
e-Panel (Virtual Control Panel)

Adam Egressy*

Faculty of Electrical Engineering
Czech Technical University in Prague

Abstract

Nowadays, control panels and display boards form an
important part of electronic equipment in every branch of
the industry. They can be found everywhere, beginning
from cars and air planes to factories and huge power
plants. All of them have one important goal: to transform
machine-measured values into visually sensible form and
deliver them to people, who drive a car, pilot an air plane
or control a power plant. Our intention is to develop
a new application that would become a useful, fully
virtual control panel.

Keywords: Control Panel, Display Board, OpenGL,
Visualization.

1 Introduction

Our intention is to develop an application that would
simulate the behaviour of an electric control panel. Such
a device is an equipment that usually consists of
measuring instruments, display devices and controlling
components. A virtual control panel is a computer
program that simulates a real one.

A virtual control panel, compared with a physical
one has many advantages. First of them is that it is easy
to customize. It is possible to put a new virtual device,
remove an old one or change their positions or orders
without purchasing any devices or unplugging any
cables. It can be done by modifying the program or its
configuration. Another advantage is that a virtual control
panel is more scalable. If it is necessary to increase the
number of components on it, the only thing that may
need to be rescaled is the hardware of the computer.
There is no need to obtain any new physical
measurement devices.

When looking for any available active project
developing such an application, we never were
successful. The closest project to our intention we found
was an Airbus A340 Glass Cockpit Project (see [5]).

In the next sections there are described our
experiences with developing our own virtual control
panel, called e-Panel. Section 2 deals with the important
aspects of a virtual control panel in general, while in
Section 3 there are concrete solutions, used in our
implementation, explained. The remaining four papers
contain testing, conclusions, future works and references
related to this paper.

* egresa1@fel.cvut.cz

2 Background

A modern virtual control panel should meet the
following requirements:
• It has to be able to read data from various

sources simultaneously.
• It has to be configurable by the user.
• It has to be extendible by new features.

Data Sources

A control panel has usually more than one input
channels. All the time it is switched on, each component
is listening on its input for any new data. New data are
usually generated on signal changes and the particular
component has to respond to these changes. They usually
simply indicate the change on their displays.

We expect the same behaviour from a virtual
control panel. In contrast with a physical control panel,
a virtual one is just a computer program, which cannot
measure any physical quantity. It can only read data from
input files and the physical quantities have first to be
converted to a string of digital values and then to decimal
numbers. That is the responsibility of the hardware.

A possible variety of input files is shown on
Figure 1. The sine curve means any analogue input
signal and the COM nodes are standard serial, parallel or
USB ports of the PC (e-Panel) computer.

Figure 1: Input signals

In e-Panel, besides the analogue and digital

signals, input data can be read from any file on the file
system (could it be text file, special device, proc file
system, etc.). It has at least two advantages. Fist, it
makes possible to visualize computer based data in the
virtual control panel (e.g.: outputs from database

engines, values prepared either simultaneously by
a separate application or pre-computed). Second, the files
do not need to be located on a local data store but they
can be read from a network file system (nfs) that is
connected to the host machine, as well.

Configurability

The configurability issue is an important property. When
developing a virtual control panel, we do not know, how
many and what kind of components will be used later, on
different installations.

In general, there are two ways how to make an
application configurable at user-level. The first way is to
attach a configuration file to it. The second way is to
develop a configuration interface, which will help users
to configure easily the application on their own.

Extendibility

In order to have the application up-to-date, it has to be
designed very open for further enhancements. This
approach can be reached the best if the application is
divided into small modules so that new technologies and
new algorithms can get easily integrated in the future.

3 Implementation

This section deals with implementation details of
e-Panel. By following its sections, the reader will get
a close description about the technologies we used in
e-Panel and the reasons why we have chosen to
implement them.

Software Architecture

E-Panel is a Linux based application. The Linux
operating system was chosen thanks to its open
architecture and reliability. While it is usual for Linux
based programs, the main programming language of
e-Panel is C.

