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Abstract

Due to new techniques and new hardware capabilities
image-based rendering (IBR) is not limited to offline ren-
dering anymore. Today the use of pictures for complex
3d-models promises photo-realistic images even for real-
time applications.

This paper covers the various techniques which are ca-
pable of creating new perspectives in real-time. It also in-
troduces a framework which enables the convenient inclu-
sion of image-based objects into 3d-applications.
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1 Introduction

In image-based rendering1 photographs or artificial im-
ages are used as source for three-dimensional objects or
complete scenes. This technique has certain advantages
over a traditional graphics pipeline because it is often eas-
ier to photograph an object than to model it using 3d-
creation software. So-called photo realism has always
been an aim of computer graphics and IBR promises this
per definition.

As of now many different techniques have been devel-
oped that are based on images as source material. Most
of them are used in the domain of offline renderings,
for which the duration of the needed calculations for one
frame is not as relevant. Because of the rapid development
in the field of graphics hardware, those techniques become
more and more interesting for real-time applications for
which 20 or more frames per second are necessary.

Traditional 3d-applications such as many video games
could greatly benefit from IBR through a higher degree
of realism. But IBR also offers completely new possi-
bilities. For example in the field of communications 3d-
telepresence becomes possible. Through the combination
with augmented reality conversational partners could see
each other face to face in a completely realistic way with-
out sharing the same location [17].
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1IBR is a subgroup of image-based modeling and rendering. How-

ever, image-based modeling (IBM) creates 3d-objects from pictures
which are then usually rendered in a traditional way. Although there are
techniques that combine IBM and IBR, this paper tries to focussolely on
IBR in which pictures can directly be used as source for new renderings.

The advantage of IBR boils down to more realistic re-
sults with less work. Less work because of the model-
ing which can be mostly omitted and because of the lack
of complex models which would need more computing
power. Images also already include materials and light-
ning conditions, which reduces the necessary manual work
and the render complexity even further.

On the other hand the predefined materials and lights
present limitations for IBR because it is far more difficult
to change them afterward. Debevec et al. [6] present a
method to generate pictures of faces from arbitrary points
of view and under different lightning conditions, but the
enormous amounts of data and the high computational
costs make it impractical for real-time applications on to-
day’s hardware.

A further problem is the animation of IBR-objects.
While some systems allow the playback of “3d-videos”
in real-time, in which the observer can move freely around
the recorded object, they still cannot offer the possibilities
of traditional computer graphics. Interactive motions like
they are essential for 3d-avatars or game characters are not
possible with today’s IBR-techniques.

The use of IBR in 3d-applications is not only dependent
on the technical constraints but also on the simple access
to the field. Just like the shader language Cg has been
developed with the thought in mind to make the new pos-
sibilities of graphics cards available to more programmers
[14], there need to be easy interfaces to integrate IBR into
applications.

So this paper will discuss the various IBR-techniques
and examine their real-time capabilities. Then we will
propose an IBR-framework and present a simple proto-
type that uses it to render three-dimensional objects. The
achieved quality and performance will show the potential
for IBR in real-time applications.

2 Real-time IBR techniques

This section introduces various image-based techniques. It
is not a complete overview of IBR but focuses on methods
with some sort of real-time capability.



2.1 Sprites and billboards

Two-dimensional images gained importance in the field of
computer graphics during the eighties. The use of tex-
ture mapping added more realism to interactive applica-
tions without the need for additional geometry. However,
usual textures just give a certain appearance to a surface
but they cannot substitute 3d-objects by themselves.

A simple method to use images instead of geometry is
billboards. Billboards are basic quads which are always
kept aligned with the user’s view. If an image is mapped
on a billboard it gives the impression of an object which
looks the same from all perspectives. The so-called sprites
were often used to display characters in video games be-
fore the hardware could handle more complex models that
looked realistic enough. Another application is trees and
other plants which would cost much computational power
to render as geometries but are actually only circumstan-
tial for the program.

Today billboards are widely used for all sorts of effects
like fog, smoke, flames, lens flares, and various particle
systems. Sprites which are not aligned to any view axis
can also be used to represent complex objects, especially
plants because of their more chaotic structure (see figure
1).

Figure 1: The complex structure of a bush can be approx-
imated by interweaving several sprites. Image from the
video gameMedal of Honor.

