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Abstract 

This paper presents a collection of ideas that are needed 

for developing an efficient, general purpose, real-time 

rendering engine with recent hardware’s possibilities 

taken into consideration. The principals of several visual 

effects seen in recent games (like tangent space Phong 

illumination, bump mapping, parallax mapping and 

shadow volumes) are discussed. A new way of 

generating shadow volumes is proposed that helps the 

reduction of render passes efficiently. 
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1 Introduction 

Today, many papers are presented that focus on various 

visual effect algorithms, but only a few discuss the 

possibilities and difficulties of implementing a renderer 

that combines them. This topic is very complex, because 

the structure of a renderer must be general, modular and 

upgradeable so it could efficiently render large scenes or 

be extended with new effects any time.  

In this paper, we collect some of the most commonly 

used effects and try to combine them into a real-time 

renderer. Our main purpose is to create a shadowing and 

lighting mechanism that can handle multiple lights and 

dynamic shadows and unlike many shadow volume 

based renderers, handle more than one light in a pass, 

thus reducing the number of necessary draw calls. This 

improves performance for at least two reasons:  

1. Better batching which is a key factor of speed 

today because recent GPUs are faster than 

CPUs. That causes that the frame-rate can 

easily become limited by the CPU overhead of 

the draw calls and state changes. 

2. Reduction of the amount of redundant work 

that has to be done in every render pass (like 

texture look-ups, vertex transformations, 

normal computations, etc). 

The basic idea of reducing render passes is to clip the 

shadow volume to the bounding box of the light source, 

and to use dynamic branching in the light’s pixel shader. 

In addition, other optimization methods are presented to 

reduce fill-rate and unnecessary shader work. The 

renderer is discussed in details in Section 3. The various 

effects used in this paper are summarized in Section 2. 

2 Description of the Effects Used 

2.1. Phong Illumination 

Phong illumination is one of the basic local illumination 

lighting models used in today’s games. It is very well 

explained in [1], so only a brief explanation is given 

here.  

In this model, real world lighting is approximated by 

three components: ambient, diffuse and specular. Their 

purpose is to mimic the following phenomena:  

- The light that is reflected and scattered many 

times and comes from almost everywhere is 

modeled by the ambient component.  

- The light source’s direct light that hits a rough 

surface and gets scattered equally to every 

direction is modeled by the diffuse component. 

- The light that gets reflected near to the ideal 

reflection direction (for example on metallic 

surfaces) is modeled by the specular component. 

There is a variation of the Phong model that is 

important for us. If all the vectors used above are 

computed in tangent space, the lighting can be combined 

with further effects like bump mapping and parallax 

mapping. Tangent space (also known as texture space) is 

a coordinate system that is aligned by the surface. It is 

formed by three perpendicular vectors which can be 

easily pre-computed for any well-textured mesh. The 

vectors are: 

- Tangent vector: it is parallel to the direction of 

increasing s or t on a textured surface 

- Normal vector: it is perpendicular to the local 

surface.  

- Bitangent vector (also known as the binormal – 

which is not correct): it is the cross product of the 

Tangent and the Normal vectors.  

Further on this topic can be found in [1] and [2]. 

2.2. Bump Mapping 

Bump mapping is a technique to improve visual 

complexity through texture mapping and per pixel 

lighting. The normal vector of the surface gets perturbed 

before the light calculations. Thus, high frequency detail 

can be added without the need of higher tessellation of 

the meshes. The perturbation is based on a texture map 

that usually contains the modified normals. This texture 



map can be easily computed from a height map. Bump 

mapping gives very good results with Phong lighting and 

can be combined easily with parallax mapping. 

2.3. Parallax Mapping 

Parallax mapping is simple texture coordinate 

manipulation trick. When used with bump mapping, it 

comes almost for free, and improves visual quality very 

much. However, it is based on an assumption, thus can 

cause disturbing artifacts in some cases. 