E-panel consists of a number of modules, divided
into two different layers (shown on Figure 2). The lower
layer contains the application framework, which is
responsible for controlling the program flow, reading
input data, parsing the main configuration file –
generally for all the work that is not concerned about the
graphical visualization processes.

Plug-ins, in order to communicate with the
framework, have to implement a common interface.
More precisely, they have to declare a set of functions,
which will be called by the framework later. A more
detailed description on plug-ins is given in [1],
Chapter 2.

This way we managed to separate the back-end
functions from the graphical user interface (GUI)
functions in e-Panel, which is an important issue in any
plug-in based application.

Figure 2: Application architecture

Interaction of Plug-Ins

Plus-ins are allowed to communicate with each other in
order to increase their reusability. This capability makes
it possible to develop plug-ins that can act as e.g. graphic
sub-components used by one or more other controls. In
some other cases it could be useful to divide a large
plug-in into smaller ones, increasing the modularity of
the solution.

A common issue for example concerns text
outputs in OpenGL environment. There are a few
possibilities how to get text messages printed in an
OpenGL scene and it is not a good practice to duplicate
all necessary code into each plug-in that wants to print. A
better solution is to develop one single library that takes
care about the graphical text outputs, load it dynamically
on the start-up as one of the plug-ins and use it from your
own components.

One can complain about this approach and say
that it brings a new kind of dependency into the
architecture. This argument is correct because
malfunction of a library that is used by one or more other
plug-ins will probably cause incorrect behaviour of these
components. On the other hand, this risk is compensated
with the convenience of modularity we gain thanks to
this approach.

Input Data Format

E-panel reads its input data from text files in CSV
(Comma Separated Value) format. A file in CSV format
is a simple text file containing values separated with
comma (rarely with semicolon). These values are often
called fields and a group of fields wrapped in one single
line is usually named record. In e-Panel we treat each
line as a set of separate input sources, which were
scanned at the same time.

There are other, more complex formats we could
chose but did not. One of the most popular text-based
formats intended to use for data exchange is XML
(eXtendible Markup Language). The problem with using
XML in any virtual control panel is that it is too
complicated. The most of the measuring devices we
might want to communicate with a virtual control panel
are not capable of generating a correct XML output.

Entities of the Application

This section describes the various entities and data
structures used in the application. E-Panel uses three
main entity types. They are data sources, visual
components and plug-ins.

Figure 3 shows the connections between different
kinds of entities. Data sources – as discussed in the last
section – are files on the file system, where each of them
supplies data for one ore more components. Components
are visual elements that are placed and rendered on the
screen. They acquire information from exactly one data
source. Finally, plug-ins are program codes and each of
them render one or more components.

Figure 3: Entities of e-Panel

Configurability of the Application

The configurability of e-Panel is assured by a global
configuration file. It has a simple text format that makes
it easy to edit from any text editor.

The configuration file begins with information
about the size of the application’s frame window, which
is given by its width and height in pixels. This
information should be followed by definitions of all data
sources that are to be used. Data sources we define by
their identifier (ID) and the particular file name (File)
and column number (Column) they come from. See
Figure 4 for illustration.

The definition of data sources is followed by the
section of plug-ins. A plug-in record is very simple
because it contains only two attributes. Figure 5 shows
such a record. The first one is the identifier of the plug-in
(ID) and the second one is a reference to the file where
the plug-in’s rendering code is located (File).

Figure 4: Configuration file (part 1 and 2)

The section of plug-ins should be followed by the

largest part, the definition of visual components. Their
definitions have to contain required attributes (such as
ID, Name, Value, attached plug-in, coordinates and
dimensions) and may contains user-defined attributes,
which can hold custom information, specific to each
plug-in. Please see Figure 6 for illustration.

Figure 6: Configuration File (part 3)

Simultaneous Reading of Input Files

As it was discussed in Section 2, input data sources must
be scanned for changes simultaneously, because
generally it is not possible to predicate, which one of the
input sources is going to change next time. A computer
program has two possibilities to tap more files at once
and check periodically, whether they grow.

The first way, which is used in e-Panel, is to open
all the input files in non-blocking mode. Doing so
prevents blocking the program flow at run-time if the
read(...) function is called when no new data is
available in a file. More details can be found in [4] Open
function. In this case, we can cycle between the input
files calling the read(...) command in order to
determine, whether the specific file did grow since the
last call or not.

