
Intrinsic Features on Surfaces

Markus Schlattmann∗

Institut für Informatik II, Universität Bonn D-53117 Bonn, Germany

Abstract

The detection of stable feature points is an important pre-
processing step for many applications in computer graph-
ics. Especially, registration and matching applications of-
ten require those points and depend heavily on their qual-
ity. In the 2D image case, scale space based feature de-
tection is well established and shows unquestionably good
results. For this reason, we generalize a scale space to
3D surfaces and use it for the detection of analog feature
points in 3D. Our features are robust to noise and provide
a good description of the model.
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1 Introduction and Previous Work

Many 3D applications in computer graphics need features.
For instance for morphing applications a feasible mapping
between two objects is computed, where salient regions
should be mapped on corresponding regions, as for exam-
ple the eyes of an animal on the eyes of another. In reg-
istration and matching applications the features have to be
robust and descriptive in order to be able to compute corre-
spondences even if only parts of the objects are similar. In
addition to that, the matching procedure can be improved,
if the knowledge about the extend of the structure a feature
point describes is present. For this reason, we compute
feature together with a scale, whereas the scale indicates
the extend.

The detection of feature points is well established in 2D
image applications. Many feature based matching meth-
ods, as surveyed in [16], have shown great applicability.
Especially, scale space based techniques [9] are known for
their robustness and therefore, are often used in practice.
A scale space is computed by smoothing an input signal in
an appropriate way, so that the outcome of this is a repre-
sentation over scales, consisting of the smoothed signals.
Thereby, the scale determines the smoothing of the input
signal. Figure 1 shows two input signals (bottom), that are
iteratively smoothed to obtain a scale space. A scale space
for a function f : RD →R is defined as follows: Given f as
a continuous signal, then a scale space L : RD×R+ →R of
f is defined as the solution of the heat diffusion equation
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with L(·,0) = f (·). This scale space can be computed by
convolution of f (·) with a Gaussian kernel g:

L(·, t) = g(·, t)⊗ f (·), (2)

with g : RD ×R+\{0} → R. Note that the Gaussian ker-
nel is the unique kernel to solve the diffusion equation, as
shown in [3, 4].

(a) (b)

Figure 1: An input signal (bottom) is iteratively smoothed
to obtain a scale space. a) One dimensional. b) Discrete
two dimensional with extrema. [13]

To detect scale invariant blob features, Lindeberg [7]
used a scale-normalized Laplacian of Gaussian (LOG)
function t∇2L to detect features in the scale space. Scale
invariance means, that if an image is scaled with a certain
factor, then the features will be detected in a scale, which is
multiplied with the same factor. For this normalized LOG
Lindeberg has shown scale invariance. In figure 2 two ex-
emplary scale invariant feature points are shown with their
signatures, detected in the scale-normalized LOG.

For 2D images Lowe [8] introduced a so called differ-
ence of Gaussian representation (DOG) of f , defined as
follows:

DOG(x, t) = (g(x,kt)−g(x, t))⊗ f (x)
= L(x,kt)−L(x, t). (3)

The initial image is incrementally convolved with Gaus-
sians to produce images separated by a constant factor k
in scale space, shown stacked in figure 3 (Left). Adjacent
images are subtracted to produce the difference of Gaus-
sian images in figure 3 (Right). That means for the dis-
crete case, beginning for example with σ0 = 1, the σi are
obtained as follows:

σi = ki
σ0, (4)



Figure 2: Top row shows images taken with different
zoom. Bottom row shows the responses of the Laplacian
over scales. The ratio of scales corresponds to the scale
factor (2.5) between the two images. The radius of dis-
played regions in the top row is equal to 3 times the se-
lected scales. [9]

where t = σ2. This results in an exponential time step. To
be able to find all extrema, the factor k should be small
enough. Lowe [8] used values from the interval (1;

√
2].

Depending on the magnitude of σ0, more or less initially
scales of L are excluded for building the DOG. Lowe [8]
used this representation to approximate the scale normal-
ized Laplacian of Gaussian.

Figure 3: (Left) Gaussian Scale space. (Right) Difference
of Gaussian scale space. [8]

A feature point is extracted, if a pixel in a level of the
DOG has an extremal value in respect of its neighbors in
the same and the neighboring scales, as shown in figure
4. The special advantage of this kind of features is the
knowledge about the scale, from which a salient point is
extracted. The scale indicates the size of the structure
the feature point describes. In addition to that, the fea-
ture points of two images of different resolutions can be
compared because of the scale invariance.

