
Practical Implementation of a Texture Synthesis Algorithm

Johanna Schmidt∗

Abstract

The goal of the project was to implement the texture syn-
thesis developed algorithm by Wei and Levoy [1]. The
main focus of this project was to find out which difficulties
occur during a practical implementation of this technique,
and how they can be solved.

1 Introduction

The purpose of texture synthesis is to receive a texture
sample as input and to create a new larger one without us-
ing replication. The generated textures have a realistic ap-
pearance and do not consist of separate tiles. The concrete
ideas and concepts of texture synthesis will be discussed
in chapter two.

The algorithm of Wei and Levoy [1], which will be de-
scribed in chapter three, follows a rather simple approach
to realise texture synthesis: The new texture is created in
scanline direction. At each position it is decided which
pixel from the input texture is the best match for its sur-
rounding pixels.

In the following chapters the implementation of the algo-
rithm is described, its advantages and disadvantages are
analysed and we suggest possibilities for further work.

2 Texture Synthesis

2.1 Introduction

Texture synthesis is mainly a helpful tool when texturing
objects. It often is the case that a given texture sample is
too small for the surface of an object. Then the sample
needs to be extended in some way - and that is where tex-
ture synthesis comes in. Simple replication of the sample
would cause a tiled appearance, but texture synthesis will
create a new texture big enough that will still look like the
original one. Figure 1 illustrates the idea.

More specific, the goal of texture synthesis is to create a
new texture that

• looks different from and is larger than the original
sample,

• but appears as if it has been created from the same
underlying process as the original one,

∗email: e0025558@stud3.tuwien.ac.at

Figure 1: This is an example to show how texture synthesis
works. At the top there is the input texture sample, with which
two bigger textures where created: The left one through replica-
tion and the right one using texture synthesis. The figure is taken
from [2].

both measured by the standards of human perception. This
means that the success of the method can be determined by
using our senses.

Jeremy S. De Bonet [2] provides another good explanation
of texture synthesis: ”Mathematically, the goal of texture
synthesis is to develop a function F, which takes a texture
image, Iinput , to a new texture sample, Isynth, such that the
difference between Iinput and Isynth is above some measure
of visual difference from the original, yet is texturally sim-
ilar. Formally,

F(Iinput) = Isynth

subject to the constraints that

D∗(Iinput , Isynth) < Tmax

and

V ∗(Iinput , Isynth) > Tmin

where D∗ is a perceptual measure of the perceived differ-
ence of textural characteristics, and V ∗ a measure of the
perceived visual difference between the input and synthe-
sized images. [...] The success of a synthesis technique is
measured by its ability to minimize Tmax while maximiz-
ing Tmin.“ [2]



3 The Algorithm by Wei and Le-

voy

Li-Yi Wei and Marc Levoy [1] aimed at implementing
an algorithm that is easy-to-use, efficient, and which pro-
duces high quality textures. They succeeded with respect
to user friendlyness, because the algorithm only needs a
texture sample and an image containing white noise as in-
put and all further calculations are executed automatically.
However, to ensure efficiency and high quality for all pos-
sible textures, some adjustments on the basic algorithm
have to be made.

3.1 The Algorithm

The Algorithm consists of the following procedures:

Initialisation:
A texture sample and an image containing white noise
(which is of the planned output size) are needed as input.
White noise is additive noise which is evenly distributed
over the frequency domain.

Processing:
The algorithm now generates the new texture pixel by
pixel based on the white noise. It visits each pixel position
in scanline direction and decides each time, which pixel
from the texture sample would fit best. This decision is
made on the basis of the current pixel’s neighbourhood.
Wei and Levoy have based their algorithm on a theory
that is used when creating textures with Markov Random
Fields, saying that each pixel in a texture can be identi-
fied by its surrounding neighbour pixels. The algorithm
by Wei and Levoy identifies the neighbourhood of the cur-
rent pixel and searches for an equivalent neighbourhood in
the texture sample. When it has found one, the pixel corre-
sponding to the retrieved neighbourhood is filled in at the
current position in the new texture.