When this technique is used, not only the normal gets 

perturbed, but the texture coordinates used to index the 

color and the normal textures are modified as well 

according to the height of the actual point. As can be 

seen in Figure 1, the original T0 texture coordinates get 

substituted by T1, which is calculated from the direction 

of the tangent-space eye vector and the height value read 

from a texture at point T0. All the details can be found in 

[3]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The principles of parallax-mapping 

2.4. Shadow Volumes 

Many game engines use shadow volumes, and in today’s 

world of real-time soft shadows, the basic algorithm is 

still popular. The topic is very well documented, so only 

a short explanation is provided here. For further details, 

[4] and [5] are recommended readings, because they are 

very thorough discussions about ways of implementation 

and optimization. 

Essentially, shadow computation is a decision for 

every point: the point is in shadow with regard to a light 

source if there is no line of sight between that point and 

the light. This decision can be made with algorithmically 

generated helper geometry, called the shadow volume. 

The shadow volume of a triangle is a triangular frustum 

capped on top by a triangle itself and extending away 

from the light to infinity. The shadow volume of a 

compound object is the union of the shadow volumes of 

its component triangles. This volume contains all the 

points that lie in shadow of the given light source. The 

interior geometry of the volume can be removed which 

greatly simplifies it. After creating the shadow volume, 

the shadow determination can be reduced a simple point 

in polyhedra test which can be efficiently accelerated 

with the stencil buffer of current graphics hardware [5]. 

 

The algorithm in a nutshell is as follows: 

1. Render the whole scene to depth buffer only. 

2. Disable depth (and color) writes, enable stencil 

writes. 

3. Clear stencil to 0, set stencil function to 

ALWAYS. 

4. Render back faces of shadow volume. If depth 

test fails, increment stencil value, else does 

nothing.  

5. Render front face of shadow volume. If depth 

test fails, decrement stencil value, else do 

nothing.  

6. Render light only where the stencil buffer has a 

value of 0. 

 

The algorithm has its pros and contras: 

- The computed shadows are very accurate, self 

shadowing and point lights are handled well (in 

contrast to shadow mapping). 

- The algorithm is rather CPU and GPU fill-rate 

consuming, though this can be reduced 

effectively. 

- The generated shadows are always hard, though 

can be softened by more sophisticated 

algorithms. 

- Only one light can be rendered in a pass, 

because only one shadow mask can be stored in 

the stencil buffer. This feature limits the number 

of displayable lights strongly, because each light 

needs a full render pass with all the 

transformations, state changes, texture look-ups 

and shader math repeated. 

 

This very last problem is thoroughly discussed in 

Section 3. 

3 The Renderer 

3.1. Performance Considerations 

Before our first attempt to combine the above effects into 

a complete system we have to consider the features of the 

hardware system we use. Typically a graphics 

workstation (that is a computer with a 3D accelerator 

unit) has two processor units today. This fact introduces 

the problem of synchronisation and task scheduling 

between the two components. These units differ in speed, 

capacity and capabilities, so care must be taken to what 

to do, where to do and when to do.  

Recent GPUs are strongly pipelined systems where 

each stage needs the data from the previous part to do its 

job. That means that the whole system works only as fast 

as the slowest stage does. Thus, the best thing to do is to 

balance the workload between the stages, and focus 

optimization efforts on the slowest.  

 

 

 



For these reasons, we review the structure of the 

composite CPU-GPU pipeline (all stages are on the GPU 

from stage 2): 

1. CPU – All the game logic, physics, AI, I/O, 

sound and music is done here. Shadow volume 

generation and animation can be done here. 

2. Geometry Storage – This is done usually in 

video memory, with the help of vertex buffers 

or display lists.  

3. Texture Storage – Though not really a stage, it 

is mentioned here because it is usually very 

limited by memory bandwidth.  

4. Geometry Processor – This is the stage, where 

coordinate transformations, animations and 

procedural geometry generation (like shadow 

volumes if not done on CPU) can take place. 

Vertex shaders run here. 

5. Rasterizer – The stage where our primitives 

(points, lines, polygons) become fragmented to 

displayable pixels. We can only affect this 

stage indirectly. 

6. Fragment Processor – This is where the actual 

colour of the pixels is computed. Pixel shaders 

run here. Texturing, filtering, blending, and 

numerous per pixel tests are done here. Usually 

this is the most overloaded stage in today’s 

applications, due to the continuously extending 

capabilities of pixel shaders. 