Following this idea, we generalized the scale space and
the feature extraction to triangulated two manifold sur-
faces in 3D. We use a diffusion flow to derive the sequence
of surfaces and use the movements of the vertices as a ba-
sis to extract feature points together with a scale, as in 2D
is done with the difference of Gaussian representation.

Many other approaches introduced techniques to find
features on 3D surfaces, often in the context of matching

Figure 4: To find maxima and minima in a pixel (marked
with X), it is compared to the neighbor pixels (marked with
circles). [8]

applications used. In [12] an overview is given of those
and other matching procedures. But only a few approaches
tackled the problem of finding scale invariant features. The
features to extract can be distinguished into two classes:
On the one hand, those, that can be described by a line
or a curve, and on the other hand, feature points, like our
method extracts. Several methods extract multi scale fea-
tures from the first category, as for instance [10, 15]. For
the scale invariant point features only very few methods
exists, as for example [1, 6].

An approach to derive and smooth a surface from polyg-
onal data to multiple scales is done in [11]. By using a con-
strained moving least-squares formulation a surface can be
generated, which approximates the input, whereas features
with a specified size are smoothed away. Unfortunately, if
the surface nearly touch itself, it will accrete at this point,
so that marginal differences of the surface could result in
a highly different behavior of this smoothing process. For
this reason, this formulation of a smoothing of a surface is
not usable for our goal.

Lee et al. [5] introduced a method to describe the
saliency of every region in a mesh by summing curva-
tures in all vertices. To this end, a gaussian kernel with
iteratively enlarged standard deviation is used to integrate
over the mean curvatures of the local neighborhood of a
vertex. Whereas nice results are obtained for a simplifica-
tion based on the saliency, the extremal regions of saliency
do not include a scale they are detected in. In particular,
to improve the search for partial correspondences, such a
scale can be used.

A partial surface matching method based on local de-
scriptors was introduced in [2]. The surface is divided into
small regions, whose local shapes can be well approxi-
mated by quadrics. These regions are used as descriptors
and the most salient ones are chosen for the partial match-
ing process. However, it is unclear whether this method is
unsensible to noise, especially because of the dependency
of the extracted surface regions on local curvature.



2 General Setup and Notation

Our objective in this paper is to extract scale invariant fea-
ture points on a 3D model. These features are intrinsic,
because they depend only on the surface. We assume in
the following that the model is a closed two manifold sur-
face. In addition to that, we consider only objects with
genus zero. The surface is a triangulated mesh M with
M = {V,E}, where V = {vi|vi ∈ R3, i = 1, ..., |V |} is a set
of vertices and E = {ei j} the set of edges which connect
the vertices. A face is given, if a cycle of three edges ei j,e jk
and eki exists. For each vertex vi, a normal ni can be com-
puted.

3 Generalization to 3D

To simulate the diffusion equation (see equation 1), we use
a surface diffusion flow to iteratively smooth the objects
and to obtain a set of smoothed surfaces that constitute our
scale space.

In this section we first describe the mean curvature flow
and some of its properties. Furthermore, we give the dis-
cretisation used in our implementation and in the end the
definition of our feature points is introduced.

3.1 Building the Scale Space

In the image case usually a Gaussian kernel is used to gen-
erate the representation over scales. That is possible be-
cause there exists a global parameterization invariant over
all scales. In our case of two manifold surfaces however,
such a parameterization is generally not defined. How-
ever, a local parameterization for each vertex in each scale
is calculable. Therefore an iterative flow is utilizable to
simulate a similar diffusion process.

3.1.1 Averaged Mean Curvature Flow

The ordinary mean curvature flow is defined as follows:

∂vi

∂ t
=−Hini, (5)

where Hi is the mean curvature at vertex vi. ∂vi
∂ t is the po-

sition increment vector of vertex vi so the new position
results in ṽi = vi + ∂vi

∂ t . That means, a vertex vi is moved in
direction of its normal ni with the magnitude of the mean
curvature H = 1

2 (κmin +κmax), where κmin and κmax denote
the principal curvatures. A vertex on a convex region will
move inwards, whereas a vertex on a concave region will
show an outward movement. At a saddle point, the mini-
mal curvature is negative, while the maximal curvature is
positive, so the direction of the movement depends on their
magnitudes.

The mean curvature flow is known to shrink volume.
Thus, a closed surface with genus zero will evolve into an
infinitesimally small sphere (see figure 5).