3.1.1 The Neighbourhood

First we examine how two such neighbourhoods can be
compared. Wei and Levoy use the following procedure:
”The similarity of two neighborhoods N1 and N2 is com-
puted according to the L2 distance between them which is
a sum over all pixels in the neighborhood of squared dif-
ferences of pixel values at a particular position:“

D(N1,N2) = ∑
p in N

{(R1(p)−R2(p))2+

(G1(p)−G2(p))2 +(B1(p)−B2(p))2}

[3]. N defines the number of neighbourhood pixel. The
functions Ri(p), Gi(p) and Bi(p) get the red, green and
blue channel of the pixel number p belonging to the neigh-
bourhood i. The smaller the result of the function D, the
more similar the neighbourhoods are.

Neighbourhoods always have the shape of a square with
the corresponding pixel lying in the centre. The full square
of the neighbourhood is used only at the beginning where
only white noise is available. As soon as the first lines of
the new texture have been generated, the neighbourhood
is reduced to contain only already synthesised pixels - it
changes from square to L-shaped (to specify this, see fig-
ure 2). The reason why doing so ist that the algorithm does
not produce the right results if the white noise is included
in the calculation - this can be seen in figure 3.

Figure 2: The new texture is generated pixel by pixel in scanline
order. On each position, the algorithm identifies the correspond-
ing L-shaped neighbourhood and searches for an equivalent one
in the texture sample. As soon as it finds one, the pixel belonging
to it is copied to the current position. The figure is taken from
[3].

Figure 3: (a) shows the texture sample and (b) and (c) are tex-
tures generated by Wei and Levoy’s algorithm. To get (c) the
white noise was included in the calculation, but not so for (b).
For both (b) and (c) the same neighbourhood size (9x9) was used.
It is clearly recognizeable that it is not possible to generate the
right results with an algorithm that includes the white noise in its
calculations. The figure is taken from [1].

3.1.2 Edge Handling

Pixels on the outer edge of the texture need a special treat-
ment, because their neighbourhood exceeds the borders
of the image. Wei and Levoy suggest to treat the edges
toroidally so that the neighbourhoods reach again into the
texture from the opposite side.



3.2 Results

Despite its simple structure the algorithm produces very
nice results; three of them can be viewed in figure 4.

Figure 4: On the left there are the texture samples (128x128
pixels) and on the right side there are the synthesised textures
(200x200) produced with the algorithm by Wei and Levoy. The
figure is taken from [1].

3.3 Problems and Improvements

The examples from figure 4 match the type of textures that
are very well suited for the algorithm. However, there are
many textures for which only defective results can be pro-
duced. The main reason is that the algorithm tends to blur
edges and corners. Unfortunately the human visual sys-
tem is very sensitive to these features in an image, so these
results do not look convincing (for examples see figure 5).
Textures for which edges and corners are important are
mainly textures with natural objects (like small flowers,
blades of grass, bark, ...). Michael Ashikhmin has modi-
fied the algorithm by Wei and Levoy to eliminate the fact
that natural textures cannot be processed - for further in-
formation see [3].

Another important point when discussing the algorithm is
the influence of the neighbourhood. Its size influences the
quality of the results. This correlation is rather simple: the
larger the neighbourhood, the better the quality of the syn-
thesized texture. Actually, good results can only be pro-
duced from a certain neighbourhood size upwards, where
the exact size depends on the particular texture used. Too
small neighbourhoods will lead to bad synthesising results
- for illustration see figure 6. The problem is that a larger

Figure 5: On the left side there are the texture samples and on
the right side there are the synthesised textures. It is easily no-
ticeable how the algorithm blurs edges and corners, which leads
to bad synthesising results. All textures have natural motifs be-
cause the effect is best visible then. The figure is taken from [1].

neighbourhood leads to a longer runtime because signifi-
cantly more pixels need to be processed.

