
Developing a Real-Time Renderer With Optimized Shadow
Volumes

Mátyás Premecz (email: pmat@freemail.hu)

Department of Control Engineering and Information Technology,

Budapest University of Technolgy

Hungary

Abstract

This paper presents a collection of ideas that are needed

for developing an efficient, general purpose, real-time

rendering engine with recent hardware’s possibilities

taken into consideration. The principals of several visual

effects seen in recent games (like tangent space Phong

illumination, bump mapping, parallax mapping and

shadow volumes) are discussed. A new way of

generating shadow volumes is proposed that helps the

reduction of render passes efficiently.

Keywords: lighting, culling, shadow volumes, reducing

render passes, real-time rendering

1 Introduction

Today, many papers are presented that focus on various

visual effect algorithms, but only a few discuss the

possibilities and difficulties of implementing a renderer

that combines them. This topic is very complex, because

the structure of a renderer must be general, modular and

upgradeable so it could efficiently render large scenes or

be extended with new effects any time.

In this paper, we collect some of the most commonly

used effects and try to combine them into a real-time

renderer. Our main purpose is to create a shadowing and

lighting mechanism that can handle multiple lights and

dynamic shadows and unlike many shadow volume

based renderers, handle more than one light in a pass,

thus reducing the number of necessary draw calls. This

improves performance for at least two reasons:

1. Better batching which is a key factor of speed

today because recent GPUs are faster than

CPUs. That causes that the frame-rate can

easily become limited by the CPU overhead of

the draw calls and state changes.

2. Reduction of the amount of redundant work

that has to be done in every render pass (like

texture look-ups, vertex transformations,

normal computations, etc).

The basic idea of reducing render passes is to clip the

shadow volume to the bounding box of the light source,

and to use dynamic branching in the light’s pixel shader.

In addition, other optimization methods are presented to

reduce fill-rate and unnecessary shader work. The

renderer is discussed in details in Section 3. The various

effects used in this paper are summarized in Section 2.

2 Description of the Effects Used

2.1. Phong Illumination

Phong illumination is one of the basic local illumination

lighting models used in today’s games. It is very well

explained in [1], so only a brief explanation is given

here.

In this model, real world lighting is approximated by

three components: ambient, diffuse and specular. Their

purpose is to mimic the following phenomena:

- The light that is reflected and scattered many

times and comes from almost everywhere is

modeled by the ambient component.

- The light source’s direct light that hits a rough

surface and gets scattered equally to every

direction is modeled by the diffuse component.

- The light that gets reflected near to the ideal

reflection direction (for example on metallic

surfaces) is modeled by the specular component.

There is a variation of the Phong model that is

important for us. If all the vectors used above are

computed in tangent space, the lighting can be combined

with further effects like bump mapping and parallax

mapping. Tangent space (also known as texture space) is

a coordinate system that is aligned by the surface. It is

formed by three perpendicular vectors which can be

easily pre-computed for any well-textured mesh. The

vectors are:

- Tangent vector: it is parallel to the direction of

increasing s or t on a textured surface

- Normal vector: it is perpendicular to the local

surface.

- Bitangent vector (also known as the binormal –

which is not correct): it is the cross product of the

Tangent and the Normal vectors.

Further on this topic can be found in [1] and [2].

2.2. Bump Mapping

Bump mapping is a technique to improve visual

complexity through texture mapping and per pixel

lighting. The normal vector of the surface gets perturbed

before the light calculations. Thus, high frequency detail

can be added without the need of higher tessellation of

the meshes. The perturbation is based on a texture map

that usually contains the modified normals. This texture

map can be easily computed from a height map. Bump

mapping gives very good results with Phong lighting and

can be combined easily with parallax mapping.

2.3. Parallax Mapping

Parallax mapping is simple texture coordinate

manipulation trick. When used with bump mapping, it

comes almost for free, and improves visual quality very

much. However, it is based on an assumption, thus can

cause disturbing artifacts in some cases.

