
Advanced GPU Raycasting

Henning Scharsach∗

VRVis Research Center
Vienna, Austria

Abstract

Modern GPUs offer a degree of programmability that
opens up a wide field of applications far beyond processing
millions of triangles at ever increasing speed. Raycasting
is one of these applications that can make heavy use of the
built-in features of todays graphics cards. With the possi-
bilities offered by this technology, there is a lot of room
for new techniques that do not simply convert existing al-
gorithms to the GPU, but use the very strengths of this
architecture to create more realistic images at interactive
frame rates.

This paper presents an approach to hardware based ray-
casting in the fragment shader of a shader model 3 compat-
ible graphics card that not only allows for both orthogonal
and perspective projection, but enables the user to move
the viewpoint into the dataset for fly-through applications
like virtual endoscopy. This hardware-based approach can
also be used to correctly intersect the rendered dataset with
normal OpenGL geometry, allowing arbitrary 3D-meshes,
pointers or grids to be rendered in the same scene.

The last section deals with the biggest problem of GPU-
based raycasting - the limited amount of available video
RAM - and how it can be circumvented by applying a
cached blocking scheme that loads only blocks of interest
into the memory.

Keywords: raycasting, GPU, shader model 3, virtual en-
doscopy, blocking

∗henning@vrvis.at

1 Introduction

In the field of hardware-based volume rendering, there are
two distinct approaches for rendering datasets at highly in-
teractive framerates. The first approach, as originally pre-
sented by Cullip and Neumann [2] and further developed
by Cabral et al. [1], is directly exploiting the GPUs tex-
ture mapping capabilities by creating some kind of (usu-
ally planar) sampling surface - either viewport [9] aligned
with one 3D-texture or axis aligned [7] with a set of 2D-
textures - and resampling the original data at this so-called
proxy geometry. This technique is widely accepted now as
a common way to render medium sized datasets in accept-
able quality at interactive framerates and has been revis-
ited, finetuned and extended many times, e.g. [9, 3, 8, 6].

Though this approach is very similar to the way com-
puter games make use of the GPU, which ensures that it
runs at the highest possible speed, it has a couple of serious
drawbacks: First, everything that needs to be calculated
for the final result, every texture fetch, gradient or lighting
calculation, has to be done for every single fragment, no
matter if it contributes to the final image or not. Second,
advanced techniques like empty space skipping are very
difficult to implement because of the unflexible nature of
the algorithm. And finally, implementing perspective pro-
jection (or even fly-through modes) and dealing with the
resulting sampling artefacts imposes some difficulties thus
being infeasible for most cases.

The second approach would be to implement a raycaster
in the fragment shader of the GPU, as proposed by Krüger



and Westermann [5]. Since this algorithm uses the graph-
ics card in a very different way than most games do, there
is often some additional effort required to find the most ef-
ficient solution for a certain task. Still, this approach is far
more flexible and can be extended in a number of ways,
which is what the main part of this paper is about, and this
enables us to utilize the specific advantages a GPU has
over a CPU in the best possible way, namely:

• A massively parallel architecture

• A separation into two distinct units (vertex and frag-
ment shader) that can double performance if the
workload can be split

• Incredibly fast memory and memory interface

• Dedicated instructions for graphical tasks

• Vector operations on 4 floats that are as fast as scalar
operations

• Trilinear interpolation is automatically (and ex-
tremely fast) implemented in the 3D-texture

Many more advantages may arise through the specific
nature of a GPU-based algorithm. As we will show in the
next sections, there are a couple of advantages that our
raycasting algorithm has over a similar CPU techniques,
like the possibility of very efficient emtpy-space-skipping
via the outer bounding geometry, the implicit support for
perspective projection or the possibility to intersect our
dataset correctly with normal OpenGL primitives by sim-
ply modifying the z-buffer accordingly.