This leads us to the main disadvantage of the algorithm

Figure 6: These three synthesised texture show the influence of
different neighbourhood sizes. For (a) the neighbourhood was
5x5 pixels, for (b) 7x7 and for (c) 9x9. It can be noticed that only
from a size of 9x9 on the algorithm produces expedient results.
The figure is taken from [1].

- its long runtime. For each pixel in the new texture
its neighbourhood is calculated and then compared to
each neighbourhood in the texture sample, which is rather
costly. One method to improve this is to implement the al-
gorithm with Gaussian pyramids, because smaller neigh-
bourhoods can be used. For a more specific description
of this method see Wei and Levoy’s paper [1]. The sec-
ond improvement - which we used in our experiment - is
described in the next chapter.



3.3.1 TSVQ

The main - and most costly - task in the algorithm is the
search for the right neighbourhood. To improve this part,
Wei and Levoy suggest to use TSVQ (Tree-structured vec-
tor quantization) which can be used as a data structure for
efficient nearest-point queries.

”It takes a set of training vectors as input and generates a
binary-tree-structured codebook. The first step is to com-
pute the centroid of the set of training vectors and use it as
the root level codeword.“[1] The other vectors are divided
into two groups (the first one represents the left children
and the other represents the right children of the root node)
and the algorithm recurses on each subtree. ”The tree gen-
erated by TSVQ can be used [...] for efficient nearest-point
queries. To find the nearest point of a given query vector,
the tree is traversed from the root [...] by comparing the
vector with the two children codewords, and then follows
the one that has a closer codeword.“[1]

When using TSVQ with the texture synthesis algorithm,
all neighbourhoods from the texture sample can be treated
as vectors. They are then used as the training data from
which the corresponding binary TSVQ tree is constructed.
Each neighbourhood from the new texture is also treated as
a vector and the (approximate) best matching one is found
by doing a best-first traversal in the TSVQ tree. The traver-
sal always ends in a leaf, and the neighbourhood stored
there is taken as the best match.

Implementing the algorithm using TSVQ brings a major
acceleration in speed. For example, the generation of a
particular texture took 6 minutes with the basic algorithm,
which was reduced to 30 seconds using this method. How-
ever, a disadvantage using TSVQ is that not necessarily the
best matching neighbourhood will be found. Unlike when
using full search, not all given vectors are searched, be-
cause at each level in the tree a set of vectors is ignored.
So it may be the case that the best matching neighbour-
hood lies in one of the ignored parts. Nevertheless, the
returned vector is always very similar to the best match-
ing one, so the results produced by the modified algorithm
can be compared to those from the basic algorithm - see
figure 7 for examples. The fact that not all given vectors
are searched can therefore be accepted, because using full
search will lead to the same long run time that occurs with
the basic algorithm.

A big problem using TSVQ is the increased memory re-
quirement. Another disadvantage when using TSVQ is
that the blurring of corners and edges is even stronger than
when using the basic algorithm. How strong, this depends
on the structure of the texture. To counteract the effect,
backtracing can be allowed in the tree. Then the algorithm
is allowed to visit more than one leaf to select the best one
among them.

Figure 7: On the left side there are the texture samples, in the
middle there are the results produced with the basic algorithm
and the textures on the right side have been synthesised using
the modified algorithm with TSVQ. A little difference in quality
is visible compared to the textures in the middle, but considering
the major acceleration in speed these deviations can be accepted.
The figure is taken from [1].

3.4 Summary

The algorithm by Wei and Levoy has a rather simple struc-
ture but even so produces textures that compare favourably
to results from other texture synthesis algorithms (like the
ones by Heeger and Bergen [5], De Bonet [2] or Harri-
son [6]). With some modifications the run time can be
adapted so that it would only last seconds to get a result
qualitatively compareable to results from the basic algo-
rithm. The only restriction that cannot be eliminated very
easily is that texture samples with natural objects do not
lead to proper results because of the characteristic of the
algorithm to blur edges and corners.

