
Boolean Operations on Point-Sampled Geometry

Zoltán Ṕeter Gáal∗

Faculty of Informatics
Eötvös Loŕand Science University

Budapest / Hungary

Abstract

In computer graphics boolean operations have been around
for years. In contrast, point sampled geometry models
represent a new and stirring side of graphics which is re-
searched mostly in the last couple of years. Papers about
the combination of CSG and surfels only appeared re-
cently, and it’s hard to find a generalized overview of the
possible choices. Therefor our goal is to fill this hole,
to give an overview of the algorithms and give a way to
merge them. In addition, we also try to focus on meth-
ods those give the most speed in terms of interactivity. We
present implementation details and analyze efficiency. Fi-
nally, we propose a new algorithm for speeding up the up-
date of space partitioning data structure needed for real
time CSG operation.

Keywords: boolean operations, surfels, point-based
geometry

1 Introduction

Boolean operations have been researched mainly for CAM
applications. There are many robust algorithms which
work on boundary represented solids. They handle the
most extreme cases using tolerances [9]. There are also
algorithms to hardware accelerate the evolution of the
operation[7].

The trend for ever-denser 3D models has brought up an
increased interest in algorithms that work on point prim-
itives. Point sampled geometry can be described as a
cloud of points placed stochastically on the surface of a
solid. These points can be generated by using 3D scan-
ners. Scanners can produce not only 3D positions, but nor-
mal vectors, material properties like diffuse coefficients
too. At first these clouds were transformed into triangle
or other polygon meshes and curved-face bounded solids.
Recently the set of points is used for both geometrical rep-
resentation and as rendering primitives.

∗gaal z@inf.elte.hu

2 The surface

Formally, the inputP = {pi | 1 ≤ i ≤ n} is a set of
points. There might also exist scalar features for all the
points like the material or color attributes. Using this point
cloud we may introduce anS continuous Moving Least
Square surface (MLS) that approximates the surface of
the original solid [3]. S is given as the fixed points of a
ΨP : R3 → R3 projection. To define the projection, first
we have to find a local supporting plane of anr ∈ P :

H = {x | n · x−D = 0}
by minimizing the weighted square distance

∑

p∈P

(p · n−D)2φ(‖p− q‖)),

whereq is the projection ofr onto H.φ is the kernel of the
MLS surface, and usually chosen as the Gaussian:

φ(d) = e−d2/h2

The H plane also defines anfi height for allpi ∈ P as
fi = n · (pi − q). Finding the coefficients of the polyno-
mial approximationg by minimizing the least square error
for the

n∑

i=0

(g(xi, yi)− fi)2φ(‖p− q‖)),

we may writeΨP as

ΨP (r) = q + g(0, 0)n.

The MLS projection requires a lot of calculations [2].
Fortunately, taking into consideration some ideas, we may
speed up the algorithms:

1. The eigen-analysis of the weighted covariance matrix
B ∈ R3×3,

bjk =
∑

i

φi(pij − rj)(pik
− rk),

whereφi = φ(‖pi − r‖) are fixed, gives a good
approximation for the normal vector of theH
plane [8].
This analysis can be also used to extract topology
feature information like edge, planarity. For more
information see [4].

Q1 Q2

S1 ∪ S2 {p ∈ P1 | ΩP2(p) = False} {p ∈ P2 | ΩP1(p) = False}
S1 ∩ S2 {p ∈ P1 | ΩP2(p) = True} {p ∈ P2 | ΩP1(p) = True}
S1 \ S2 {p ∈ P1 | ΩP2(p) = False} {p ∈ P2 | ΩP1(p) = True}
S1 \ S2 {p ∈ P1 | ΩP2(p) = True} {p ∈ P2 | ΩP1(p) = False}

Table 1: Classification of surfels

2. We don’t need to take into consideration all the points
of P since the points far away fromr modifies the
value of 2 slightly because of theφ kernel. So they
play no role in the definition ofΨP . Usually taking
the k-nearest points gives a sufficient approximation.

