
Speed optimized Recursive Ray-tracer with KD-Tree and
SSE vector mathematics

Balázs T́oth∗

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

This paper presents a new approach to achieve interactive
frame rates with the ray-tracing image synthesis method
used originally for high quality, off-line rendering. The
rendering system uses a spatial subdivision algorithm and
SIMD instructions to speed up the rendering process.

Keywords: Raytracing, SIMD, KD-Tree

1 Introduction

Interactive rendering systems provide a powerful way to
explore complex environments. Until recently the process-
ing power of computers did not allow us to achieve high
frame rates with ray-tracing based algorithms. The only
interactive rendering methods were hardware accelerated
polygonal rendering systems, which are less flexible and
are poorer in providing sophisticated lighting effects.
Software-only methods are easy to modify and extend,
which makes them a good candidate to experiment with
various interaction and rendering methods. Nowadays an
optimized ray tracer-based software rendering system can
reach the performance of a polygonal algorithm.
The recursive ray-tracing algorithm is fairly easy to under-
stand and implement, but it’s powerful enough to examine
the possibilities of the algorithmic and implementational
optimizations. With the use of spatial subdivision algo-
rithm and some optimization we can reach decent frame
rates.

2 Elements of the ray-tracer

In this section we describe the key elements of our ray-
tracing engine. These parts are implemented with speed
and efficiency in mind. Our implementation is based on
a recursive ray-tracing algorithm and a subdivision struc-
ture to speed up the object searching. Our vector operators
are optimized with SSE instructions, because these are fre-
quently used in the rendering process.

∗tbalazs@sch.bme.hu

2.1 Recursive ray-tracing algorithm

The idea behind this algorithm is to simulate the path of
light rays [9]. The most important part of the algorithm
is the light-trace function. In this function we must de-
termine the object the ray hits first. In the next step we
calculate the direct contributions of the light sources with
the diffuse and specular components of the hit object’s ma-
terial. In order to handle the reflective and translucent ma-
terials, we must determine the next object through the hit
point. In this case we spawn new rays (the origins are the
hit points and the directions are calculated using Snell’s
law) and trace them to determine these components.

2.2 Intersection test

The ray object intersection test is an important part of the
ray-tracer. We must test the ray object intersection fast,
because in a ray-tracing system the 90% of computation
time is spent on these calculations.

2.2.1 Ray triangle intersection

Fast ray triangle intersection test algorithm has long been
an active field of research in computer graphics and has
lead to a large variety of algorithms. Our implementation
is based on baricentryc coordinate test [8].
In the first step we calculate the distance between the ray
origin and the plane that embeds the triangle. With this test
we can limit the test range. If the distance is larger than
the limit the algorithm stops. If the triangle passes the dis-
tance test we calculate the baricentryc coordinates of the
hit point by equationH = O + dplaneD, whereO is the
origin of the ray,dplane is the previously calculated dis-
tance between the origin and the plane of the triangle and
D is the direction of the ray. The baricentryc coordinate of
H can be calculated by solving theH = αA + βB + γC1

equation of the triangle. If the barycentric coordinates
have positive values the intersection point is in the trian-
gle.
This intersection test scheme can be optimized by exploit-
ing the fact that projecting both the triangle and the hit-

1The baricentryc coordinates of the H areα, β, γ andα+β +γ = 1

point onto any plane2 do not change the baricentryc coor-
dinates. If we project them onto one of the 2D coordinate
planes3, all further computations can be performed in 2D.
For reasons of numerical stability, we should project to the
plane in which the triangle has maximum projected area.
After the projection, the equation isH

′

= αA
′

+ βB
′

+
γC

′

, whereA
′

, B
′

, C
′

andH
′

are the projected points.
With theα = 1 − β − γ substitution we can rearrange the
equation toβ(B

′ − A
′

) + γ(C
′ − A

′

) = H
′ − A

′

. In 2D
this can be solved4 as

β =
bxhy − byhx

bxcy − bycx

, γ =
hxcy − hycx

bxcy − bycx

.

2.2.2 Ray sphere intersection

The sphere object is defined by its center5 and radius6. The
points in the sphere can be represented by(X − Xc)

2 −
(Y − Yc)

2 − (Z − Zc)
2 = S2

r equation. If we substitute
the ray equation7 to the sphere equation, we can solve it
algebraically8.