4 Implementation - First Steps

4.1 A Prototype

To get an overview over the project, a prototype was im-
plemented in Python 2.3. It only contained the basic al-
gorithm without any improvements concerning speed. In
this form the runtime turned out to be unacceptable, which
was not only due to the programming language used, but
also because of the structure of the algorithm. Using the
basic algorithm means that for each pixel from the new
texture all neighbourhoods from the texture sample must
be searched, and this is a rather costly procedure.

4.2 Implementation in Objective-C

The first step to improve the prototype was to use another
programming language. It had to be fast and allow the
handling of images. Both requirements combined were
found in the rendering package ART (Advanved Render-
ing Toolkit, [4]) by the Institut of Computer Graphics on
the Technical University of Vienna. ART is implemented
in Objective-C and provides modules for 2D image han-
dling.



5 Usage

The executable is called Imagequilter and is used as fol-
lows:
imagequilter SAMPLE -x X -y Y -n N

SAMPLE ist the texture sample which should be a .tiff

file (this is because we are using ART [4]). X and Y de-
fine the size of the output texture, both values are indepen-
dent from each other and independent from the size of the
texture sample. N is the size of the neighbourhood which
should always be an odd number. That is because the
neighbourhood must always be a square which can have
the corresponding pixel in the centre. A greater value of N
leads to a longer computation time. Using an input sample
with wrong parameters will lead to an error message.

The algorithm then creates the new texture and stores it as
a .quilt.tiff file at the same place as the texture sam-
ple.

6 The Algorithm

In this chapter the implementation of the main parts of the
algorithm is described. The goal was to implement the al-
gorithm by Wei and Levoy [1] using TSVQ to improve the
run time while even so getting results of good quality.

At first proper data structures for storing the neighbour-
hood vectors and the TSVQ tree had to be found which
is described in chapter 6.1 and 6.2. In 6.2 we discuss the
construction of the TSVQ tree.

In chapter 6.3 the search function where the right pixels
are found for the current positions in the new texture is
explained.

6.1 Initialisation

The first step after loading the texture sample is that all
neighbourhoods within the image need to be determined.
They are stored in an array, because in this way they can be
treated as vectors later on. An array element represents a
neighbourhood and contains all belonging neighbourhood
pixels. When initialising the array it is necessary to know
how many pixels there will be. This cannot be done calcu-
lating neighbourhoodsize2, because not all neighbour-
hood pixels are used. Neighbourhoods are L-shaped, so
allocating memory for the whole square would be a waste.
It was necessary to determine a formula that will calculate
the size for the L-shape:

(N +1)∗ (N−1)

2
∗3

The fraction represents the number of neighbourhood pix-
els and it is multiplied by 3 because the RGB channels of
each pixel are stored separately. See figure 8 for further

information.

Now that it has been determined how many pixels each

Figure 8: On the left side it is shown how a neighbourhood
of 7x7 pixels looks like - a square with the corresponding pixel
in the centre. Only the pixels that are marked green are used
for calculations because these only contain already synthesised
values. The graphic on the right side is to show the evidence that
the formula mentioned in chapter 6.1 calculates the right number
of neighbourhood pixels.

neighbourhood will have, it is necessary to find out how
many neighbourhoods (array elements) there will be. Each
pixel in the sample has a neighbourhood, but not all of
them will be used for texture synthesis. Neighbourhoods
that exceed the borders of the image should not be in-
cluded in the calculation. This implies that the number
cannot be determined by X*Y, but by:

(Y −
N −1

2
)∗ (X − (N −1))

In x-direction the neighbourhoods exceed the borders of
the image on both sides, so the complete neighbourhood
size must be subtracted from X. In y-direction only the
neighbourhoods at the top of the image exceed the borders
because of L-shape. So only half of the neighbourhood
size is subtracted from Y.

Now the array is ready to be filled with neighbourhoods
from the texture sample. This is done the following way (i
is the number of the current neighbourhood): In [i][0] the
red channel, in [i][1] the green channel and in [i][2] the
blue channel of the first neighbourhood pixels is stored.
[i][3] contains the red channel of the second pixel, and so
on. In the last array entry the current index of the loop is
stored to retrieve the pixel that corresponds to the neigh-
bourhood. There is a second array where the x- and y-
coordinates of this pixel are stored at the same index.