The second possibility, which is said to be the less
efficient, is to create as many threads as many different
files we are going to tap. In this case, each thread would
issue a call to the read(...) function and will be
blocked until new data become available. This way was
not implemented in e-Panel, because it is much more
complicated and less effective because every additional
process, thus every new thread, as well, has a negative
impact on the operating system’s performance.

Rendering Engine and Graphical
Subsystems

The rendering engine of e-Panel was developed in
OpenGL, which has suitable implementations (either
software or hardware accelerated) for the purpose we
need. Despite of the fact that the OpenGL library is (by
its design) three dimensional, at this time e-Panel
simulates a two dimensional virtual control panel. In
order to render 2D scenes in OpenGL in a comfortable
way, we decided to place the camera right upon the
control panel at a fixed altitude and enabled strictly
orthogonal projection, which prevents creation of
perspectives.

The e-Panel core graphical engine uses the
platform independent OpenGL Utility Toolkit (GLUT).
This library implements many basic algorithms needed to
run an OpenGL based application. For example this
library takes care about creating and closing a window. It
also implements handlers for various events, such as
keyboard input, window got resized, etc. More
information can be found in [2] and in [3].

When the e-Panel’s screen is refreshed, all the
components need to redraw their content. They get
invoked by the framework sequentially, one by one, after
a painting buffer had been prepared for them. When
rendering of all plug-ins has finished, the framework
draws the content of its buffer to the screen. The
following pseudo-codes illustrate the procedure.

Figure 7: Rendering procedure

Overlapping of Components

Components on a control panel can overlap and for this
case it is necessary to calculate with visibility issues.
Although this problem may seem insignificant, we can
find many instances of it even on seemingly simple and
ordinary panels.

One of the simplest examples could be a LED
indicator placed on a pointing instrument. A LED
indicator usually has small proportions and it makes it
easy to place on another control. There can be found an
example of this case on Figure 9, where a green light-
indicator is placed upon the engine speed-indicator.

There are two possibilities how to solve the
problem when one control is partly or entirely covering
another one. First, if either the application framework or
the plug-ins themselves are clever enough, there can
accept a greyscale texture and treat it as its alpha channel
for rendering. The alpha channel is numeric information
describing the opacity of an object or a texture. This
way, controls can be made partly transparent and in this
case overlapping is not senseless anymore.

The second solution for the overlapping problem
consists in organizing controls into separate layers,
where all objects in one layer are placed into a constant
altitude. In this case, we can configure each component
by specifying its altitude (or the altitude of its parts) with
an additional parameter. For example, the problem of the
light-indicator on Figure 9 (described in the beginning of
this section) can be simply solved by putting the
background of the engine speed-meter below the green
light-indicator and situating both of them below the
pointer of the engine speed-meter. This organization is
probably very similar to the placement of such
components on a real dashboard and can be achieved in
e-Panel by adding three new attributes for these
components into the global configuration file, specifying
the altitudes of the background, the led indicator and the
pointer.

Examples

This section contains figures coming form real
screenshots, illustrated by guidelines and commented
briefly.

Figure 8 illustrates a user-defined control panel
layout. It contains eight components, each of them based
on the same plug-in (which just displays the
component’s name aligned to its centre). The top left
control, which is coloured light red, shows the meanings
of coordinates and dimensions of components.

Figure 8: A user-defined layout

Figure 9 shows a real demo scenario of e-Panel,
which consists of pointing instrument components and
digital display components, backed with a texture of
a dashboard in a car.

On Figure 10, the reader can see how the
components are arranged on the dashboard. An
interesting note is that for example components 1 and 5
or 2 and 10 cover each other. However, it is not
a problem until we can uniquely define, what order
should the components rendered in.