3. If for some reason, e.g. in section 4.1, we still need to
find the exact projection of anr point onto the MLS
surface, we may use an iterative approach. Pauly sug-
gested [8] to estimateq directly, which determines
n = (x − q)/‖x − q‖ andD = q · n. It’s is done
by a Newton-type iteration. First an initial value is
chosen forq0, by finding the closest point inP to
thex position. Then aH0 plane is calculated for this
q0 using the Eigen-analysis. The next estimation for
q is computed using the orthogonal projection ofx
ontoH0. This procedure can be iterated to getqi+1

by projectingx ontoHi, which is the weighted least
square plane fitting to the local neighborhood of sam-
ples ofP around the previousqi estimation. To avoid
the oscillation aλ biasing factor is introduced such
that instead of takingqi+1 as the next point of ap-
proximation, a(1− λ)qi + λqi+1 is used. [8].

For the exact visualization the point cloud itself is not
sufficient. Since drawing the points results in a hallowed
picture. Where the sample density is less, the picture qual-
ity will decrease as well. To correct this a point is extended
to a so called surfel. Actually a surfel is an elliptical disk,
whose plane is theH local reference plane, the two axis
of the disc are the same as the ones used to define the ap-
proximatingg polynomial. Finally the radius of the disk
refers to the local density of the sample. It’s suggested to
use the radius of the sphere containing the k-nearest point.
Zwicker have studied this question and used the ellipti-
cal weighted average (EWA) surface splatting to solve the
problem. In our example we’ve used a simplified, hard-
ware accelerated, 2-pass method for the rendering.

Note that most of the time the input only contains the
position of the points, but most of the algorithms which
operate on point clouds require the normals of the surface
at the input points. Therefore practically, it is worth to
calculate the normals of the MLS surface using e.g. the
k-nearest neighborhood in the preprocess step and store it
in the point cloud data.

3 Boolean operation

The boolean operations, we’ll take into consideration are
the union, intersection and subtraction. The ideas dis-
cussed here can be easily extended to evolve whole CSG
trees. So without restricting the generalization we might
state that our goal is to find theP0 surfels bounding the
union, intersection or the subtraction of two solids repre-
sented byP1, P2. P0 = P1ΥP2, whereΥ ∈ {cup ∩ \}.

Before going into details, let’s have some more defini-
tions. It’s easy to see that, to get the evolution of an op-
eration we have to choose aQ1 ⊆ P1 and aQ2 ⊆ P2

plus a set of newly generated sample points to have theP0

representation. That is we have to

1. find theQi subsets

2. and extend the subset as desired.

Let ΩP be the logical function that tells if anx ∈ R3 is
in the V volume being represented by P:

ΩP (x) =
{

True ,if x ∈ V
False ,if x 6∈ V

(1)

The first step of the evaluation of the boolean operation
is findingΩP . Using this logical function and table 1 we
may classify the surfels into two groups: surfels which
belong and surfels which do not belong to the final solid.

The simplest algorithmic method to evaluate func-
tion (1) for a pointx is finding the nearest surfelt in solid
P and evaluate

ΩP (x) = nt(x− xt) < 0,

wherent is the normal of surfelt and xt its position.
The brute force implementation of this step results in an
O(n1n2) algorithm, and since the surfel counts of each
point cloud can reach 60K or 200K, this approach can be
hardly qualified as interactive or realtime.

The second step of the algorithms tries to repair visual
anomalies, caused by the fact that the MLS surface of solid
P1 can cut the ellipsis of the surfels in solidP2.

Thus our goal is that, the classification of the surfels
and the extension of theQ1 ∪ Q2 union represents more
precisely the intersecting part of two solids.