The last thing to do during initialisation is to create a fu-
ture output image and to fill it with white noise.

6.2 Creation of the TSVQ Tree

A data structure was constructed to represent the nodes in
the tree. It consists of the following components:



• a pointer to the left and a pointer to the right child

• a pointer to the parent treeNode construct

• a vector (array) data where the neighbourhood vec-
tor belonging to the node is stored

• an array vectors, where the neighbourhood vectors
are stored, that should be devided among the node’s
children

• a variable count where the number of neighbour-
hoods in vectors is stored

• a variable dim where the dimension of the neighbour-
hood vectors is stored

• a variable depth which states how deep the node lies
in the tree (root node: depth=0)

• a variable designed which is 1 when the node has
been initialised (is only needed when the tree is cre-
ated)

First of all the root node is initialised. In its array data a
zero vector and in its array vectors all available neigh-
bourhood vectors are stored. In the method makeNode the
left and the right child of the root node are created and
the neighbourhood vectors are divided among them. This
happens as follows:

1. From all neighbourhood vectors two are chosen: The
one which is nearest and the one which is farthest
from the root’s data vector (both measured with the
L2-distance). The first vector is stored in the left
child’s, the second in the right child’s data vector.

2. Now the remaining neighbourhood vectors are dev-
ided among the children. For each one we calculate,
whether its L2-distance to the left child or to the right
child is smaller. As the case may be, the neighbour-
hood vector is stored in the array vectors of the left
or the right child.

After this method call the root node has two children and
the neighbourhood vectors are devided among them. The
procedure is iterated for all other children until the whole
tree has been created.

6.3 Search for suitable Neighbourhoods

Now the actual texture synthesis can start. On each posi-
tion of the new texture it is decided which pixel from the
texture sample should be copied there.

To start the process the neighbourhood of the current pixel
is stored in an array. Now all pixels of the new texture
have to be processed, so there are also neighbourhoods
which exceed the image borders. This problem is solved
by treating the image toroidally so that the neighbourhoods
can reach again into the texture from the opposite side.

The search is done as follows:

• At each node the L2-distance of the vector to the
left and the right child’s data vector is calculated.
Whichever L2-distance is smaller, the search is con-
tinued to the left or the right side.

• The traversal will end when a leaf is reached. The
data vector stored there is returned as the search re-
sult.

• If the L2-distance is 0 at some node in the tree, the
search will be aborted and the current node’s data
vector will be returned as search result, because in
this case the vectors are equal.

When the search has finished, not the whole result vector,
but only its last digit is returned. As we explained in
chapter 6.1 this is enough to find out the coordinates of
the corresponding pixel.

7 Results

The result section figures in this paper all show examples
from textures that have been created by our implementa-
tion of the algorithm.

Figure 16 and 17 are useful samples to show how the al-
gorithm tends to blur small artefacts in the images. In ad-
dition, this disadvantage gets even worse when TSVQ is
used.

The last image is a photo of natural objects, and it is clearly
visible that the algorithm has some problems to handle
them properly.

8 Summary

The goal of the project was to implement the algorithm
of Wei and Levoy and to find out which difficulties occur
when doing so.

The first problem occured when only using the basic
algorithm. Then the results had the best quality, but the
execution times were unacceptable. The key problem was
the structure of the main algorithm.

During initialisation some considerations had to be made
that were not mentioned in the paper by Wei and Levoy.
A proper data structure for the neighbourhoods was
needed, and formulas for calculating the right numbers
of neighbourhoods and neighbourhood pixels had to be
derived. It was also necessary to find a proper way of
visiting all neighbourhood pixels using two loops, because
not all pixels of the square were valid (neighbourhoods
are L-shaped).

The essential goal was to make the algorithm faster, and



this succeeded using TSVQ. It was not really difficult
to create data structures for the nodes and to create the
tree, but the main problem with TSVQ was the increased
memory requirement (see also next chapter).