When this technique is used, not only the normal gets

perturbed, but the texture coordinates used to index the

color and the normal textures are modified as well

according to the height of the actual point. As can be

seen in Figure 1, the original T0 texture coordinates get

substituted by T1, which is calculated from the direction

of the tangent-space eye vector and the height value read

from a texture at point T0. All the details can be found in

[3].

Figure 1: The principles of parallax-mapping

2.4. Shadow Volumes

Many game engines use shadow volumes, and in today’s

world of real-time soft shadows, the basic algorithm is

still popular. The topic is very well documented, so only

a short explanation is provided here. For further details,

[4] and [5] are recommended readings, because they are

very thorough discussions about ways of implementation

and optimization.

Essentially, shadow computation is a decision for

every point: the point is in shadow with regard to a light

source if there is no line of sight between that point and

the light. This decision can be made with algorithmically

generated helper geometry, called the shadow volume.

The shadow volume of a triangle is a triangular frustum

capped on top by a triangle itself and extending away

from the light to infinity. The shadow volume of a

compound object is the union of the shadow volumes of

its component triangles. This volume contains all the

points that lie in shadow of the given light source. The

interior geometry of the volume can be removed which

greatly simplifies it. After creating the shadow volume,

the shadow determination can be reduced a simple point

in polyhedra test which can be efficiently accelerated

with the stencil buffer of current graphics hardware [5].

The algorithm in a nutshell is as follows:

1. Render the whole scene to depth buffer only.

2. Disable depth (and color) writes, enable stencil

writes.

3. Clear stencil to 0, set stencil function to

ALWAYS.

4. Render back faces of shadow volume. If depth

test fails, increment stencil value, else does

nothing.

5. Render front face of shadow volume. If depth

test fails, decrement stencil value, else do

nothing.

6. Render light only where the stencil buffer has a

value of 0.

The algorithm has its pros and contras:

- The computed shadows are very accurate, self

shadowing and point lights are handled well (in

contrast to shadow mapping).

- The algorithm is rather CPU and GPU fill-rate

consuming, though this can be reduced

effectively.

- The generated shadows are always hard, though

can be softened by more sophisticated

algorithms.

- Only one light can be rendered in a pass,

because only one shadow mask can be stored in

the stencil buffer. This feature limits the number

of displayable lights strongly, because each light

needs a full render pass with all the

transformations, state changes, texture look-ups

and shader math repeated.

This very last problem is thoroughly discussed in

Section 3.

3 The Renderer

3.1. Performance Considerations

Before our first attempt to combine the above effects into

a complete system we have to consider the features of the

hardware system we use. Typically a graphics

workstation (that is a computer with a 3D accelerator

unit) has two processor units today. This fact introduces

the problem of synchronisation and task scheduling

between the two components. These units differ in speed,

capacity and capabilities, so care must be taken to what

to do, where to do and when to do.

Recent GPUs are strongly pipelined systems where

each stage needs the data from the previous part to do its

job. That means that the whole system works only as fast

as the slowest stage does. Thus, the best thing to do is to

balance the workload between the stages, and focus

optimization efforts on the slowest.

For these reasons, we review the structure of the

composite CPU-GPU pipeline (all stages are on the GPU

from stage 2):

1. CPU – All the game logic, physics, AI, I/O,

sound and music is done here. Shadow volume

generation and animation can be done here.

2. Geometry Storage – This is done usually in

video memory, with the help of vertex buffers

or display lists.

3. Texture Storage – Though not really a stage, it

is mentioned here because it is usually very

limited by memory bandwidth.

4. Geometry Processor – This is the stage, where

coordinate transformations, animations and

procedural geometry generation (like shadow

volumes if not done on CPU) can take place.

Vertex shaders run here.

5. Rasterizer – The stage where our primitives

(points, lines, polygons) become fragmented to

displayable pixels. We can only affect this

stage indirectly.

6. Fragment Processor – This is where the actual

colour of the pixels is computed. Pixel shaders

run here. Texturing, filtering, blending, and

numerous per pixel tests are done here. Usually

this is the most overloaded stage in today’s

applications, due to the continuously extending

capabilities of pixel shaders.

7. Frame buffer – The last stage. This is where

the displayable picture is stored.

For further details and ideas on how to balance the

pipeline, refer to [7].