4 Approaches

4.1 Pre-interactive surface space
method

Pauly suggested an analytical approach [8]. It slightly im-
proves the brute force algorithm. Anr surfel can be clas-
sified if we find its projection onto the MLS surface of
the other object. As we know from differential geometry
r − y is aligned with the surface normal aty, and thus
ΩP = (r − y) · ny < 0 . Fortunately we don’t need to
map all the points of a solid. If the distance fromr to the
closests surfel defining the other object is less than the
local sample spacingνs, the algorithm gives a good result.
Unfortunately if the distance exceeds the sample spacing
the result might be incorrect. To avoid this we have to
project such surfels onto the surface as explained in sec-
tion 2 . This algorithm can be further improved since for
all c points within‖s− r‖ − νs distance from a classified
r surfel gets the same classification. Formally:

ΩP (c) = ΩP (r)∀c ∈ {c | ‖c− r‖ < ‖s− r‖ − νs} .

In the second step of the boolean operation we need to
refine the intersecting curve of the two surfaces. For this
we have to find closest pairs in theQ1, Q2 sets. Usually
the sample distribution of the two sets are different so an
up-sampling operator have to be used. This is usually de-
fined by some simple subdivision rule.

S1

S2
q1

q2

q’2q’1
r’

Q1
Q2

r

ba

c d

Figure 1:Finding the intersection curve of two MLS sur-
faces.

Using these closest pairs (q1 ∈ Q1,q2 ∈ Q2) a Newton-
type iteration finds the exact samples on the intersecting
curve as follows. We may define a closest pointr toq1 and
q2 on the intersection of the two tangent planesq1 andq2.
Then using theΨP1 ,ΨP2 operators we may project the r
point onto the MLS surfaces. Repeating the process for the
two newq,

1,q,
2 projections we get a better approximation

for a point on the intersecting curve. As Pauly stated due
to the quadratic convergence of the Newton iteration, this
typically requires less than three iterations.

4.2 Interactive object space method

Adams and Dutre [1] proposed an interactive method for
boolean operations. The points are considered as surfels
with a finite radius. Their method partitions the space that
is defined by the bounding box of the surfels by an octree
data structure. The surfels are assigned into exactly 1 leaf
node of the octree. The nodes are “colored” or labeled
as inside, outside or border cells in a preprocess step (see
section 6.1 for further details). Nodes that classified as
borders are further subdivided by 2 planes. This 2 parallel
planes is determined by enclosing the presented surfels in
the cube, therefore the 3 separate volumes can be colored
also as inside, outside and border areas.

In the first step of the boolean operation (see section 3),
the algorithm does not test the surfels ofP1 individually,
whether or not they belongs to the inside, outside or bor-
der area ofP2, but instead the octree nodes ofP1 are tested
against the octree ofP2. If e.g. a node only intersects with
the interior cells ofP2, all surfels of this node can be clas-
sified as inside surfel. If the situation is not so obvious,
testing the surfels of this node one at a time is unavoid-
able. If the surfel belongs to an inside or outside node, the
decision is easy. If it belongs to a border cell, it is tested
against the 2 parallel planes. If it is still classified as bor-
der, it is tested using the normal of the nearest surfel ofP2.
This is degraded to the brute force way, since the nearest
surfel is searched in the wholeP2.

In the second step of the boolean operation, we need
to find the exact intersecting curve. Adams suggested to
use a resampling operator that replaces each intersecting
surfels by some smaller surfels. During this refinement the
surfels are considered as discs. This way the intersecting
curve will be approximated by more surfels.

4.3 Interactive image space method

A different approach was used by Martin Wicke in 2004.
He proposed a solution [5] which does not need any re-
sampling operator in object space, only different clipping
methods in image space.

The method classifies the surfels into 4 categories:

• Surface surfels, that must be present in the result
(union, intersection, etc.) without any modification

• Inside edge surfels, which also belong to the result,
but have an intersection with the other solid

• Outside edge surfels, which do not belong strictly to
the result, but have cross sections with the edge

• Outside surfels, which do not belong to the boolean
result.