2.2 Photo mosaics

A well-known commercial application of IBR is Apple’s
QuicktimeVR2 [4]. This technology uses a 360◦ panorama
mapped on a cylinder. The user is positioned at the
center and can rotate the view around the vertical axis.
Through warping a perspectively correct image is gener-
ated. Newer versions of QuicktimeVR also support cube
maps which allow the viewer to look into all directions. In

2http://www.apple.com/quicktime/products/qt/
overview/qtvr.html

3d-applications cube or environment maps are commonly
used to display backgrounds or simulate reflections [3, 10].

Lippman already presented an adoption of this tech-
nique in 1980 [13]. His application – calledMovie Map–
was made possible by high data capacities of video discs.
The system allowed a stroll through Aspen but as in Quick-
timeVR one could just stop at predefined positions. Cur-
rent implementations use video cameras to record panora-
mas of an environment. Thus it is possible to stop at any
position along a predefined path and have a 360◦ view
available [25].

All these applications of photo mosaics are suitable for
real-time rendering. Panoramas are often viewed via plug-
ins for web browsers. Even Java versions3 exist and they
pose no problem for the computing power of today’s PCs.

2.3 3d-warping and view interpolation

3d-warping of an image is possible if the original camera
parameters and depth information are known. Through ro-
tation and translation every pixel can be mapped onto a
new perspective. This forward warping approach causes
a few problems though, because more than one pixel can
map to the same point in the destination image and gaps
can occur because of too few or missing information in the
source image. While the first problem can be solved effi-
ciently with a warping order depending on the centers of
projection [15], the gaps can only be filled by a heuristic
approach.

Inverse warping [15] maps pixels in the destination im-
age to the source image. This is an iterative process though
because the depth value is unknown. So a ray is casted
from the center of projection through the desired pixel.
This ray is then projected onto the source image and the re-
sulting line has to be checked iteratively for a correspond-
ing depth value (see figure 2). Although this approach
is computationally more expensive than forward warping,
there have been several optimizations [16] and interactive
frame rates are possible [26]. It also offers certain advan-
tages in terms of depth mapping and gap filling.

The warping approach can be improved by using more
than one reference image. Thus gaps can be filled from ad-
ditional sources and if more than one reference pixel is vis-
ible in the desired view the color values can be interpolated
to achieve better results. This technique reminds us of tra-
ditional morphing [2]. Morphing relies on corresponding
features in reference images which was introduced to 3d
with warp scripts [5]. However, this only allowed images
to lie on the same plane. To overcome this problem view
morphing [22] reduces the three-dimensional view inter-
polation to a two-dimensional process by adding warping
steps before and after the actual morph. Because of this
there is also no depth information but only camera param-
eters needed.

3e.g.http://infomedia.ipix.com/
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Figure 2: Inverse 3d-warping maps the point(x′, y′) – z′ is
unknown – on the desired image to a point on the reference
image by projecting a ray onto the reference image and
iteratively checking depth values along the projected line.

2.4 Impostors and nailboards

So-called impostors try to utilize the similarities between
frames. Whole scenes or parts of them are normally ren-
dered into a buffer which then can be used as a texture on
a billboard. This can be displayed instead of the actual
geometry as long as only the line of sight changes. If the
position of the viewer changes a new texture has to be ren-
dered or another precalculated impostor is used. Usually
the impostor does not have to be exchanged immediately
when the viewer moves but only when a certain threshold
is reached, so that textures don’t have to be enlarged too
much or the billboard’s planarity does not become appar-
ent [18].

Complete rendering systems based on impostors have
been developed. They hierarchically subdivide a scene
into cuboids and render impostors for each one. It is es-
pecially crucial to determine when an impostor has to be
rerendered. The hierarchical partitioning further acceler-
ates the rendering process. Those image caching systems
can be two to eight times faster than traditional systems.
However, these are results from offline renderings [21, 24].

Since impostors are directly derived from geometry it
is simple to save an additional depth value for each pixel.
The result is a nailboard [19] which can be used longer be-
cause of 3d-warping. The extra depth channel also solves
visibility problems which occur when impostors cut each
other. Enhanced versions like layered impostors [20] or
layered depth images [23] use layers of nailboards for
certain depth ranges. The advantage of this is that of-
ten just specific layers have to be rerendered. [8] com-
bines dynamic and precalculated impostors into a frame-
work called multi-mesh impostors. It achieves interactive
frame rates and ten times the speed of traditional rendering
methods.