On the other hand, there are still some disadvantages of
GPU-based raycasting that one should not forget and that
still limit the set of possible applications, the biggest one
being the limitation of available video memory. Though
we can improve on that by applying a sophisticated
caching and blocking scheme like the one presented in sec-
tion 8 (which only stores blocks of interest), the overall
amount of important data we can display is still limited by
the available memory.

In the next section, we will first introduce the basic idea
of hardware raycasting and how the algorithm works. In
section 3 we will extend this technique by adding a more
sophisticated bounding geometry for efficient empty space
skipping. Section 4 deals with Hitpoint Refinement, which
significantly improves quality for iso-surface raycasting
without a noticable speed penalty. Interleaved Sampling
is presented as a solution to heavy sampling artefacts in
Section 5, and in Section 6 we add the possibility to in-
tersect the volume with arbitrary OpenGL geometry. Sec-
tion 7 deals with the problems when trying to fly into the
dataset for virtual endoscopy applications and how this can
be solved. Section 8 shows one approach to circumvent the
biggest drawback hardware-based approaches face: The
limited amount of available video memory. Finally, sec-
tions 9 and 10 show some results we were able to achieve
and give a short outlook into our future work.

2 Algorithm Overview

The basic idea of hardware raycasting, as proposed by
Krüger and Westermann [5], is simple: The dataset is
stored in a 3D-texture, in order to take advantage of the
built-in trilinear filtering. Then, a bounding box for this
dataset is created where the position inside the dataset (i.e.
the texture coordinates) is encoded in the color channel, as
shown in the left picture in figure 1.

Figure 1: Front and back faces of our simple bounding
geometry encoding the current position in the color chan-
nel. Subtracting these two images will yield the viewing
vectors for the raycasting step.

Now the viewing vector at any given pixel can be eas-
ily computed by subtracting the color of the front faces of
the color cube at this pixel (which is the entry point into
the dataset) from the color of the back faces at this pixel
(which is the exit point) as shown in figure 1. Normalizing
and storing this vector in a 2D-texture of the exact size of
the current viewport (together with its initial length in the
alpha channel) yields a ’direction texture’ for every screen
pixel.

Casting through the volume is easy now: Render the
front faces again (the entry points into the dataset) and step
along the viewing vector for this pixel (stored at the same
position in the direction texture) until the ray has left the
bounding box again (i.e. the casted distance is greater than
the alpha value of the texture, where the initial length was
stored). Compositing the final color can be done in a sep-
arate texture, which is blended onto the screen at the very
end.

The fragment shader of a modern GPU is perfectly suit-
able for accomplishing that, since the front faces can be
drawn as normal OpenGL geometry and for every pixel of
the bounding box that will be drawn, the fragment shader
is automatically called with the current color (the start-
ing position) and the current pixel position (for the direc-
tion texture lookup) as input parameters. The possibility
to have loops and conditionals within a fragment shader
(as of shader model 3) makes it possible to cast through
the volume with a single function call.

To sum this all up, the basic hardware raycasting algo-
rithm is a 4-step-process:



1. Draw front faces of the color cube into an intermedi-
ate texture.

2. Draw back faces, subtract the color value of the front
faces, normalize the outcome and store this vector to-
gether with its initial length in a separate ’direction
texture’.

3. Draw front faces again, taking the colors as an input
parameter for the fragment program, and cast along
the viewing vector (that is stored in the direction tex-
ture). Store the intermediate steps in a separate com-
positing texture. Terminate the ray if we leave the
bounding box or as soon as the opacity has reached a
certain threshold (early ray termination).

4. Blend the result back to screen. It would be possi-
ble to composite to the screen directly, but a sepa-
rate blending step makes the approach more flexible,
extensions like geometry intersection (see section 6)
a lot easier, and doesn’t impose a significant speed
penalty.

3 Empty Space Skipping

The basic algorithm presented in section 2 leaves a lot of
room for improvement and possible extensions like empty
space skipping, which can significantly speed up rendering
time - in this section we propose a blocked scheme for
bounding geometry creation which significantly speeds up
rendering time.