7. Frame buffer – The last stage. This is where 

the displayable picture is stored. 

For further details and ideas on how to balance the 

pipeline, refer to [7]. 

3.2. The ‘Brute Force’ Method 

After this short review, we work out the outlines of a 

simple renderer, without any optimizations. What we 

want: a renderer that can handle a scene with static and 

animated objects with different materials, textures with 

bump mapping and parallax mapping, shadows, multiple 

dynamic and local point light sources with Phong 

illumination. In this paper, we consider point lights only, 

but the discussed methods can be modified easily for 

other types, like spot or directional lights. 

First, we need to store the objects and other entities 

somehow. There are sophisticated methods for this, like a 

scene-graph, but for us the use of dynamic lists is 

enough. However, if the scene is very complex, a 

powerful, large scale but not-so-precise culling algorithm 

is needed (like a binary space partitioning tree or a portal 

system) to prevent the processing of objects that are not 

visible. For now, it can be assumed that our renderer 

works with the output of such an algorithm. This means 

that the objects and lights in our lists are probably 

visible, but not necessarily. Our ‘brute force’ method will 

neglect these cases, and render everything. 

 

 

 

The main steps: 

1. Render the whole scene with ambient light. 

Disable depth writes. 

2. Take a light source that is not rendered yet. 

Compute all the shadows it generates, in our case 

generate shadow volumes and render the shadow 

mask into the stencil buffer with depth and color 

writes disabled. 

3. Render the scene illuminated by that light source, 

with the use of bump mapping and parallax 

mapping with blending enabled and set to 

additive mode. 

4. Go to 2 until all light sources are drawn. 

 

This is all we need, if a scene is very simple, with 

very few light sources and shadow casters, but 

unfortunately, this is usually not the case, and the frame-

rate can drop tremendously if the number of lights is 

increased. The truth is, many things are done 

unnecessary or multiple times. In the next subsection we 

try to find and eliminate them. 

3.3. Finding Bottlenecks 

Before the invention of various optimization techniques, 

it is necessary to analyse the workload of the graphics 

pipeline. This, of course, cannot be done without 

knowing the details of the actual application, but there 

are certain symptoms that typically occur. In most cases 

the overloaded stages are the CPU, the fragment 

processor and the frame buffer. The causes can be 

diverse, but the following ones are peculiar: 

- The dynamic objects are animated on CPU, 

which is very time consuming because vertex 

positions, normal and tangent vectors, 

sometimes other attributes have to be 

recalculated every frame. Some of these tasks 

can be done on the GPU to relieve the CPU. 

- Shadow volume generation can be 

computationally expensive, especially with 

multiple light sources and highly tessellated 

objects. Parts or whole of this task can be 

moved to the GPU, or alternative shadow 

generation methods can be applied. 

- Texture fetching is fast until the textures are 

read coherently, which means that the 

neighbouring texels are read successively. This 

texture cache coherency can be broken with 

parallax mapping. Since parallax mapping must 

be done in every render pass, the only solution 

is to reduce the number of render passes. 

- Render-state changes (like texture, shader of 

vertex buffer changes) can have large overhead 

on both the CPU and the GPU. A possible 

solution is to reduce state changes by the 

reordering of the objects by shaders, textures, 

etc. Another solution is the use of texture 

atlases. 



- The frame-buffer can be a bottleneck due to the 

additive blending used to summarise the light 

sources’ effects and the heavy use of stencil 

buffer. 

- The fragment processor is the stage where pixel 

shaders run. Tangent-space Phong illumination 

with bump mapping and parallax mapping can 

be done fast assuming that only those parts of 

the frame-buffer is touched, that are affected by 

the current light source. 

 

The last two problems are addressed in the next two 

subsections. In subsection 3.4., methods for speeding up 

one render pass are exposed. In subsection 3.5., the 

possibilities of reducing the number of render passes are 

discussed. 