Outside surfels can be discarded from rendering. Sur-
face surfels can be rendered with any hardware acceler-
ated splatting algorithm. Edge surfels are treated specially
with a fine tuned software renderer, since they may clip

* Grid (m3) Kd-tree Octree
building time O(n) O(n log(n)) O(n log(n))
finding surfel O(n/m) O(log(n)) O(log(n))

k-nearest neighborhood O(k) O(n log(n)) O(n log(n))
in-out classification yes yes yes

managing dynamic scenes yes restructuring restructuring

Table 2: Property summery of space partitioning structure.

each other. This classification is calculated each time the
different solids change their position.

The bulk of the computation is done in the rendering
phase. The rendering contains 3 passes. In the first phase,
the edge surfels are rendered to a “clip buffer”, which has
the same resolution as the final image. Each cell (pixel)
of the clip buffer contains a list of surfels, which would be
visible in that pixel. With the aim of the clip buffer, the
clipping partners can be determined. Note that two surfels
do not clip each other if they belong to the same object.

The next pass renders clipped surfels with a special soft-
ware renderer that can handle not only the clipping of
two surfels (as in the approach presented in section 4.1),
but can render corners or arbitrary number of intersec-
tions. The inside/outside test determines whether a frag-
ment needs to be clipped.

In addition, Wicke improved the inside/outside test that
decides which side of the surface a point belongs to. The
most accurate solution is the MLS projection operator.
However, it is not useful in interactive systems. As it has
been mentioned the common practice is to find the closest
surfel and determine the status of the point by inspecting
the normal vector of the closest surfel. It is proposed that
by using the two closest surfels, the classification errors
can be reduced.

The final pass of the rendering uses hardware splatting
for surface surfels and finally the image is merged with the
result of the previous phase.

The advantage of this approach is that it can easily han-
dle the rendering of a multiple level CSG tree without the
need to generate the solids at the intermediate levels. Other
good feature is that it is possible to zoom arbitrarily to the
edges without visual glitches. However, since the render-
ing performance depends linearly on the number of vis-
ible edge pixels, if we zoom to the edge, the rendering
time falls rapidly. Note that in the object space method
(section 4.2), the result of the boolean operation is com-
puted only once, after the objects are animated. In that
case, when only the camera moves, the result can be ren-
dered with using only minor hardware computational ef-
forts. This suggests that the object space approach is better
for walk-through applications.

5 Data structure

Let’s go back to the interactive object space method, which
we discussed in section 4.2. The rest of this paper is fo-
cused strictly on this approach. It’s obvious that, there’s no
way to handle 50k-300k of points without having any data
structure more complex than a simple set. We have no con-
nectivity or alignment information about the surfels, thus
the only way to organize them is to use some kind of space
partitioning.

Generally we have 2 choices: a grid-like structure and
the well-known space partitioning trees.

5.1 Grid

A grid subdivides the space into an ∗ n ∗ n cells. A cell
may contain any number of surfels (figure 2/a). Since the
structure of a grid is static, it can be used efficiently for
dynamic scenes. The grid needs no restructuring only the
surfels in subject have to be moved from one cell to an-
other.
The k-nearest neighborhood can be also found fast because
the neighborhood of a cell can be accessed inO(1) step.
Thus, if the current cell does not contains enough points,
the 9 cells around this one can be accessed in constant
time.

But the strict structure is also a drawback since the sub-
division does not depends on the local sample density. It’s
possible that a cell contains hounders of points while other
cells contains only 1-2 points. By increasing the value of
n, the ’crowded’ cells become less dens, but the other parts
had to be partitioned further as well increasing the mem-
ory requirements.

5.2 Hierarchical tree

The other approach is to use a hierarchical space partition-
ing tree. In common we might state that these structures
are built recursively as follows:

• Let the whole scene be the root of the tree and also
the starting point of the recursion. (Later we’ll refer
to the unpartitioned parts of the space ascells.)