As of now, only the pixel processing pipeline of our
GPU is used, while the vertex pipeline is lying idle. So
whether the bounding box consists of 12 (as in our basic
algorithm) or 100,000 triangles doesn’t make much differ-
ence - even more since graphics cards nowadays are spe-
cially designed to handle the massive (and ever increasing)
amount of geometry modern games throw at them without

Figure 2: Example for a data-dependent bounding geom-
etry of a hand dataset with the colors encoding the posi-
tion in the dataset. In this view, only 68% of the bounding
blocks are discarded es empty and are skipped without any
performance loss, increasing the framerate to 56fps.

Figure 3: Front and back faces of our blocked bounding
geometry, with the grey boxes being active blocks. Note
that the ray always starts at the first front face and ends at
the last back face, even if there are inactive blocks inbe-
tween.

suffering huge performance hits. So the idea of increas-
ing the complexity of the bounding box - making it a data
dependent bounding geometry - is obvious.

When modern graphics cards render a scene, they try to
process vertices and pixels in parallel, in the best case lead-
ing to an equal distribution of the workload. Of course, if
there’s a small number of large triangles, the vertex pro-
cessing engine will be partly idle, while only the pixel
processing engine is busy - such a scene is said to be fill
limited.

On the other hand, if there is a huge amount of visi-
ble triangles that consists of only one or two pixels, then
the vertex engine will be the bottleneck, making the scene
geometry limited. Both of this is of course undesirable,
meaning that it is best to keep the average triangle size at
a very constant rate that is, in the best case, close to the
optimal size for the current generation of GPUs. With to-
days graphics cards, this optimal size is highly dependant
on the shader complexity, but usually somewhere between
four and eight.

Considering this, a blocking scheme with equally sized
blocks (shown in Figure 2) seems to be a good idea, which
decides for every block consisting of a number of vox-
els from the original dataset whether this block is of any
interest or not. This can be done by culling each block
either against the iso-value or the transfer function using
summed area tables, depending on the current rendering
mode. If this test reveals that the current block needs to
be rendered, it is marked as active - otherwise, it will be
discarded. It is important to note that have to test one bor-
der voxel outside the current block as well, because the
filtering could cause an interpolated value inside the block
to be greater than the threshold even if none of the voxel
values in the block is.



With this blocking scheme enabled, the border between
active and non-active blocks of our new bounding geome-
try is rendered now instead of the simple color cube. How-
ever, the separation into front faces and back faces is a
little bit more complicated now, because the possibly non-
convex bounding geometry doesn’t guarantee for exactly
one front and back face anymore. Thus, we need to re-
trieve thefirst front face to start our rays and thelast back
face to stop them - this can be done with a simple depth
test.

As shown in Figure 3, this scheme does not necessarily
skip all inactive blocks - another lookup in the fragment
shader is necessary to determine whether there are empty
blocksbetweenthe first front and last back face. However,
this check is easy and doesn’t slow the fragment program
down noticably, and the implicit empty space skipping via
the bounding geometry has no performance hit at all.

4 Hitpoint Refinement

In this section, we propose a simple way to get a better es-
timation of the real intersection point with the iso-surface
after casting with constant sampling distance.

Starting from the first estimation of the intersection (i.e.
the first sample point along the ray where the density is
greater than our threshold), the algorithm goes one half-
step back (half the previous sampling distance) and checks
the density value at the new position. The next step will
again be half the previous stepsize (making this one fourth
of the original sampling distance), and will depend on the
density on this new position: If it is stil above the thresh-
old, the next halfstep will also be taken backwards, oth-
erwise forwards. This bisection can be repeated 5 or 6
times, until we have an intersection that is 64 times more
precise than our original estimation (that should be suffi-
cient for most applications, no matter how low the original
sampling distance is).