2.5 Lumigraph and light fields

Since more reference images improve the quality of ren-
dered views, some methods try to capture objects with an
extensive amount of images. Adelson and Bergen propose
a five-dimensional plenoptic function which describes all
incident rays of light at a single point. The parameters are
the position(x, y, z) and two angles that specify the light
direction [1]. The Lumigraph [9] and light field render-
ings [12] advance this concept. Both reduce the function
to four dimensions which is possible through a reduction
to the convex hull of an object and the assumption that
light remains constant along a ray.

Basically these methods try to have an image for all
possible perspectives and interpolate in between if neces-
sary. This results in vast amounts of data. Similarities be-
tween the reference images allows high compression rates
though. For example [12] reports ratios of up to 118:1.
This makes these techniques suitable for real-time appli-
cations too. There are no complex calculations involved
and it is mostly a matter of look-up speed and memory
size.

3 IBR-framework

The idea behind the presented framework is to have an
IBRObjectwhich can be added to a scene graph and thus
enabling the inclusion of objects which rely solely on im-
ages instead of geometry. To display a complex object
from all sides a single image is not sufficient. So an
IBRObjecthas to hold an array of images. We define an
IBRImageto hold additional information such as camera
parameters which are necessary for most IBR-techniques.
The actual algorithm for rendering should be exchange-
able and of no concern for the programmer who just uses
the framework as a library to include IBR-models (see fig-
ure 3).

Real-time application

IBR-technique

IBRObjectIBRImage[...]

Figure 3: The basic design of the IBR-framework.

Using this framework it would be very easy to inte-
grate an image-based object but the acquisition of suit-
able images can still be difficult without special camera
equipment. The easiest way to apply IBR to real-time ap-



plications is to use computer-created imagery. Using 3d-
modeling software an artist creates a high-polygon model
of the desired object. Then with a virtual camera which
has known parameters the reference images are created.
This has also the advantage that it fits into the traditional
workflow.

3.1 The prototype

To demonstrate the framework we implemented a proto-
type which uses projective mapping and blending as a
simple IBR-technique (see figure 4). Projective mapping
means that the reference image is warped according to its
original viewing parameters. Jakulin’s similar approach
for displaying plants [11] uses a quad for every reference
image. Thus the regular rendering pipeline takes care of
the warping. We use a single billboard instead and ren-
der the current view onto it. To achieve this in one render
pass we make use of a custom fragment shader that warps
every fragment onto each reference image and blends the
resulting color values.

Ir1

Id

Ir2

Figure 4: The two closest reference imagesIr1 and Ir2

are warped according to their viewing parameters, mapped
onto a billboardId, and blended to create the desired view.

We chose this approach because it would be easier to
exchange the IBR-technique if their is only one final bill-
board to render to. Methods that use multiple quads or
other techniques can always render to this billboard’s tex-
ture in a final step. However, it is necessary to avoid un-
wanted clipping that can occur this way (see figure 5).

For the actual blending the color values of the warped
reference images are weighed according to the angles be-
tween the reference viewing directions and the current
viewing direction. For example for the anglesα andβ we
can get the weight factorsfα andfβ with the equations:

fα =
α

α + β
, fβ =

β

α + β
.

The weighted color values are then added up to get the
final color.

The prototype was written in C++ and the shaders in
Cg. As low level graphics engine we used OpenGL. Those
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Figure 5: (a) shows unwanted clipping that can occur
when warping a reference image onto the billboard. The
prototype allows the programmer to define a scale factor.
In (b) a factor of0.7 was used so that the warped image
fits completely.

technologies were chosen to guarantee a high degree of
platform independence.

FurthermoreIBRViewerserved as a sample application.
It simply displays one or severalIBRObjectsand lets the
user move around and view the objects from every angle.

4 Results

This section describes the various tests cycles completed
with IBRViewer. The two main criteria are the quality
of the produced renderings and the speed when rendering
multiple objects. The used system was a Pentium 4 (2.53
GHz) with 1 GB of memory. The graphics card was an
NVIDIA GeForce FX 5900XT with 128 MB of memory.
It supports vector and fragment shader version 2.0 which
was important because of the Cg programs. All renderings
had a resolution of 400x400 pixels. The reference images
had a size of 256x256 pixels and were created with 3ds
max.