• Find the appropriate dividing planes for the current
cell and divide it into subcells. Substitute the original
cell with a node in the graph having the subcells as
the children.

• This partitioning is repeated till we reach a maximum
depth level in the recursion or a minimum in the num-
ber of surfels contained in the current cell.

We may differ thedata-drivenand thespace-drivenpar-
titioning. In the first case the space is partitioned adap-
tively to the sample density rather than regularly in space
as it is in the second case. See figure 2/c,d.

Both of them have their advantages and disadvantages.
In the following section we’ll focus on the space-driven
approach, especially on the axis-aligned octree, but these
algorithms can be easily adopted to the similar space par-
titioning hierarchies. We’ll show that, using the informa-
tion represented by an empty cell (that’s a part of the space
contains no boundary) may dramatically increase the effi-
ciency of bool evaluation.

a b c

Figure 2: Typical examples for grid (a), space-driven (b)
and data-driven (c) space partitioning.

6 Octree coloring

For each solid we construct an axis-aligned octree as de-
scribed in 5.2. Than the cells of these trees are classified
as being inside outside or on the border. This tree coloring
is usually performed in a preprocess step, however it must
be executed again, when the user places the interacted ob-
ject to its final position and wants to start a new boolean
operation on the result of the last phase.

6.1 Per level coloring

This classification is done as follows [1]. First the non-
empty leaf nodes are classified as boundary cells. Than
all the other (empty) cells are classified from the leaves to
the root of the tree according to the neighboring cells. It
is important to have a common understanding on what the
neighboring relations means. The neighbors of a cellC
are those child nodes of its parent, which can be accessed
from nodeC by an orthogonal route. Diagonal nearby
cells do not count. It means that each cell has exactly 3
neighbors. Other assumption of this algorithm is that the
point cloud is closed and evenly sampled. A resampling
process should be run on the solid, if it is not the case.

There are three different cases for the classification of a
node:

1. A cell has only one non-empty neighbor

2. A cell has more than one non-empty neighbor

3. A cell has no non-empty neighbor

In the first case the cell is classified according to the
non-empty neighbor. We find the closests surfel to the
cell and if it looks toward the cell, it is colored as outside,
otherwise it is colored as inside.

That is if we note the center of the current and the
neighboring cells ascc and cn, and the normal of the
surfel asns, than the cell is declared inside [outside] if
(cn − cc) · ns > 0 [(cn − cc) · ns < 0].

In the second case we consider only one of the neigh-
boring cells as before.

In the last case we classify the cell as the neighborhood.
Since a node in an octree contains at least one non-empty
cells, this classification can be done. If we are in the third
case and the neighbor has no color yet, we skip the current
cell and color the neighboring cells. Because of the exis-
tence of the non-empty cell in the node, in the worst case
we need 3 steps to classify the whole node.

By this coloring of the tree we’ve got a draft repre-
sentation of the interior of the solid bounded by the sur-
fels. However, in a last step, this can be further im-
proved by partitioning only the boundary nodes of the oc-
tree. Finding an average normal for a boundary cell by
n =

∑
ns/‖

∑
ns‖, we may define two parallel planes

those surround the surfels:pi = n · x − di, i = 1, 2;
whered1 = min(n · xs), d2 = max(n · xs) andxs are
the positions of the surfels. Than similarly as for the cell
classification we may classify the three parts of the cells
as inside, outside, border.

Thus we have an even better approximation for the inte-
rior (exterior) of the solid, which will be useful when we
classify the surfels of the other solid as being interior or
exterior.

6.2 Octree flood fill

In the first and in the second case of the per level coloring
approach having a center of a cell in our hand, we have
to find the closest surfel to get the normal of the surface.
As the number of the surfels increases, this activity takes
too much time and becomes the bottleneck. We try to re-
duce the number of times this procedure is executed by
classifying a cell according to its classified neighbor. If
the cell has not got a marked neighbor, we leave the cell
untouched for further processing. In the same time, we ex-
tends the domain of the “neighbor” relationship to be valid
across different levels of the octree.