A = X2
d + Y 2

d + Z2
d ,

B = 2((Xd(Xo − Xc) + Yd(Yo − Yc) + Zd(Zo − Zc)),

C = (Xo − Xc)
2 + (Yo − Yc)

2 + (Zo − Zc)
2 − S2

r .

The solution of the quadratic equations is

t0, t1 =
−B ±

√
B2 − 4AC

2A
.

If t0, t1 are less than zero then there is no intersection. If
they are greater than zero, then the smaller is the closest
intersection point. The intersection point is

Ri,x = Xo + Xdti,

Ri,y = Yo + Ydti,

Ri,z = Zo + Zdti.

If t0, t1 has opposite signs, the ray is spawned inside the
sphere. In this case we terminate the calculation.

2.3 KD-Tree implementation

The best subdivision method is based on a special data
structure called kd-tree. My research is based on Vlastimil
Havran’s thesis [5], who did an extensive study of avail-
able spatial subdivision schemes (regular grids, nested
grids, octrees and kd-trees). He concluded that kd-trees

2Except planes that orthogonal to the plane of the triangle.
3XY, XZ, YZ
4b = C

′

− A
′

, c = B
′

− A
′

, h = H
′

− A
′

5Sc = [Xc, Yc, Zc]
6Sr

7R(t) = O + t ∗ D, wheret > 0, O the origin of the ray andD is
the direction

8D = [Xd, Yd, Zd], O = [Xo, Yo, Zo]

beat others in most cases. It was also shown that the av-
erage number of intersection tests to find the closest inter-
section can be made as small as 2-3 independently of the
number of objects [7][8].
The kd-tree is an axis-aligned Binary Space Partitioning
tree. The space is partitioned by splitting it into two
halves. The halves are processed recursively until every
partition contains only one object. The most important dif-
ference compared to other schemes is that the position of
the partitioning plane is axis aligned but not fixed. The use
of the axis-aligned splitting planes has several advantages.
Most importantly, it makes intersection test inexpensive
with low memory footage of the tree [6].

2.3.1 Building the tree

To build the tree, we must determine the right positions of
the splitting planes. The simplest method is to choose it in
a way which ensures that the numbers of objects on both
sides of the plane are roughly the same. This method is
not the best because it doesn’t produce empty nodes and
the ray-tracer must check all objects in each node during
the ray traversal.
Better trees can be constructed using a heuristic splitting
rule. A good heuristic tries to isolate the empty spaces.
In such nodes the traversal algorithm can travel through
without expensive intersection tests. Such a heuristic is the
Surface Area Heuristic. The basic idea is that the proba-
bility of a ray hitting object is related to it’s surface area.
The area of the node is

width × length × height.

The cost of traveling in a node is

Travel + Area × ObjectsInTheNode × IntersectionTest,

whereTravel is a constant traversing cost in an empty
node and theIntersection Testis a constant cost of ray-
object intersection test. The splitting of the node produces
two new nodes, so the splitting cost is calculated by sum-
ming the new node’s costs. If we always use the less ex-
pensive splitting plane, we get a good kd-tree. To find the
good splitting plane we must test all the possible planes.
There are many planes to choose from, but the number of
the interesting positions is limited. The limitations are that
the splitting plane must be axis aligned and must touch the
border of at least one object.

Even with these constraints there are a large number of
candidates. So building a kd-tree is a slow process, but
with a static scene we must build the tree only once. The
hit search with a good kd-tree is four times faster than the
regular grid and many times faster than the naive test-with-
all-objects method.

2.3.2 Storing the tree

The kd-tree is built up from nodes, that stores the position
of the splitting plane, a flag that indicates whether the node

A

B

C

D

E

F

r

Figure 1: Example of the subdivision

is a leaf node or not. If the node is not a leaf, then it must
contain a pointer to its left child node. If the node is a leaf
node it contains a pointer to the list of objects in the node.
These data members of the nodes can be stored in 8 bytes.
We allocate the child nodes in pair at a 16 bytes bound-
ary. With this allocation scheme we can save a pointer in
each node, because the position of the right child node is
right after the left node. The size of the node pair is 16
bytes, therefore in a single 64 kbytes cache line we can
store four node pairs. When the traversal algorithm reads
the left child node, the right child is loaded into the cache
because of the behavior of the cache loading process. This
improves cache performance if the series of the successive
rays walk through the same nodes.