3.4. Speeding up Render Passes 

The ideas in this subsection are based on the revelation 

that a point in a typical scene is lit by very few light 

sources regardless of the total number of lights. This 

implies that many of the objects are left unchanged in a 

typical lighting pass. In order to make use of this fact, we 

have to introduce the use of ‘bounding geometries’. The 

bounding box of a model is a simple box that contains 

the whole model, and does not exceed its size too much. 

Even a light source can have a bounding box that 

contains the area that the light has an effect on. With the 

help of these bounding boxes, we can omit most of the 

redundant work. 

We present three ideas, two of which reduce the 

frame-buffers usage, and one that reduce the necessary 

amount of animation and shadow calculations and the 

number of draw-calls. 

 

1. All objects can be tested whether they intersect the 

light’s bounding box or not. If not, all further work on 

that object can be skipped. 

 

2. A shadow volume can be generated in a way that it 

does not exceed the light’s bounding box much. This 

way, the stencil buffer’s usage can be reduced and traded 

to additional CPU work. This is not always acceptable, 

but as shown in the next subsection, it can speed things 

up if combined with the trick proposed below. 

 

3. When the shadow mask is drawn into the stencil 

buffer, the points that are not visible from the light 

source are discarded as they are not illuminated by that 

light. Actually, there are usually more points that are left 

unchanged, namely the ones that are further from the 

light than the radius of the light’s affected sphere.  

One way to mask out these points is doing a scissor 

test on the fragments. Scissor test is an easy way to 

prevent certain portions of the frame-buffer from 

refreshing. All we have to do is to draw a quad on the 

part of the screen that the light has an effect on. 

However, this approach has some drawbacks: many 3d 

accelerator cards slow down if scissor testing is used 

(some recent ATi models for example) and this test 

neglects the light source’s in-depth position. This means 

that a part of the frame-buffer might be drawn even if the 

light does not affect any visible objects. Figure 2 shows 

this situation. Notice that the whole bounding box is 

visible causing the rendering of a great part of the wall in 

the forefront that is not affected by the light. Another 

good example for this is a scene with a single object in 

the middle and a light that lies so far behind that its 

bounding box does not intersect the sphere. The 

bounding box of the light in the scissor buffer causes 

redundant work, because its in-depth position cannot be 

tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: the light’s bounding box rendered into the 

scissor buffer without depth testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: the light’s bounding box renderer into the 

stencil buffer with depth testing 

 

A solution to this problem is the use of the stencil 

buffer, because it is possible to affect the stencil buffer 

even if the depth-test fails and the result of the stencil test 

can differ depending on the depth-test. Thus, it is 

possible to localize the render pass to objects that truly 

intersect the light’s bounding box. Figure 3 shows such a 

situation. Notice that only the parts intersected by the 

bounding box are highlighted.  

 

 

 



The steps to do this: 

1. Render the scene with ambient color. Disable 

depth writes. 

2. Clear stencil to 1 (notice it was 0 in subsection 

2.4). 

3. Render back faces of light’s bounding box. If 

depth test fails, decrement stencil value (this 

implies that we are inside the bounding 

volume), else do nothing.  

4. Render front face of light’s bounding box. If 

depth test fails, increment stencil value (this 

implies that the bounding volume is completely 

behind the object and no drawing is required), 

else do nothing.  

5. Render back faces of shadow volume. If depth 

test fails, increment stencil value, else do 

nothing.  

6. Render front face of shadow volume. If depth 

test fails, decrement stencil value, else do 

nothing.  

7. Render light only where the stencil buffer has a 

value of 0. 

 

Note that this is the shadow volume algorithm already 

described, with two additional steps (3 and 4). With the 

use of these stencil culled lights, we can trade redundant 

pixel shader work to additional stencil work, which is 

usually a great win if the application’s speed is limited 

by the fragment processor. Furthermore, this trick is an 

important element of the render pass reduction technique 

proposed in the next subsection. 

3.5 Reducing the Number of Render 
Passes 

The simplest method of reducing the number render 

passes is frustum culling. If the bounding box of a light 

source does not intersect the visible frustum (it is behind 

us for example), there is no need to draw the pass of that 

light. The following technique is more sophisticated, and 

should be used only in case of complex or moderately 

complex scenes, with lots of textures and long pixel 

shaders. 