Figure 5: Ordinary mean curvature flow evolves objects to
a infinitesimal small sphere.

A better solution is to use a volume preserving flow like
the averaged mean curvature flow. This flow is defined
by a modification of the ordinary mean curvature flow as
follows:

∂vi

∂ t
=−(Hi− ∑

v j∈M

H j

|V |
)ni. (6)

The result is a volume preserving flow as shown in fig-
ure 6. Whereas the averaged mean curvature flow is more
stable than the ordinary one, it still suffers from one de-
ficiency. If an object has a long thin limb, the flow will
trench it after a few steps as shown in figure 7. However,
with a little variation in the thickness, it is possible, that
the object is not fragmented. This results in big variations
of the feature detection, so that the computed features for
such objects are not robust. For this reason, it is only use-
ful for restricted types of objects. Therefore, in our work,
we use and compare only objects, that do not cause frag-
mentations.

Figure 6: Averaged mean curvature flow evolves objects
to a sphere with the same volume.

Figure 7: Mean curvature flow trench thin limbs after a
few steps.

3.1.2 Discretisation

In the following the implementation details for the itera-
tive computation of the flow are provided. The principal
curvatures are computed with a quadratic fitting process to
a local sampling of the surface. That means, a quadratic
function as shown in figure 8 is computed, and describes
the local neighborhood. Hence, the eigenvalues of its hes-
sian correspond to the principal curvatures. The sampling
of the local neighborhood is obtained with the Dijkstra-
Algorithm, so it consists of the n nearest neighbor vertices
vik of vertex vi.



Figure 8: A quadratic function fits a collection of points in
2D.

To fit a quadratic function through the collected points,
first the sampled points vik have to be transformed onto
the tangent plane of vi. For that purpose two arbitrary or-
thonormal vectors o1 and o2, lying in the plane with nor-
mal ni, are computed. Then the sample points are trans-
formed to points qk as follows:

qk = ((vik − vi)∗o1,(vik − vi)∗o2). (7)

To get the coefficients cl ∈ R, the basis {Bl(ξ1,ξ2)}5
l=1 =

{ξ1,ξ2,
1
2 ξ 2

1 ,ξ1ξ2,
1
2 ξ 2

2 } of the quadratic functions (with-
out constant coefficient) is used to set up the following
system of equations:

5

∑
l=1

clBl(qk) = (vik − vi)ni, k = 1, ...,n. (8)

With A = (Bl(qk))
n,5
k=1,l=1 ∈ Rn×5 and C = (AT A)−1AT ∈

R5×n its pseudo inverse matrix it can be written as

[c1, ...,c5]T = C[(vi1 − vi)ni, ...,(vin − vi)ni]T . (9)

This way the coefficients can be calculated to a quadratic
function f (x,y) = c1x + c2y + c3x2 + c4xy + c5y2 and by
computing the eigenvalues of the function’s hessian ma-
trix, we get the principal curvatures. This scheme is based
on the quadratic fitting technique from Xu [14].

3.1.3 Remeshing

Since geometry changes greatly during smoothing, the
mesh has to be adopted, in order to obtain a mesh with
neither too large nor too small or narrow triangles. To this
end we use flips, collapses and splits. After each smooth-
ing step the following tasks are executed in sequence:

1. Flip all edges ei j, if the resulting edge is shorter than
‖vi − v j‖ and the angle between the normals of the
two adjacent facets of ei j is smaller than three de-
grees. This improves the structure of the mesh with-
out adding or deleting a vertex.

2. Collapse all edges ei j, if their lengths are below one
fifth of the average edge length. This avoids too small
triangles.

3. Split all edges ei j, if their lengths are above five times
of the average edge length or if the roundness of one
of the adjacent triangles is above 1.5. The roundness
is defined as the ratio between the radius of the cir-
cumcircle and the length of the shortest edge of the
triangle. This avoids too big or narrow triangles.

The movement of the vertices in one smoothing step is
very small, so one iteration after each smoothing is suffi-
cient. Additionally, we assume the initial meshes to have
a structure, which does not make such an remeshing oper-
ation necessary.

