color the more levels are also in green
color.

3.3 Boundaries

3.3.1 Boundary detection

There are significant transversal boundaries between Z
line and I band, and A band and I band. We find them by
traversing the thresholded image in the longitudinal direc-
tion, using only areas equal to m (yellow parts). Each time
we detect beginning of yellow region and its correspond-
ing end (still in a longitudinal direction), we mark up its
center. These mark up points create a point skeleton, from
which we clean up isolated points with no neighbors. The
remaining points create boundaries. The result is on the
Figure 5a.

3.3.2 Length estimation

Lengths of sarcomere constituents are measured in a lon-
gitudinal direction. Unfortunately, we do not have any
knowledge about sarcomere lengths in a given image,
therefore we need some orientation values from which we
could start from.

By evaluating distances between two boundaries in lon-
gitudinal direction (over the darker part in thresholded im-
age) we obtain a bimodal histogram (Figure 5c). From the
sarcomere layout we know that its first peak belongs to the
Z line and the second to the A band.



In some cases we can get trimodal histogram, neverthe-
less it depends on the image type and quality. In this case,
the first peak belongs to the Z line, second to half of the
A band (from one boundary to beginning od H band) and
last one belongs to the A band.

3.3.3 Differentiate boundaries

In this step we differentiate boundaries by assigning them
to the Z lines and the A bands. Pairs of boundaries with the
distance equal to the value of the first peak (±10%) are Z
line boundaries, and pairs of boundaries with the distance
equal to the value of the second peak (±10%) are A band
boundaries. (Figure 5b).
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Figure 5: (a) Transversal boundaries. (b) Boundaries be-
longing to Z line(white) and A band(black). (c) Bimodal
histogram of boundaries distances.

3.4 Quantitative analysis

The required length estimation is demonstrated in figure
6a.

A band length is the distance between two boundaries
that belong to the same A band. The distance is measured
in a longitudinal direction. To be sure that we measure
the A band, we check if all measured lengths lie above the
darker (A band) part of the thresholded image. Visualiza-
tion of various A band lengths is depicted in Figure 6b.

The area between two detected Z line boundaries is Z
line. We check whether the detected boundary goes close
to the real boundary, and if not we shift the boundary by
the threshold step in a longitudinal direction. The results
of Z line lengths can be seen on Figure 6b.

The sarcomere goes from the one Z line to the second
Z line. Measurement of the length of sarcomere is almost

the same like A band. We just check the first Z line, then
the sequence of I-A-I bands and finally the second Z line
(Figure 6c).

(a) (b) (c)

Figure 6: Length measurement. (a) S - length of sarco-
mere, A - length of A band, Z - length of Z line. (b) Mea-
sured length of A band and Z line. (c) Measured lengths
of sarcomere.

4 Results

For testing purposes, we processed two sets of images
from two different muscle cell types. The first set consists
of 10 images (01–10), the second counts 5 images (11–15).

On average, in a given image we took over 200 mea-
surements of A band, about 500 measurements of sarco-
mere and over 800 measurements of Z line, from which
we computed an average and a corresponding standard de-
viation. The whole processing on a given image takes ap-
proximately 12 seconds.1 Results are shown in table 1.

Set 1 lS±σS n lA±σA n lZ±σZ n
01 1673±33 953 1027±15 130 40±6 937
02 1634±23 527 1010±30 72 39±7 687
03 1796±9 302 1032±14 239 47±7 910
04 1452±13 476 968±15 342 37±6 799
05 1439±12 397 964±12 316 37±6 1108
06 1499±19 740 964±16 237 37±6 1358
07 1606±26 842 1003±16 60 37±6 1296
08 1587±14 967 1018±17 274 39±7 668
09 1645±5 59 964±15 555 37±6 784
10 1452±20 1021 946±13 470 36±5 873

Set 2 lS±σS n lA±σA n lZ±σZ n
11 2974±52 88 1205±25 113 78±9 310
12 3003±53 378 1220±24 66 82±13 638
13 3180±26 229 1260±21 388 88±12 949
14 3029±47 304 1221±22 299 88±10 952
15 3065±2 161 1211±17 190 82±14 497

Table 1: Results are evaluated in nanometers, conversion
from image discrete space is 1 point = 3.5nm. lS - length
of sarcomere, lA - length of A band, lZ - length of Z line.
σ - standard deviation, n - number of taken measurements.