In our implementation, we’re always performing six bi-
section steps, each time multiplying the stepsize with ei-

Figure 4: Highly undersampling this dataset leads to heavy
sampling artefacts (left). Turning Hitpoint Refinement
on removes those artefacs without lowering performance
(right).

Figure 5: This head-to-head comparison of a
512x512x333 dataset shows that the results for sam-
pling distance 1.0 (left, 24fps) and sampling distance
5.0 (right, 66fps) are almost identical when Hitpoint
Refinement is turned on.

ther 0.5 or -0.5. This way, we don’t need a real condi-
tional statement (thus minimizing the impact on perfor-
mance). Interestingly enough, performance slightly in-
creases when turning on Hitpoint Refinement in our im-
plementation, which is probably due to some pipelining
issue.

As shown in Figure 4, Hitpoint Refinement dramatically
increases the image quality if iso-surface renderings - even
more when the sampling distance is very low. Because of
this, it is easily possible to increase the sampling distance
to 400 or 500%, as long as no important features are com-
pletely missed by the ray. As shown in Figure 5, the sam-
pling distance can even be five times the voxel distance
for certain datasets without any visible difference. This
makes it extremely useful for interaction renderings while
the user is moving or rotating the dataset, because evenif
tiny details were missing because they are skipped by the
ray, the user would hardly notice while moving around.
As soon as the mouse is released, the sampling distance
should be reduced again to ensure that all the details are
rendered correctly.

5 Interleaved Sampling

Keller and Heidrich [4] proposed Interleaved Sampling as
a solution to bridge the gap between regular and irregular
sampling patterns. We extend this approach to GPU ray-
casting where calculating a small z-offset results in a large
reduction of sampling artefacts.

Regular sampling patterns are easy and fast to compute,
but prone to producing sampling artefacts, while irregular
sampling patterns achieve much better results at the cost of
higher computational demands. The solution is now to use
an irregular sampling pattern that coversmultiple pixels, so



that two adjacent pixels will never have the same pattern.
Though this approach was basically meant to improve on
the results of multisampling, the authors suggest using in-
terleaved sampling for volume rendering as well. Since
supersampling is not an option in computationally expen-
sive algorithms like raycasting, the sampling positions are
only interleaved in z-direction (the view direction of the
camera).

This means choosing a small offset in z-direction that is
different for adjacent pixels, but will repeat after a number
of pixels.

The easiest way to do this would be to have some kind of
modulo function of the screen coordinate. In the fragment
shader, this can only be done by using the FRC command,
which returns the fraction of a float value. Calculating an
repeating offset this way only requires a couple of easy
computations at the beginning of our fragment program,
so there’s hardly any performance hit. Still, there’s a huge
impact on the final image quality, which can be seen in
Figure 6.

However, interleaved sampling does not always deliver
the most visually appealing result. Consider the case of
two very thin structures that map to completely different
colors in the transfer function and are roughly viewport-
aligned. Without interleaved sampling, only one of these
colors may be visible, because the highest intensities of
the other color may be missed by our ray samples. Turning
interleaved sampling on, a strong dithering pattern consist-
ing of these two colors will be visible, depending on which
of the two structures was hit by the ray with a particular

Figure 6: Two scenes with rather difficult transfer func-
tions, rendered without (left) and with Interleaved Sam-
pling (right). Notice how virtually all of the sampling arte-
facts disappear.

Figure 7: Turning Interleaved Sampling on does not al-
ways produce a more appealing result, but is a good indi-
cator of undersampling in the other cases. In this example,
the thin white tissue over the red bone is hardly visible in
the left picture, except for a few sampling artefacts. Turn-
ing Interleaved Sampling on in the right picture suggests
that the sampling rate should be increased.

offset, as shown in Figure 7.
Though the first result is definitely more appealing, the

second picture is closer to the correct rendering (which
would be achieved by sampling at an indefinitely small
sampling distance or one that is at least a lot smaller than
the smallest feature present in the dataset) because it shows
both colors that are present at these sampling positions. In-
terleaved sampling can be taken then as an indication that
given the current dataset and transfer function, the current
sampling rate is not sufficient and we might be missing
important features.