2.3.3 Traversing the tree

The ray traversal algorithm is a simple repetitive point-
location search in the tree along the ray path. First we
determine the point of the ray origin in the tree. If the node
is not empty we test the intersection of the objects with the
ray and select the closest intersection point. If the node
is empty or we didn’t find an intersection, we determine
the exit point of the node along the ray’s direction. The
exit point is slightly moved forward along the ray path to
ensure that the next point-location search is in the next leaf
and then the ray-traversal algorithm is called recursively.
This recursion is terminated when a hit point is found or
when the ray is out of the scene.
If the ray origin is out of the tree, we must determine the
entry to the tree along with the ray in the first step.

The figure 2 is an example search of the location of ray
r in figure 1. The process starts at the root node of the
tree. On every level we compare the origin of the ray with
the position of the splitting plane. We choose the left or
right child node by the comparison, and we go down the
tree until we find a leaf node. In this leaf node will be the
location of the ray. We test all the objects in this node,
and if there is an intersection point (in the scene in figure
1 the rayr will intersect the black sphere) we finish the

A

B

C

D E

F

Figure 2: Traversing the tree

searching process. If there is no intersection we go to the
next leaf, which is selected by the exit point of the ray from
the node.

2.4 Using the SSE extensions

Many modern processors have a SIMD9 unit to acceler-
ate the computing with large data set. This units supports
the calculations with large data. In the Intel Pentium 4
[1] or AthlonXP [2] processor there are eight independent
128 bits wide registers that can be used with the SSE10 in-
struction set [4]. In these registers we can store multiple
float variables packed and we can do the same operation
on each element.
With the SIMD instructions we can accelerate the com-
monly used vector operations, such as dot products, cross
products, normalization and addition. We used the builtin
intrinsic functions of the compiler to call SSE operations.
Thefloat vector variables was defined with

typedef float v4sf __attribute__ ((mode(V4SF)))

type. This type represents a vector with fourfloat vari-
ables. We used an unnamedunion to get the components
of the vector easily.

union {
float fmember[3];
struct { float a,b,c,d; };
v4sf vector;

}

With this structure we could easily convert the common
vector operations to use the SSE instruction set. For ex-
ample the addition of two vectors with common math op-
erations is

9Single Instruction on Multiple Data
10Streaming SIMD Extensions

vector4 operator + (vector4 v1, vector4 v2) {
return vector4(v1.a + v2.a,

v1.b + v2.b,
v1.c + v2.c,
v1.d + v2.d);

}

This function is contains four addition, with SSE it use
only one vector addition.

vector4 operator + (vector4 v1, vector4 v2) {
return vector4(__builtin_ia32_addps(v1.vector,

v2.vector));
}

Another good example is the vector normalization. The
following pure C++ code requires 4 multiplication, 4 ad-
dition, 4 division and a square root calculation.

vector4 normalize(vector4 v) {
float sq = sqrt(v.a*v.a+v.b*v.b+v.c*v.c+v.d*v.d);
return vector4(v.a/sq, v.b/sq, v.c/sq, v.d/sq);
}

The SSE optimized version of the normalization re-
quires 2 multiplication, 3 addition, 3 shuffling operation
and a reciprocal square root calculation.

const int p1 = _MM_SHUFFLE(0,3,2,1);
const int p2 = _MM_SHUFFLE(1,0,3,2);
const int p3 = _MM_SHUFFLE(2,1,0,3);

vector4 normalize(vector4 v) {
v4sf sq, tmp;

sq = __builtin_ia32_mulps(v.vector, v.vector);
tmp = __builtin_ia32_addps(sq,

__builtin_ia32_shufps(sq, sq, p1));
tmp = __builtin_ia32_addps(tmp,

__builtin_ia32_shufps(sq, sq, p2));
tmp = __builtin_ia32_addps(tmp,

__builtin_ia32_shufps(sq, sq, p3));
tmp = __builtin_ia32_rsqrtsps(tmp);
return vector4(__builtin_ia32_mulps(v.vector, tmp));
}

This version of the calculation is more than two times
faster than the pure C++ code. With proper data alignment
this function is speeded up about five percent.
From these examples we can conclude, that SIMD exten-
sions are very useful to optimize the speed of the basic
calculations of the ray-tracer.