1Using configuration Athlon 1600+, 1.4Ghz, 512MB RAM.



Manual measurement consisted of 5 measured values of
sarcomere, A band and Z line in a given image. Orig-
inal survey was done totaly on 10 animals, five animals
were healthy and five were with blocked expression of
mitochondrial and cytosolic creatin-kinase (CK−/−) [8].
Twenty images were taken from a single animal, average
values from healthy and defected animals were compared
using paired Students t-test.

4.1 Comparative analysis

We compared values from two aforementioned sets of im-
ages. Table 2 shows average of manual and automatic
(by our algorithm) measurements compared by paired Stu-
dents t-test. Probability P defines the degree of equiva-
lence, e.g. P = 0 stands for no equivalence and P = 1 for
identical sets.2

Set 1 Lm[nm] La[nm] ∆L P
Sarcomere 1580 1578 -2 0.608
A band 992 989 -3 0.567
Z line 39 39 0 0.565

Set 2 Lm[nm] La[nm] ∆L P
Sarcomere 3049 3050 +1 0.964
A band 1222 1223 +1 0.801
Z line 84 84 0 0.688

Table 2: Comparing values using paired Students t-test.
Lm - average of manual processing, La - average of auto-
matic processing, ∆L - difference La−Lm, P - the proba-
bility of result, assuming the null hypothesis

5 Discussion

The advantage of the automatical processing in compari-
son with manual processing is in possibility making much
more measured values per a single image. According to
statistical analysis of more than 500 measured values of
sarcomere and over 200 measured values of A band there
is smaller probability of the error, and the results are more
representative.

On average, our results differ 2 nanometers from manu-
ally obtained values, in an image discrete space it is less
than a single pixel. Student’s t-test indicates that the two
measurements are not statistically significantly different.

Differences between average results from manual and
automatic processing are caused mainly by insufficient
number of tested images and different number of mea-
surements performed on a single image. There are some
problems when we detect a sarcomere beginning, but the
corresponding end is not visible. This happens if the end
of sarcomere is below or above our section, so it couldn’t

2P should be over 0.05 to be not significantly different

be covered in a image. Subsequently it may lead to incor-
rectly measured length of this sarcomere. These images
must be then manually skipped. Other problems, e.g. the
incorrect section orientation, are solved previously in the
process of an image generation by biologists.

6 Conclusions and future work

In this paper we presented a system for automatic mea-
surement of quantitative data in images of muscle cells.
We detect the longitudinal direction of muscle fibers,
which is important also for stereological measurements.
Thresholding brings us closer to the segmentation of im-
age, we have detected Z line and partly A band. Automati-
zation of measurement of the lengths of sarcomere, A band
and Z line gave us hundreds of measured values. Our re-
sults are the same to those obtained manually as estimated
by statistical analysis.

A next step will be optimization of the segmentation, es-
pecially detection of mitochondria. Afterwards, we intend
to automate stereological measuring. A further possibility
to improve segmentation of our images is incorporation
of the extended watershed transform—hierarchical water-
shed transform invented by Šrámek and Dimitrov [12],
which is less sensitive to noise and, in contrary to thresh-
olding, does not require threshold specification. Further,
there is also a possibility of creating 3D models from such
segmented images, following the work of Parulek et al. [6],
if a series of fiber sections is available.
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[6] Július Parulek, Ivan Zahradnı́k, and Miloš Šrámek.
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