3.2 Scale space signatures

To define the scale space signatures, we first need to for-
mally define our scale space L. Because we are using an
explicit scheme, the time step between two scales has to be
constant and not too large. If the sample rate is higher, the
time step in the smoothing process should be smaller, be-
cause we utilize an explicit smoothing scheme and there-
fore oscillations and other singularities would arise by us-
ing too big scale steps. Especially the exponentially en-
largement would cause those problems. For this, we first
build a discrete scale space as follows:

LD(v, j) =
j

∑
i=0

di(v), j ∈ N, (10)

di(v) = sign(v, i)‖∂vi

∂ t
‖

sign(v, i) =
{

−1 , if 〈 ∂vi

∂ t ,ni〉< 0
1 , else

with vi is the vertex v in scale i (v0 = v) and ni its normal in
this scale. di(v) are the signed distances between two scale
levels i and i + 1 of vertex v. To get an approximation to
a continuous scale space with scale level σ , we use the
discrete values with

L(v,σ) = LD(v,bσc)+(σ −bσc)ddσe(v), σ ∈R. (11)

Now, we define analogously to the discrete difference of
Gaussian representation of Lowe [8]:

D(v, j) = L(v,σ j+1)−L(v,σ j), j ∈ N, (12)
σ j = k j

σ0.

Thereby, σ0 depends on the constant smoothing step, that
is used to smooth the surfaces. If the resolution is high,
the step has to be smaller, than for a mesh with a lower
resolution. Moreover, in order to subdivide each octave of
σ0 to sixteen steps, we used k = 2

1
16 .

As a signature S of a vertex v we now use the vector S =
{D(v,0), ...,D(v,m− 1)}, where m denotes the maximal
computed scale. In figure 9 the trajectories and signatures
of two vertices are shown.



(a) (b)

Figure 9: a) The trajectories of two vertices on the ears of
the bunny. b) The scale space signatures (smoothed) of the
trajectories.

3.3 Feature Points

In the application of feature detection we need features
which provide a sufficient description of the model and
which are stable, if an object changes marginally.

In our case, we compute feature points as extrema on
extremum paths [7]. An extremum path r is a sequence of
extremal vertices over the scales. That means, the vertices
r(i) of the maximum path r have locally maximal signature
values in all scales i = 1, . . . , l:

D(r(i), i)≥ max
vk∈Ni(r(i))

(D(vk, i)), (13)

where vk are the neighbors of v = r(i) in scale i and l is the
length of the path. Note that a vertex v has a different posi-
tion depending on the scale that is considered. Is di

geo(v,w)
the geodesic distance of two vertices in scale i and the sig-
nature values of vertices v j are maximal in respect to their
neighbors in this scale, then the following constraints have
to be satisfied:

∀v j : di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i)) and

di
geo(r(i−1),r(i)) ≤ di

geo(v j,r(i−1)),
i = 1, . . . , l. (14)

Thereby, the length l of a path r depends on whether a fol-
lowing maximum exists or not. The computation of the
minimum paths is analougly done. An extremum path al-
ways begins in the first scale and ends if no following ex-
tremum exists.

Now, we detect v as a feature vertex at scale i, if it is
included in a maximum/minimum path r with r(i) = v and
if the value D(r(i), i) is maximal/minimal in respect to its
neighbors r(i−1) and r(i+1).

3.4 Reducing Noise

To reduce noise due to remeshing (because of its local
changes in the triangulation), a filtering over the mesh (see
figure 10) on the one hand and a filtering over the signa-
tures of the extremum paths (see figure 11) on the other
hand is done with Gaussian kernels. The standard devi-
ation σ of the first Gaussian kernel (two dimensional) is

set in dependency of the average edge length in the mesh.
This is a good choice, because normally the higher the
resolution (corresponds to the average edge length) of a
mesh, the smaller are the structures in the mesh that can
be modeled and the more feature points should and can be
extracted. In our application we took a width of twice the
average edge length. The standard deviation of the sec-
ond Gaussian kernel (one dimensional), used to smooth
the signatures, is set to four.

Figure 10: A fish with relatively colorcoded differences.
(Left) Unfiltered. (Middle) Filtered with σ = 2. (Right)
Filtered with σ = 4.

Figure 11: The scale space signatures of three extremum
paths of the fish model. (Left) Unfiltered. (Right) Filtered
with σ = 8.