Figure 9: A dashboard in a car

Figure 10: Parts of a dashboard in a car

4 Testing

Testing of e-Panel was made according to three testing
scenarios. All of them are performance test that we
designed to gain information about scalability of e-Panel
with number of different loads. All of the test cases ran
on the following hardware: PIII 700 MHz, RedHat
Linux 9 installed in a VMWare Workstation 4.5.2 on
hosting operating system Windows XP SP2. The
graphics adapter was Trident CyberBlade-Ai1 (AGP)
with software emulated OpenGL (Mesa version 6.2).

The first testing scenario consists of five separate
tests of e-Panel in action. We tested drawing of 1 to 200
controls in each cycle. In order to collect relevant
information about the performance parameters of the
whole e-Panel framework, not only of the concrete
control plug-in in the particular tests, we decided to use
the simplest control developed, the digital instrument.
(See Figure 10, part 7, 8 or 9 for example.) The results of
the first series of tests can be seen on Figure 11. It shows
us that on a very basic hardware that the first slight
increase of time needed to refresh the control panel’s
desktop occurs when redrawing 50 to 100 components
simultaneously.

Figure 11: Performance test 1 – number of controls

The second scenario, which can be called

dependency of overall performance on number of
columns of input files, pleasantly surprised us. We’ve
tested a configuration with one input file, having from 1
to 500 columns and didn’t find any scalability
bottleneck. Even in with 500 columns in one single CSV
file, the time spent with reading and parsing all the
columns did not exceed 1 millisecond. Please see
Figure 12 for details.

Figure 12: Performance test 1 – number of columns of
input files

The aim of the last series of tests was to study the

dependency of overall performance of the application on
the number of separate input files used in
a configuration. There were five different configurations
tested and the results we found surprisingly satisfying.
The results are included in the graph on Figure 13. It
shows us, that no matter, whether there is 1 or there are
125 input files, we don’t waste more than 1 millisecond
when reading all of them. The only problem that could
occur consists in the fact that operating systems allow
a limited number of files (more precisely file descriptors)
to be open at once. On the other hand, this number is
usually larger than 1000 and that’s why it doesn’t seem
to be a real scalability problem.

Figure 13: Performance test 1 – number of input files

5 Conclusions

The objectives of our projects were completed - we have
developed a new virtual control panel application.
The framework of our application meets all the three
requirements, we had set up in Section 2:
• It can process multiple data sources

simultaneously.
• It is configurable on user-level.
• It is extendible with new features.

There are also three different graphical plug-ins
that we have developed within this project. They are the
following:
• Digital measuring instrument control.
• Analogue pointing instrument control.
• Graph control.

Although the current version of e-Panel is a final
release that seems to be very stable, there are already
ideas how to improve it in a future work. Please see
Section 6 for details.

6 Future work

Future work on e-Panel should focus with high
priority on interactivity and new graphical plug-ins.
Further future work could aim on support for input filter
plug-ins and a multiplatform version.

At this moment, there is a lack of interactivity
support in e-Panel. The application is able to simulate
various controls on a display board that brings visual
information to the user, however it is not able to handle
inputs from the user. Once interactivity support is added,
it will greatly enhance the usefulness and the overall
benefit brought by this application.

New visual plug-ins do not only bring new look
for the current components, but also extends the range of
places, where e-Panel becomes useful. For example,
a base component for 2D matrix displays would make us
possible to create controls like GPS navigation, smart
oscilloscopes, custom matrix displays, etc.

A multiplatform build of e-Panel would increase
the number of computers, where the program can run.

This way, we would not eliminate users, who are not
familiar with Linux operating systems.

Support for input filter plug-ins, however is not
the highest priority question for us, would be able to
manipulate with input signal right before they arrive at
the corresponding plug-ins.

References

[1] M. Mitchel, A. Samuel: Advanced Linux

Programming, 2001, New Riders Publishing,
ISBN: 0735710430

[2] OpenGL Architecture Review Board. OpenGL
Programming Guide – The Redbook. Addison-
Wesley, 2003, ISBN: 0321173481

[3] M. J. Kilgard. OpenGL Programming for the X

Windows System. Addison-Wesley, 1996, ISBN:
0201483599

[4] Linux Manual Pages

[5] Airbus A340 Glass Cockpit Project

(http://a340gc.iradis.org/about/index.en.html)

http://a340gc.iradis.org/about/index.en.html