2.4.1 Data alignment

The efficiency of the vector processing units depends on
the speed of the data access [3]. A data is accessed most
efficiently if it stored at a memory address which is di-
visible by the size of the data. To use the SIMD floating
point operations the in-memory operands must be aligned
at 128 bytes boundary, otherwise we must use the costly
data load operations to move the data to the vector regis-
ter. The penalty is at least 2-3 clock cycles if the data is not
in the cache and not properly aligned. If the data crosses
the 32 byte boundary the penalty is much higher.
To eliminate the data access latency the variables used
must be stored on proper memory regions. If the com-
piler does not give the ability to control the alignment of

the allocated variables, it is a good choice to use custom
memory allocation functions which allocate a large con-
tinuous chunk of memory and divide it to 32 bytes long
regions.
We used the built in functions of the compiler to align the
variables.

float x __attribute__ ((aligned (128)))

This declaration will alignfloat variablex to 32 bytes
boundary.

2.4.2 Cache coherency

The cache is a small but high speed memory closer to
the processor than the main memory. It is used to store
frequently used data, which can be accessed much faster.
Modern processors have two or three cache levels. The
level-1 data cache in a P4 or AMD AthlonXP processor
can contain 8 kbyte of data organized as 128 cache lines
of 64 bytes each [3]. The cache lines are aligned to phys-
ical addresses divisible the cache line size and in a cache
line the system can store data from particular region of the
main memory only.
We can take advantage of the cache only when the fre-
quently used variables are properly aligned and arranged
in 64 byte blocks at 64 byte boundary.

3 More speed

To improve the performance of the ray-tracer the key parts
are the spatial subdivision algorithm and the improved hit
calculation with the SIMD instruction set. But there are
several ways to get a smaller speedup. These methods are
raise the overall performance by around ten percent.

3.1 Importance sampling

A recursive ray-tracer spawns new rays at every inter-
section point to determine the contributions of the light
sources and other objects. This results in lot of rays that
must be traced. The amount of the secondary ray’s contri-
butions is based on the scene setup and the attributes of the
materials. Diffuse materials need far less secondary rays
than the shiny, reflective surfaces.
The depth level of a secondary ray can be limited too. If
the contribution of a secondary ray is negligible we can
stop the ray spawning process before the depth reaches the
maximum.
With these limitations we can reduce the count of the
traced rays with a small decrease of quality.
In figure 3 the rays belong to white pixels are terminated
before they reached the limit of the ray-tracing depth.

3.2 Supersampling

A common way to improve the calculated picture’s quality
is supersampling. This means that the ray-tracer gets more

Figure 3: Importance sampling

samples through a pixel and calculates the average of them
to get the final color. This results in an anti-aliased pic-
ture, but the supersampling process virtually enlarges the
picture size, which requires more rays.
Supersampling is more important at the edges of objects.
If supersampling is used only at the edges, overall quality
does not reduce much, but the speed gain is huge. In 4
the white pixels are represent the region wherein we used
supersampling.
To detect object switch we maintain a list of the objects
that were visible in the previous line and a variable which
stores the object of the previous pixel. With these two vari-
ables we can determine the object switching both in hor-
izontal and vertical direction. If there was a switch we
spawn more primary rays in that pixel to avoid aliasing.
The origins of the primary rays are modified with a small
random number to take advantage of the multiple samples.

Figure 4: Region of interest in supersampling

3.3 Region based rendering

To improve the cache behavior we have used region based
rendering. This means the pixel space is divided into small
rectangular regions and each of these regions are rendered
independently after each other. The rays that traced in a

region are much more likely use the same data, they have
more chance to hit the same objects in the scene. The opti-
mal region size depends on the density of the objects in the
scene, but in average case an64 × 64 size does not trash
the cache but large enough to compensate the cost of the
administration of the regions.
This rendering method is roughly ten percent faster than
the scanline based.