The main reason, why every light needs a render pass 

when using shadow volumes is that shadow volumes 

extend to infinity even if the light is located to a small 

area. So, in order to render multiple lights in one pass, 

the shadow volumes generated by each light should be 

restrained in a way that they cannot intersect each other. 

This is only possible if the lights we want to draw are not 

too near to each other. In other words, their bounding 

boxes do not have shared points. So the first task is to 

form groups of the lights. Lights in a group are all far 

enough from each other. The second task is more 

complex and computationally expensive. 

The shadow volumes generated by a light source 

must be clipped that it has no parts out of the light’s 

bounding box. This can be done by clipping the shadow 

volume to all six planes of the faces of that box. 

With the bounding boxes not intersecting each other 

and the shadow volumes already clipped, it is possible to 

fill in the stencil buffer with a shadow mask that is 

correct for all the lights, because there is no part of the 

stencil that belongs to more than one light. This is 

achieved by combining the second and third trick from 

the previous subsection. 

After the stencil is prepared, a pixel shader is needed 

that can handle multiple lights, and dynamically save the 

calculations of a light that is too far. This is possible with 

the dynamic branching of Shader Model 3.0. 

Finally, the complete renderer: 

1. Render the whole scene with ambient light. 

Disable depth writes. 

2. Choose all the lights that intersect the frustum. 

3. Form groups of the chosen lights that do not 

intersect each other. 

4. Take a group of light sources that is not 

rendered yet. Compute all the shadow volumes 

and clip them to the appropriate light’s 

bounding box. Render the lights’ bounding 

boxes and the shadow volumes into the stencil 

buffer with depth and color writes disabled. 

5. Render the scene illuminated by that group of 

light sources, with the use of bump mapping and 

parallax mapping with blending enabled and set 

to additive mode. Do not render objects that are 

not illuminated by the actual group of lights. 

Use dynamic branching in the shader based on 

the light sources’ distance. 

6. Go to step 4 until all light sources are drawn. 

4 Results 

In this section, experimental results for the improved 

renderer are presented. The ‘brute force’ method is 

measured also for reference. The algorithms were tested 

in two scenes: 

 

1. A moderately complex scene that consists of a torus 

shaped room, some ‘statue-like thing’ and a reflective 

sphere (Figure 4). The environment cube-map faces are 

refreshed with the same renderer and all the effects on. 

The cube-map size is 128. Three textures are used. There 

are 7 objects, 1422 vertices and 1368 faces. There are 

five moving light sources present, which barely intersect 

each other. 

Table 1 shows the results of the Torus scene. 

 

 Min. value Average Max. value 

Optimized 

renderer  

123 169 193 

Reference 44 53 60 

Table 1: The measured frame-rates of the Torus 

scene 

2. A complex scene that consists of two rooms with 

several static objects and a reflective box (Figure 5). 

Seven textures and different material settings are used. 

There are 28 objects, 10992 vertices and 14288 faces. 



There are five moving light sources with a continuously 

changing overlapping factor. 

Table 2 shows the results of the Rooms scene. 

 

 Min. value Average Max. value 

Optimized 

renderer  

69 101 210 (in a 

corner where 

only one light is 

visible) 

Reference 34 47 71(as above) 

Table 2: The measured frame-rates of the Rooms 

scene 

The tests were done on an AMD Athlon XP 2200+ 

CPU and an NVIDIA 6800GT video card, in 

1024x768x32 resolution. 

5 Conclusion 

We have presented the concept of a simple, general 

purpose rendering system that handles multiple light 

sources, dynamic lights and shadows with Phong 

illumination. The measured frame-rates of the ‘brute-

force’ approach shows that even the strongest cards get 

on the knees when treated incautiously. 

The first rows in Table 1 and Table 2 show that the 

optimization methods proposed in this paper are proved 

to be efficient, though it is important to notice that there 

is no performance gain in the worst case, when all lights 

have an effect on every point on the screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Pictures from the Torus scene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Pictures from the Rooms scene 
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