3.2. The ‘Brute Force’ Method

After this short review, we work out the outlines of a

simple renderer, without any optimizations. What we

want: a renderer that can handle a scene with static and

animated objects with different materials, textures with

bump mapping and parallax mapping, shadows, multiple

dynamic and local point light sources with Phong

illumination. In this paper, we consider point lights only,

but the discussed methods can be modified easily for

other types, like spot or directional lights.

First, we need to store the objects and other entities

somehow. There are sophisticated methods for this, like a

scene-graph, but for us the use of dynamic lists is

enough. However, if the scene is very complex, a

powerful, large scale but not-so-precise culling algorithm

is needed (like a binary space partitioning tree or a portal

system) to prevent the processing of objects that are not

visible. For now, it can be assumed that our renderer

works with the output of such an algorithm. This means

that the objects and lights in our lists are probably

visible, but not necessarily. Our ‘brute force’ method will

neglect these cases, and render everything.

The main steps:

1. Render the whole scene with ambient light.

Disable depth writes.

2. Take a light source that is not rendered yet.

Compute all the shadows it generates, in our case

generate shadow volumes and render the shadow

mask into the stencil buffer with depth and color

writes disabled.

3. Render the scene illuminated by that light source,

with the use of bump mapping and parallax

mapping with blending enabled and set to

additive mode.

4. Go to 2 until all light sources are drawn.

This is all we need, if a scene is very simple, with

very few light sources and shadow casters, but

unfortunately, this is usually not the case, and the frame-

rate can drop tremendously if the number of lights is

increased. The truth is, many things are done

unnecessary or multiple times. In the next subsection we

try to find and eliminate them.

3.3. Finding Bottlenecks

Before the invention of various optimization techniques,

it is necessary to analyse the workload of the graphics

pipeline. This, of course, cannot be done without

knowing the details of the actual application, but there

are certain symptoms that typically occur. In most cases

the overloaded stages are the CPU, the fragment

processor and the frame buffer. The causes can be

diverse, but the following ones are peculiar:

- The dynamic objects are animated on CPU,

which is very time consuming because vertex

positions, normal and tangent vectors,

sometimes other attributes have to be

recalculated every frame. Some of these tasks

can be done on the GPU to relieve the CPU.

- Shadow volume generation can be

computationally expensive, especially with

multiple light sources and highly tessellated

objects. Parts or whole of this task can be

moved to the GPU, or alternative shadow

generation methods can be applied.

- Texture fetching is fast until the textures are

read coherently, which means that the

neighbouring texels are read successively. This

texture cache coherency can be broken with

parallax mapping. Since parallax mapping must

be done in every render pass, the only solution

is to reduce the number of render passes.

- Render-state changes (like texture, shader of

vertex buffer changes) can have large overhead

on both the CPU and the GPU. A possible

solution is to reduce state changes by the

reordering of the objects by shaders, textures,

etc. Another solution is the use of texture

atlases.

- The frame-buffer can be a bottleneck due to the

additive blending used to summarise the light

sources’ effects and the heavy use of stencil

buffer.

- The fragment processor is the stage where pixel

shaders run. Tangent-space Phong illumination

with bump mapping and parallax mapping can

be done fast assuming that only those parts of

the frame-buffer is touched, that are affected by

the current light source.

The last two problems are addressed in the next two

subsections. In subsection 3.4., methods for speeding up

one render pass are exposed. In subsection 3.5., the

possibilities of reducing the number of render passes are

discussed.

3.4. Speeding up Render Passes

The ideas in this subsection are based on the revelation

that a point in a typical scene is lit by very few light

sources regardless of the total number of lights. This

implies that many of the objects are left unchanged in a

typical lighting pass. In order to make use of this fact, we

have to introduce the use of ‘bounding geometries’. The

bounding box of a model is a simple box that contains

the whole model, and does not exceed its size too much.

Even a light source can have a bounding box that

contains the area that the light has an effect on. With the

help of these bounding boxes, we can omit most of the

redundant work.

We present three ideas, two of which reduce the

frame-buffers usage, and one that reduce the necessary

amount of animation and shadow calculations and the

number of draw-calls.