4 Results and conclusion

The ray-tracer was tested on a system equipped with a
AMD AthlonXP+ 2500 processor with 1 Gbyte ram. The
operating system was Linux with X.org. We compiled our
program with the GNU GCC v3.4. To measure perfor-
mance we used test scenes with 10, 100, 1000 and 50000
spheres. The material of the spheres had diffuse, specular,
reflective and refractive components. All of the measure-
ments were with640 × 480 picture size with32bits color
depth.

Figure 5: Example scene

Number of objects 10 1000 50000
Naive 2.2s 161.5s -

SSE Math 1.1 142.4s -
KD-tree+SSE 0.1s 3.5s 6.3s

KD-tree+SSE+Region 0.1s 3.1s 5.8s

Table 1: Rendering times

Our tests showed that the most important optimization
technique is the spatial subdivision. Using a KD-tree the
rendering process is more than thousand times faster than
the naive implementation in large scenes. With SSE vector
operations we can reach another ten percent performance
gain. See in table 1.

The region based rendering is useful to improve the
cache coherency. On our test machine the64× 64 regions
are the best. With larger region sizes the cache can not be
utilized properly. See in table 2.

n×n region 1 16 32 64 128
time 1.78s 1.69s 1.45s 1.30s 1.5s

Table 2: Region based rendering

Method C math SSE SSE + Alignment
time 409µs 249µs 221µs

Table 3: 50M vector multiplication times

The simple vector multiplication operator is used fre-
quently during the ray-tracing process, for that we mea-
sured the performance gap between the naive and the SSE
optimized version. As we expected, the SIMD version is
almost twice as faster. See in table 3.

Method C math SSE SSE + Alignment
time 4.6s 1.6s 1.4s

Table 4: 50M vector normalization times

Our another SIMD operation example was the vector
normalization. The speed up of the SSE optimized version
is more than thousand percent. See in table 4.

Our goal was to implement a recursive ray-tracing pro-
gram to examine of the various optimizations opportuni-
ties. With the presented methods we could reach almost
interactive performance, and there are place for more op-
timization too.

5 Future work

There are several ways to further improve performance. It
is a plausible possibility to convert more parts of the ren-
derer to use SIMD extensions. If we can trace a bundle of
rays in parallel with the SIMD method, theoretically we
can achieve 200-300% speedup. Another way is to make
the rendering system distributed. The algorithms used can
easily be converted to utilize the improved performance of
a clustered computer system, but there are some serious
implementation problems with the nature of distributed
systems. The Graphics Processing Units (GPU’s) that ex-
ist in modern computers provide an interesting potential
too. This opportunity requires a large amount of modifica-
tion of the used algorithms, but it has great future.

References

[1] Intel Corporation. IA-32 Intel Architecture Software
Developre’s Manual. Intel Corporation, 2004. Avali-
able at http://developer.intel.com/design/Pentium4/.

[2] Advanced Micro Devices. AMD Athlon Processor
- x86 Code Optimization Guide. Advanced Micro
Devices, 2002. Available at http://www.amd.com/us-
en/Processors/TechnicalResources/.

[3] Agner Fog. How to optimize for the Pentium
family of microprocessors. 2004. Available at
http://www.agner.org/assem.

[4] Richard Gerber. The Software Optimization Cook-
book. Intel Press, 2002.

[5] Vlastimil Havran.Heuristic Ray Shooting Algorithms.
Ph.d. thesis, Department of Computer Science and En-
gineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, November 2000.

[6] Laszlo Szecsi.An effective implementation of the k-D
tree, pages 315–326. Charles River Media, Inc., 2003.

[7] L. Szirmay-Kalos, V. Havran, B. Benedek, and
L. Sźecsi. On the efficiency of ray-shooting acceler-
ation schemes. InProc. Spring Conference on Com-
puter Graphics (SCCG ’2002), pages 97–106. Come-
nius University Press, 2002.

[8] Ingo Wald. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/.

[9] Turner Whitted. An improved illumination model
for shaded display. Communications of the ACM,
23(6):343–349, June 1980.