3.5 Eliminating Unstable Features

If a feature point describes a ridge or ravine like struc-
ture of the object, often its position is not well determined,
because the vertices along this structure have very similar
DOG-values. For this reason, Lowe [8] introduced the hes-
sian condition. This condition rejects such feature points
by thresholding over the ratio of its eigenvalues. That
means, the eigenvalues λmax and λmin of the hessian ma-
trix H in respect of the difference of Gaussian values

H =
(

Dxx Dxy
Dyx Dyy

)
(15)

are computed. Now, if the ratio λmin
λmax

is above 0.5, the
point is not taken as a feature. Additionally, features are
rejected, if their eigenvalues of H have different signs. Be-
cause of this threshold all unstable feature points can be
removed. Analogously to the image case, we compute the
hessian matrix of a feature point in its scale with an radius
proportional to its scale. By this, we get a good indicator
for figuring out, whether a feature has an unstable position.



4 Results

In this section, several examples of our feature detection
method are presented. For the examples, the same thresh-
olds and widths of the Gaussian kernels to smooth the
DOG-values are used.

In the following figures, the feature points detected as a
maximum are printed in red, while those detected as a min-
imum are printed in blue. In addition to that, the signatures
of the extremum paths are printed in the same colors. A
feature point is illustrated as a circle with a radius propor-
tional to the scale the feature was detected in. Thereby, the
object is shown in about the scale of the feature points.

4.1 Differently Scanned Objects

To show the robustness by extracting feature points of dif-
ferently sampled models, the features of two ants with dif-
ferent resolutions are shown in figure 12. It can be seen,
that the same features are extracted, and only the signa-
tures differ marginally.

4.2 Similar Objects

To demonstrate the robustness of our method for pose in-
variance, we applied our technique on three poses of a
hand. In figure 13 the results show a great attitude by using
our procedure for those objects.

4.3 Other Examples

The third feature point of the vase in figure 14 shows, that
important features are found, which probably would not
be found by other methods.

(a) (b) 1501 vertices (c) Signatures

Figure 14: Feature points and signatures of a vase. a) Orig-
inal model. b) Smoothed object in scales of the features.
c) Signatures.

For the features of the Max Planck head in figure 15,
a lower threshold (0.35) is used for the hessian condition,
because otherwise the nose and the ears would not have
been extracted. Unfortunately, the problem of choosing
the most appropriate threshold arises, so we think, that in
a practical application the ratio of the eigenvalues should
better be used as a confidence of a feature than for thresh-
olding.

The last example for our method are the features of the
Stanford Bunny in figure 16.

(a) (b) 1643 vertices (c) Signa-
tures

Figure 15: Feature points and signatures of the Max
Planck model. a) Original model. b) Smoothed object in
scales of the features. c) Signatures.

(a) 3091
vertices

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) All features (p) Signatures

Figure 16: Feature points and signatures of the Stanford
Bunny. a) Original model. b)-n) Smoothed object in scales
of the features. o) All feature points. p) Signatures.

5 Conclusions and Future Work

Robust feature points are needed for many applications,
as for instance matching and morphing. Based on ap-
proved methods for the image case, we introduced a novel
technique for the extraction of feature points on 3D sur-
faces. Therefore we generalized the scale space method of
Lindeberg [7] to 2-manifolds in 3D, and use the averaged
mean curvature flow to build an analog representation over
scales. We detect a salient point by checking if it is ex-
tremal both over the local scales and over the local mesh.
The transfer of the hessian condition has shown good re-
sults by thresholding unstable features. Lastly, we have
shown the robustness with several examples.

One problem of our approach is the dependency of the
used flow. The mean curvature flow is not qualified to be
used in a general application, because it tends to fragment
specific objects. Because of this, we want to explore dif-
ferent flows and their properties, in order to find a more
suitable one for our method.

Due to the fact that of using the scale space for detec-
tion, we obtain features, that are robust against noise on
the surface. Solely, in the first scales wrong features were
found.

In a matching application additionally a descriptor



(a) 5087 vertices (b) Signatures of a)

(c) 1793 vertices (d) Signatures of c)

Figure 12: The feature points of an ant model with different sample rates. a) and c) Smoothed models in scales of the
features. b) and d) Signatures.

(a) (b) 1404 vertices (c) Signatures of b)

(d) (e) 1420 vertices (f) Signatures of e)

(g) (h) 1419 vertices (i) Signatures of h)

Figure 13: Feature points and signatures of three poses of a hand. a), d) and g) Original models. b), e) and h) Smoothed
objects in scales of the features. c), f) and i) Signatures.



could be used to improve the descriptive power of our fea-
tures. To get scale invariance, this descriptor could work
with a radius proportional to the scale of its feature point.

In the future, we would like to modify our method to
compute other types of features, as for example line fea-
tures.
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