1. All objects can be tested whether they intersect the

light’s bounding box or not. If not, all further work on

that object can be skipped.

2. A shadow volume can be generated in a way that it

does not exceed the light’s bounding box much. This

way, the stencil buffer’s usage can be reduced and traded

to additional CPU work. This is not always acceptable,

but as shown in the next subsection, it can speed things

up if combined with the trick proposed below.

3. When the shadow mask is drawn into the stencil

buffer, the points that are not visible from the light

source are discarded as they are not illuminated by that

light. Actually, there are usually more points that are left

unchanged, namely the ones that are further from the

light than the radius of the light’s affected sphere.

One way to mask out these points is doing a scissor

test on the fragments. Scissor test is an easy way to

prevent certain portions of the frame-buffer from

refreshing. All we have to do is to draw a quad on the

part of the screen that the light has an effect on.

However, this approach has some drawbacks: many 3d

accelerator cards slow down if scissor testing is used

(some recent ATi models for example) and this test

neglects the light source’s in-depth position. This means

that a part of the frame-buffer might be drawn even if the

light does not affect any visible objects. Figure 2 shows

this situation. Notice that the whole bounding box is

visible causing the rendering of a great part of the wall in

the forefront that is not affected by the light. Another

good example for this is a scene with a single object in

the middle and a light that lies so far behind that its

bounding box does not intersect the sphere. The

bounding box of the light in the scissor buffer causes

redundant work, because its in-depth position cannot be

tested.

Figure 2: the light’s bounding box rendered into the

scissor buffer without depth testing

Figure 3: the light’s bounding box renderer into the

stencil buffer with depth testing

A solution to this problem is the use of the stencil

buffer, because it is possible to affect the stencil buffer

even if the depth-test fails and the result of the stencil test

can differ depending on the depth-test. Thus, it is

possible to localize the render pass to objects that truly

intersect the light’s bounding box. Figure 3 shows such a

situation. Notice that only the parts intersected by the

bounding box are highlighted.

The steps to do this:

1. Render the scene with ambient color. Disable

depth writes.

2. Clear stencil to 1 (notice it was 0 in subsection

2.4).

3. Render back faces of light’s bounding box. If

depth test fails, decrement stencil value (this

implies that we are inside the bounding

volume), else do nothing.

4. Render front face of light’s bounding box. If

depth test fails, increment stencil value (this

implies that the bounding volume is completely

behind the object and no drawing is required),

else do nothing.

5. Render back faces of shadow volume. If depth

test fails, increment stencil value, else do

nothing.

6. Render front face of shadow volume. If depth

test fails, decrement stencil value, else do

nothing.

7. Render light only where the stencil buffer has a

value of 0.

Note that this is the shadow volume algorithm already

described, with two additional steps (3 and 4). With the

use of these stencil culled lights, we can trade redundant

pixel shader work to additional stencil work, which is

usually a great win if the application’s speed is limited

by the fragment processor. Furthermore, this trick is an

important element of the render pass reduction technique

proposed in the next subsection.

3.5 Reducing the Number of Render
Passes

The simplest method of reducing the number render

passes is frustum culling. If the bounding box of a light

source does not intersect the visible frustum (it is behind

us for example), there is no need to draw the pass of that

light. The following technique is more sophisticated, and

should be used only in case of complex or moderately

complex scenes, with lots of textures and long pixel

shaders.

The main reason, why every light needs a render pass

when using shadow volumes is that shadow volumes

extend to infinity even if the light is located to a small

area. So, in order to render multiple lights in one pass,

the shadow volumes generated by each light should be

restrained in a way that they cannot intersect each other.

This is only possible if the lights we want to draw are not

too near to each other. In other words, their bounding

boxes do not have shared points. So the first task is to

form groups of the lights. Lights in a group are all far

enough from each other. The second task is more

complex and computationally expensive.

The shadow volumes generated by a light source

must be clipped that it has no parts out of the light’s

bounding box. This can be done by clipping the shadow

volume to all six planes of the faces of that box.