6 Geometry Intersection

Being able to intersect the rendered volume with normal
OpenGL geometry allows for a number of interesting ap-
plications, like 3D-Pointers that correctly blend into the
scene, a 3D-grid that gives additional information about
the position in the dataset or arbitrary meshes that could
cut away part of the dataset for easier navigation. In this
section we propose an approach that makes sure that parts
of the volume that are not visible will not be rendered at
all.

Figure 8: Modifying the ending geometry avoids render-
ing unnecessary parts of the volume, as shown in the left
picture. Blending the clipped volume with the geometry
then gives the correct result.



So before thinking about adding geometry, there should
be a way to arbitrarily clip the volume. Fortunately, the
bounding geometry introduced in section 3 offers a conve-
nient way to do so. Modifying the starting points would
result in clipping parts of the dataset from the viewer’s
side, which could be useful for ’opening up’ the dataset
if one wants to look inside without modifying the transfer
function accordingly. Changing the ending points would
result in clipping parts on the back side, which would be
the same as putting a completely opaque object there (like
our geometry for example).

Implementing this is straightforward: After the render-
ing of the front or back faces only the direction of the depth
test needs to be changed and the clipping geometry must
be rendered with the position inside the dataset encoded in
the color channel. In the case of the back faces, this means
that our initial algorithm retrieved thelastbackface, so the
depth test was set to GLGREATER, which ensures that
only pixels with a z-value greater than the current value
are drawn. Reversing this test to GLLESS now makes
sure that the bounding geometry is modified only where
the clipping geometry is nearer to the viewpoint - all other
parts will be discarded. Color-coding the clipping geome-
try with its position in the dataset ensures that whenever a
value is modified, the correct ending positions for the ray
will be written into the texture.

As shown in Figure 8, modifying the ending geometry
results in occluded parts of the volume not being rendered,
which gives an additional speedup of rendering time. All
that is left to do is to draw the geometrybeforethe volume
is drawn and then blend the clipped volume onto the screen
accordingly.

It is important to note that with this extension to our ini-
tial algorithm, the ending geometry could easily bein front
of our starting geometry (because the clipping geometry
could be in front of our front faces), yielding a negative
direction vector. This makes it neccessary to check the
direction vector before casting, which can be done in the
fragment shader as well.

7 Fly-Through Applications

So far, we have the possibility of perspective projection
that is an implicit feature of our basic algorithm. For some
applications it might be interesting to move the viewpoint
into the volume end explore the dataset in a fly-through
mode like in Figure 9.

There shouldn’t be a problem doing so as long as the
camera doesn’t touch the geometry, but as soon as the near
clipping plane intersects the bounding geometry, holes
will start to appear in our front faces, resulting in rays not
being started where they should. What needs to be done
is that whenever such an intersecion happens, all of these
holes must be filled with the correct colors from the near
clipping plane. In this section, we propose a novel aproach
that fills all these holes with a number of simple tests in the

Figure 9: Exploring the dataset in fly-through mode.

depth buffer of the GPU.
A simple approach would be to draw the near clipping

plane first (again with the colors encoding the absolute po-
sition in the dataset) and the front faces afterwards, ensur-
ing that whenever there are no front faces to start from, the
position of the near clipping plane will be taken. Unfortu-
nately, this approach can only detect holes where no front
faces are drawn at all (i.e. where the background color
would shine through). If there is another object behind the
current one, the front faces of this object would be visible
and would be taken as starting positions for the ray (thus
completely skipping the current object).