4.1 Quality

The most important factor to achieve a good quality is the
amount of reference images. Figure 6 shows the test cycle
with the model of a human head. The more uniform the
distance between the surface and the center of the model
is, the better it is suited for this technique because highly
convex areas change the most from one reference image to
the next. The head partially fulfills this but definite lines in
the face cause problems. For example the hairline stands
out when it is blended right on top of the eye. This ghost-
ing effect is much less visible with more uniform surfaces
like the back of the head. So to improve the quality it
would be possible to adjust the positions of the reference
cameras and use more images for the front than for the
back.

The test cycle used 16 to 64 reference images which



Figure 6: The picture on the left was created using 16 ref-
erence images, the one on the right using 64.

were evenly distributed on the same plane. So it is possi-
ble to move around the object as long as we stay on this
plane. With 64 images the blending already looks very
much like a motion blur when moving which could be a
quite desirable effect. Generally the motion is important
for a more realistic result. If we circle the object at high
speed 16 reference images turned out to be sufficient. It
would be possible to make the amount of images depen-
dent on the speed of the viewer and just render the closest
reference view if the viewer is not moving at all.

The model for the second test cycle was a potted plant
(figure 7). This model is interesting because the pot is per-
fectly symmetric and the plant has a very complex struc-
ture. The symmetry and the uniform texture of the pot al-
low good results even with very few reference images. The
complex structure of the plant makes it difficult to grasp it
completely. Thus single leaves and branches that radically
change their positions from one image to the next hardly
stand out. The viewer can just follow the blending at very
distinct branches.

Figure 7: The picture on the left was created using 16 ref-
erence images, the one on the right using 64.

So for this example fewer reference images are neces-
sary than for the head. The number of images can be re-
duced further at higher distances. This could be incorpo-
rated in a level-of-detail algorithm which discards refer-
ence images when the viewer moves away from the object.

4.2 Speed

With a single IBR-object and 64 reference images the
prototype achieved 77 frames per second (fps). This
seemed to be the highest measurable value because reduc-
ing the number of reference images had no effect anymore.
With 100 objects displayed simultaneously the frame rate
dropped to 11 fps. However the bottleneck was not the
GPU and the actual graphics processing but the sorting of
the images to determine the closest reference views. With-
out it there were still 38 fps possible. Thus it would be de-
sirable to organize the images in some kind of “view map”
[7] which allows a simple look-up of the closest image. So
the current implementation is very much dependent on the
total number of reference images in a scene. A test with
100 objects and only 16 images also shows this because it
still allowed 29 fps.

For the tests the same object was duplicated. That
means that all instances of it access the same textures. So
a more complex scene with many different objects could
lead to a shortage of graphics memory. Then either the
total number has to be reduced using the described meth-
ods or techniques for compression and dynamic loading of
image data have to be applied (cf. [9, 12]).

5 Conclusions and future work

The current implementation is actually just a very simple
prototype. Still it is apparent that with today’s hardware
it is possible to integrate IBR-objects into real-time ap-
plications. However, this is just reasonable if it provides
advantages in the development process and allows an effi-
cient workflow.

Section 4 already stated several approaches to achieve
better results. For better quality more reference images are
necessary but this means a higher computational cost even
if the sorting is optimized. It also raises the need for mem-
ory and the acquisition of the source material can be very
laborious. Even with computer generated imagery it can
be a time-consuming process. Special plug-ins for current
tools could simplify this but with the use of photographs
the work increases drasticly.

So to achieve better quality without raising the number
of reference images, other techniques to combine the im-
ages are necessary. A promising approach would be view
morphing, which would not need any additional informa-
tion beside the camera parameters. Inverse 3d-warping
would be easy to implement as well with newer hardware
and shader version 3.0, which allows iterative processes in
fragment programs. However, this technique would need
an additional depth channel. Certain extensions could also
be added – especially through the use of shaders. Exam-
ples would be shadows or lightning with the use of normal
maps.

The use of many images provides an intricate inclusion
process for the programmer. So all images could be com-



bined in a single file with its own IBR-format which holds
the picture data and also camera parameters and other meta
information – for example to enable LOD-algorithms. An
IBR-format would change the framework in a way that the
programmer just has to handle theIBRObject. IBRImage
would only be used internally to manage reference images.

The loading of images could be abstracted further be-
cause other sources are possible. For example video
streams could allow animated objects which are essential
for 3d-telepresence.

In general the use of IBR in real-time applications will
be significantly dependent on the availability of those tech-
niques for designers and programmers. Because only if
they are accessible through tools, programming libraries,
and standards, IBR can be a useful addition to computer
graphics.
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