Our algorithm works like a 2D drawing application (e.g.
GIMP), which paints a closed area bounded by a border-
line. However in our case the algorithm should work in 3D
and the border-line is defined by the nodes of the octree
that are still classified as boundary cells.

The flood fill starts by finding a suitable “seed” node,
which should achieve the following requirements:

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

! ! !
! ! !
! ! !

" " "
" " "
" " "

#
#
#

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

(((
(((
(((

)))
)))
)))

* * *
* * *
* * *

+ + +
+ + +
+ + +

, , ,
, , ,
, , ,

- - -
- - -
- - - . . .

. . .

. . .

/ / /
/ / /
/ / /

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

2 2 2
2 2 2
2 2 2

3 3 3
3 3 3
3 3 3

4 4 4
4 4 4
4 4 4

5 5 5
5 5 5
5 5 5

6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7

8 8 8
8 8 8
8 8 8

9 9 9
9 9 9
9 9 9

: : :
: : :
: : :

; ; ;
; ; ;
; ; ;

< < <
< < <
< < <

= = =
= = =
= = =

> > >
> > >
> > >

? ? ?
? ? ?
? ? ?

@ @ @
@ @ @
@ @ @

A A A
A A A
A A A

B B B
B B B
B B B

C C C
C C C
C C C

D D D
D D D
D D D

E E E
E E E
E E E

F F F
F F F
F F F

G G G
G G G
G G G

H H H
H H H
H H H

I I I
I I I
I I I

J J J
J J J
J J J

K K K
K K K
K K K

L L L
L L L
L L L M M M

M M M
M M M

N N N
N N N
N N N

O O O
O O O
O O O

P P P
P P P
P P P

Q Q Q
Q Q Q
Q Q Q

R R R
R R R
R R R

S S S
S S S
S S S

T T T
T T T
T T T

U U U
U U U
U U U

V V V
V V V
V V V

W W W
W W W
W W W

X X X
X X X
X X X

Y Y Y
Y Y Y
Y Y Y

Z Z Z
Z Z Z
Z Z Z

[[[
[[[
[[[

\ \ \
\ \ \
\ \ \

]]]
]]]
]]]

^ ^ ^
^ ^ ^
^ ^ ^

_ _ _
_ _ _
_ _ _

` ` `
` ` `
` ` `

a a a
a a a
a a a

b b b
b b b
b b b

c c c
c c c
c c c

d d d
d d d
d d d

e e e
e e e
e e e

f f f
f f f
f f f

g g g
g g g
g g g

h h h
h h h
h h h

i i i
i i i
i i i

j j j
j j j
j j j

k k k
k k k
k k k l l l

l l l
l l l

m m m
m m m
m m m

n n n
n n n
n n n

o o o
o o o
o o o

p p p
p p p
p p p

q q q
q q q
q q q

r r r
r r r
r r r

s s s
s s s
s s s

t t t
t t t
t t t

u u u
u u u
u u u

v v v
v v v
v v v

w w w
w w w
w w w

x x x
x x x
x x x

y y y
y y y
y y y

z z z
z z z
z z z

{ { {
{ { {
{ { {

} } }
} } }
} } }

~ ~ ~
~ ~ ~
~ ~ ~

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

Figure 3:The illustration of the flood fill octree coloring in 2D for depth d = 3.

1. It is a leaf node

2. It is not marked yet

3. It has a neighbor node which is a border

As before, the status of the seed node is determined by
finding the nearest surfel, and testing the normal vector
against with.

The seed node is then put into a queue and an iteration
is started. In each step of the iteration a node is fetched
from the top of the queue. We than find the neighbors of
the node, but this time we seek for next cells that can be sit
in any other level of the octree. One way of finding such
cells is generating points which are situated from epsilon
distance from the bounding box of the current node and
find that leaf of the octree, which contains this point. If
the recently found neighbor cell is not assigned any status
yet, we mark it by the status of the seed node and add the
cell to the queue.