One way to avoid that is to first draw the backfaces to
the depth buffer only, retrieving the z-value of the nearest

Figure 10: Example of the near clipping plane (red line)
intersecting the bounding geometry. The dotted line is the
hole in the bounding geometry that we need to fill with the
near clipping plane.



backface, and render the front faces afterwards - this way,
no front face behind the first object will be drawn, because
its z-value would be greater than that of the nearest back-
face (see Figure 10). To sum this up again, drawing the
front faces consists of three steps now:

1. Draw the color-coded near clipping plane with the
depth buffer turned off.

2. Draw the back facesonly to the depth buffer, ensuring
that only thefirst front faces will be drawn.

3. Finally draw the front faces with depth buffer en-
abled, resulting in the correct starting positions for
all rays.

8 Rendering of Large Datasets

As mentioned before, the biggest restriction of GPU based
raycasting compared to CPU based approaches is the lim-
itation of available memory. As of now, 256MB has been
established as a standard for new graphics cards, which is
just enough to store a 512x512x512 dataset in 16bit. Un-
fortunately, not all of the graphics card memory can be re-
served for our dataset - the geometry information and the
textures needed in the process of rendering take up some
space as well. As shown in Figure 11, we’re able to ren-
der a 580 MB dataset with only about 190 MB of space
available for storing the volume data.

Considering the way our bounding geometry was cre-
ated in section 3, inactive blocks don’t contain important

Figure 11: Rendering this 512x512x1112 dataset is possi-
ble with our cached blocking scheme, as long as the active
blocks fit into the memory.

Figure 12: Rendering of a dataset with our 2-way blocking
structure - cache blocks are marked green and bounding
blocks blue.

information and shouldn’t be stored. Having the dataset in
a 3D-texture is convenient for our algorithm, so the 3D-
texture should be preserved, but this texture does not have
to be in the same order as the original dataset, nor does it
have to have the same size. Storing only the active blocks
in a new 3D cache texture would be one possible solution
- unfortunately, in order to preserve correct trilinear filter-
ing, blocks have to be stored with 1 extra border voxel.
Otherwise a sample could be interpolated between voxels
from different blocks, which of course would result in a
wrong value. This means that for every 4x4x4 block of
data from the original dataset, a 6x6x6 block has to be re-
served in the cache texture. Obviously, with a block size
of four more space would be lost than saved.

This suggests that the sweet spot for our bounding ge-
ometry (which is usually around 4) and the one for our
cache texture are of a different magnitude. That said, a 2-
way-blocking scheme looks like the best idea, with larger
blocks (e.g. 32x32x32) for caching and smaller structures
(4x4x4) for the bounding geometry. For the sake of effi-
ciency (and simplicity), the small block size should be a
factor of the large block size.

Of course the structure of the cache texture needs to
be stored as well - this can be done with another low-
resolution 3D-texture, that stores the position in the cache
texture for every original cache block. All it takes then is
another intermediary texture lookup in our fragment pro-
gram to find the position of the current block.

Figure 12 illustrates what this 2-way blocking scheme
looks like on a regular dataset - in this particular example,
only 30.5% of the cache blocks are active, leading to a
memory consumption of only 36.6% of the original texture
size. Even better, only 7.2% of the bounding blocks are
active, meaning that 92.8% of the dataset can be implicitly
skipped via the bounding geometry.

9 Results

Compared to the original algorithm, significant speedups
can be achieved by applying the techniques presented in
the previous sections. Table 1 compares the basic algo-
rithm presented in section 2 to the optimized algorithm



dataset size BA[fps] BG[fps] BG&HR[fps]
256x256x128 14.6 41.7 350.0
512x512x333 4.4 24.3 66.4
512x512x1112* 1.5 5.1 15.1

Table 1: Iso-surface rendering of different datasets, com-
paring the basic algorithm to the presented optimizations.
BA = the basic algorithm presented in section 2, BG = with
bounding geometry, HR = hitpoint refinement and increas-
ing sampling distance to 5.0. *With activated blocking.

dataset size DVR [fps] shaded DVR [fps]
256x256x128 40.5 26.7
512x512x333 23.9 11.3
512x512x1112* 4.4 1.5

Table 2: Comparing DVR and Shaded DVR of different
datasets, bounding geometry is enabled. *With activated
blocking.

with empty space skipping enabled. The third column
shows the framerates that can be achieved by increasing
the sampling distance to 5.0, which in the case of our
datasets can be done without any visible differences when
hitpoint refinement is enabled. In any case, the detail
should be sufficient for moving and rotating the dataset,
which can then be done at highly interactive framerates
even for the large datasets. In general, the framerate is
mostly dependant on screen resolution (i.e. the number of
generated fragments) and sampling distance.