With the bounding boxes not intersecting each other

and the shadow volumes already clipped, it is possible to

fill in the stencil buffer with a shadow mask that is

correct for all the lights, because there is no part of the

stencil that belongs to more than one light. This is

achieved by combining the second and third trick from

the previous subsection.

After the stencil is prepared, a pixel shader is needed

that can handle multiple lights, and dynamically save the

calculations of a light that is too far. This is possible with

the dynamic branching of Shader Model 3.0.

Finally, the complete renderer:

1. Render the whole scene with ambient light.

Disable depth writes.

2. Choose all the lights that intersect the frustum.

3. Form groups of the chosen lights that do not

intersect each other.

4. Take a group of light sources that is not

rendered yet. Compute all the shadow volumes

and clip them to the appropriate light’s

bounding box. Render the lights’ bounding

boxes and the shadow volumes into the stencil

buffer with depth and color writes disabled.

5. Render the scene illuminated by that group of

light sources, with the use of bump mapping and

parallax mapping with blending enabled and set

to additive mode. Do not render objects that are

not illuminated by the actual group of lights.

Use dynamic branching in the shader based on

the light sources’ distance.

6. Go to step 4 until all light sources are drawn.

4 Results

In this section, experimental results for the improved

renderer are presented. The ‘brute force’ method is

measured also for reference. The algorithms were tested

in two scenes:

1. A moderately complex scene that consists of a torus

shaped room, some ‘statue-like thing’ and a reflective

sphere (Figure 4). The environment cube-map faces are

refreshed with the same renderer and all the effects on.

The cube-map size is 128. Three textures are used. There

are 7 objects, 1422 vertices and 1368 faces. There are

five moving light sources present, which barely intersect

each other.

Table 1 shows the results of the Torus scene.

 Min. value Average Max. value

Optimized

renderer

123 169 193

Reference 44 53 60

Table 1: The measured frame-rates of the Torus

scene

2. A complex scene that consists of two rooms with

several static objects and a reflective box (Figure 5).

Seven textures and different material settings are used.

There are 28 objects, 10992 vertices and 14288 faces.

There are five moving light sources with a continuously

changing overlapping factor.

Table 2 shows the results of the Rooms scene.

 Min. value Average Max. value

Optimized

renderer

69 101 210 (in a

corner where

only one light is

visible)

Reference 34 47 71(as above)

Table 2: The measured frame-rates of the Rooms

scene

The tests were done on an AMD Athlon XP 2200+

CPU and an NVIDIA 6800GT video card, in

1024x768x32 resolution.

5 Conclusion

We have presented the concept of a simple, general

purpose rendering system that handles multiple light

sources, dynamic lights and shadows with Phong

illumination. The measured frame-rates of the ‘brute-

force’ approach shows that even the strongest cards get

on the knees when treated incautiously.

The first rows in Table 1 and Table 2 show that the

optimization methods proposed in this paper are proved

to be efficient, though it is important to notice that there

is no performance gain in the worst case, when all lights

have an effect on every point on the screen.

Figure 4: Pictures from the Torus scene

Figure 5: Pictures from the Rooms scene

References

[1] E. Persson (aka Humus): Phong illumination,

http://www.humus.ca/, Feb 2003

[2] Computing Tangent Space Basis Vectors for an

Arbitrary Mesh,

http://www.terathon.com/code/tangent.html

[3] T. Welsh: Parallax mapping with Offset Limiting:

A Per-Pixel Approximation of Uneven Surfaces,

Infiscape Corporation, Jan 2004

[4] M. McGuire, J. F. Hughes, K. T. Egan, M. J.

Kilgard, C. Everitt: Fast, Practical and Robust

Shadows, http://developer.nvidia.com, Nov 2003

[5] H. Y. Kwoon: The Theory of Stencil Shadow

Volumes, http://www.gamedev.net/columns/

hardcore/shadowvolume/

[6] F.C. Crow: Shadow Algorithm for Computer

Graphics, In SIGGRAPH ’77 Proceedings, 1977

[7] Ashu Rege, Clint Brewer: Practical Performance

Analysis and Tuning, NVIDIA, GDC Presentation,

2004