An effect that occured because of using TSVQ was
increased noise appearing in result textures, especially
when using natural textures. To soften this effect the
algorithm was allowed to search for two more results and
to choose from these three. The difference to the first
result is that the new search processes have some random
steps at the beginning. They also do not start from the root
node but from its children - one from the left, the other
from the right one. From the three results the best one
is chosen. The additional expenses are barely noticeable
because the search in the binary tree is quick enough.
The selection of the best results does not slow down the
algorithm noticeably as well, so there was no need for
further optimization in this area.

9 Future Work

The runtime and the results for many types of input
images are already very good. However, the algorithm has
some points that need improvement.

One of them is the memory requirement. The creation
of the TSVQ tree needs such a large amount of memory
that it can even lead to the process being killed by the
system. It depends on the size of the texture sample and
the size of the neighbourhood - a sample of 200x300
pixels together with a neighbourhood of 25x25 pixels will
lead to problems. Two experiments were been attempted
to solve the problem: To eliminate all duplicates from
the array of neighbourhoods, or either to build only half
of the TSVQ tree - but both did not work. The first took
too long, and the second produced inferior results. The
memory requirement for large texure samples is still a
problem which should be a subject to further work.

Another problem is the noise which is visible to a greater
or lesser extend depending on the texture. We have tried
to eliminate it by allowing the algorithm to find two
additional results, but it only has decreased it, but did not
completely remove it. This is another point that should be
improved.

The last point is that the algorithm can be extended with
the method by Michael Ashikhmin [3] so that it can
handle natural textures without blurring the edges.

10 References

[1] LI-YI WEI and MARC LEVOY

2000. Fast texture synthesis Using Tree-Structured Vector Quan-
tization. Siggraph 2000, Computer Graphics Proceedings, ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, [479-
488].

[2] JEREMY S. DE BONET

1997. Multiresolution Sampling Procedure for Analysis and
Synthesis of Texture Images. Computer Graphics Vol. 31, An-
nual Conference Series, [361-368].

[3] ASHIKHMIN, MICHAEL

2001. Synthesizing Natural Textures. Proceedings of 2001 ACM
Symposium on Interactive 3D Graphics, Research Triangle Park,
NorthCarolina, March 19-21, [217-226].

[4] ALEXANDER WILKIE, ROBERT F. TOBLER

Institute of Computer Graphics, Technical University of Vienna.
ART (Advanced Rendering Toolkit). http://www.artoolkit.org

[5] HEEGER, D.J., and BERGEN, J.R.
1995. Pyramid-based texture analysis/ synthesis. In SIG-
GRAPH, [229-238].

[6] HARRISON, P.
2001. A non-hierarchical procedure for re-synthesis of complex
textures. In WSCG 2001 Conference Proceedings, V. Skala, Ed.

Figure 9: The texture sample on the left is 88x88 pixels and the
new texture is 400x400 pixels. The sample has a structure which
suits the algorithm very well.



Figure 10: The texture sample on the left is 177x177 pixels and
the result is 400x400 pixels. The artefacts in the new texture arise
from the white line in the sample.

Figure 11: The texture sample on the left is 264x264 pixels and
the new texture is 400x400x pixels. The texture has a structure
which the algorithm can handle very well.

Figure 12: The texture sample on the left is 177x177 pixels and
the new texture is 400x400 pixels. The sample has a structure
which suits the algorithm, although a little noise is visible.

Figure 13: The texture sample on the left is 88x88 pixels and
the new texture is 400x400 pixels. The results is rather good,
although little noise is visible.

Figure 14: The texture sample on the left is 264x264 pixels and
the new texture is 400x400 pixels. This is an example for a natu-
ral texture, where the algorithms tends to blur edges and corners.

Figure 15: The texture sample on the left is 277x190 pixels and
the new texture is 400x400 pixels. This sample is taken from
a photograph, but although the algorithm shows promise, some
noise and blurring is visible.