What can be seen in Table 2 is that unshaded DVR is al-
most as fast as iso-surface rendering, which is mainly due
to the efficient empty space skipping preventing most of
the dataset to be even looked at. Shaded DVR slows down
rendering considerably, mostly because of the many sam-
ples needed for gradient reconstruction at each sampling
point.

10 Conclusions and Future Work

This paper demonstrates that hardware based raycasting
is much more than the conversion of well-known algo-
rithms from the CPU to the GPU. Graphics processors
have their own strengths and weaknesses, and exploit-
ing these strengths while avoiding the weaknesses leads
to completely different techniques than in CPU based ap-
proaches. Fortunately, the ongoing evolution of graphics
cards will allow for even more efficient algorithms in the
near future, and with the speed of GPUs growing at a much
faster pace than that of CPUs, we’re looking into a bright
future for GPU-based approaches.

We have shown that it is already possible to implement a
full-fledged raycasting environment on a GPU for all kinds
of possible applications, minimizing most of the restric-

tions and achieving highly interactive framerates far above
similar CPU approaches. This enables us to introduce new
rendering modes like interactive fly-through DVR, which
was next to impossible until now.

Finally, having the possibility to easily intersect the
dataset with OpenGL-geometry efficiently is an important
advantage as well, allowing for a number of interesting
future applications like interactive 3D-pointers, augmen-
tation tools or VR-objects in the same scene.

Other future work will include making the blocking
scheme even more flexible, allowing for rendering of data
that will not fit into the video memory as a whole, and full
support of segmented datasets.

Acknowledgments

The VRVis research center is funded in part by the Austrian
Kplus project. The medical data sets are courtesy of Tiani Med-
Graph.

References
[1] B. Cabral, N. Cam, and J. Foran. Accelerated volume render-

ing and tomographic reconstruction using texture mapping
hardware. InProceedings of IEEE Symposium on Volume
Visualization, pages 91–98, 1994.

[2] T. Cullip and U. Neumann. Accelerating volume reconstruc-
tion with 3D texture mapping hardware. Technical Report
TR93-027, Department of Computer Science, University of
North Carolina, Chapel Hill, 1993.

[3] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading.
In Proceedings of Graphics Hardware 2001, pages 9–16,
2001.

[4] A. Keller and W. Heidrich. Interleaved sampling. InPro-
ceedings of the 12th Eurographics Workshop on Rendering
Techniques, pages 269–276, 2001.

[5] J. Krüger and R. Westermann. Acceleration techniques for
GPU-based volume rendering. InProceedings of IEEE Vi-
sualization 2003, pages 287–292, 2003.

[6] M. Meißner, U. Hoffmann, and W. Straßer. Enabling classi-
fication and shading for 3D texture mapping based volume
rendering. InProceedings of IEEE Visualization ’99, pages
207–214, 1999.

[7] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive volume rendering on standard PC graphics hard-
ware using multi-textures and multi-stage rasterization. In
Proceedings of Graphics Hardware 2000, pages 109–118,
2000.

[8] A. Van Gelder and K. Kim. Direct volume rendering with
shading via three-dimensional textures. InProceedings of
IEEE Symposium on Volume Visualization, pages 23–ff.,
1996.

[9] R. Westermann and T. Ertl. Efficiently using graphics hard-
ware in volume rendering applications. InProceedings of
SIGGRAPH ’98, pages 169–178, 1998.