If the queue becomes empty, another seed node is cho-
sen and the iteration starts again as it is illustrated on fig-
ure 3. Note that, it is possible that the octree has isolated
“inside” areas, but this method can handle such cases too.

7 Implementation

It was not our goal to create an all-in-one complete code
from MLS surface reconstruction, edge detection to point
set ray-tracing or to implement the different kind of resam-
pling operators, or to strive for experiencing the different
kind of beautiful rendering and splating techniques.

number of per-level flood fill gain
surfels (msec) (msec)
40K 128 112 14%
62K 187 161 16%
134K 243 202 20%

Table 3: Profiling results of the tree building and coloring

Instead, we created an application which cover small
areas from that huge topic mentioned before. To illustrate
the classification of the surfels by tree-coloring, we have
implemented the storage of points in an octree. This octree
can be colored according to the 6.1 or 6.2 section.

Finally the rendering process had to be implemented,
since without it the program cannot be used. First a sim-
ple point based rendering was created without taking any
effort to create nice pictures. Later a simple, hardware ac-
celerated algorithm was born. The surfels are represented
as an alpha textured quad. Since the texture is constant no
real EWA splatting or similar method is used [6]. Only a
simple alpha-blending function is applied on a Gaussian-
like texture.
The rendering process is a 2 pass method. In the first
pass only the Z-buffer is filled to avoid the blending of the
undesired parts. In the second phase the frame buffer is
filled using the pregenerated Z-buffer and alpha-blending
the surfels. This way the result was quite good.

With the help of the space partitioning, we classi-
fied the surfels in the other solid and vica-versa, and
we can achieve boolean operations with interactive rates.

Figure 4:Dense models can be used in boolean operations

When working on relatively sparse solids (3K), 9fps was
achieved easily without too much optimalisation. The
brute-force approach was 4 times slower, however as the
number of surfels increased the advantage of space parti-
tioning becomes more self-evident. On larger models, like
the chameleon model (100K) 4fps was reached.

The benefit of our flood filling algorithm is not exploited
in the interaction time, but in the preprocess or and in the
update phases. The comparison of the per-level coloring
and the flood filling is presented in table 3, which shows
that by increasing the number of surfels the algorithm be-
comes more and more useful.

As Adams have reported, we confirm also that the
fastest interaction is achieved by choosing the octree depth
to 4. In case of more than 100K surfels, the depth of 5 can
be considered also.

8 Conclusion

The aim of this paper was threefold. First of all, we in-
tended to give an overview on the current state of boolean
operations on surfel bounded solids. We discussed and ex-
plored deeply the interactive method presented by Adams,
and finally we’ve tried to improve his work.

9 Acknowledgments

This present work represents part of my Master Thesis
which discusses B-rep, volumetric and point cloud geo-
metric models in connection with boolean operations. I
would like to thank Gÿorgy Antal, my supervisor for all
his help and his precious orientation. Thanks go also to
Incode Ltd. for providing the pleasant environment and
other facilities.

Figure 5: Different visualisation possibilities in our pro-
gram

References

[1] Bart Adams, Philip Dutre.Interactive Boolean Op-
erations on Surfel-Bounded Solids. ACM, 2003.

[2] Marc Alexa, Darmstadt Daniel, Shachar Fleishman,
David Levin, Claudio T. Silva, Johannes Behr.Point
Set Surfaces. IEEE Visualization, 2001.

[3] Mark Pauly, Leif P. Kobbelt, Markus GrossShape,
Richard Keiser.Shape modeling with Point-Sampled
Geometry. Computer Graphics Proceedings, Annual
Conference Series. ACM Press / ACM SIGGRAPH,
2003.

[4] Mark Pauly, Markus Gross, Richard Keiser.Multi-
scale Feature Extraction on Point-Sampled Surfaces.
EUROGRAPHICS, 2003.

[5] Markus Gross, Martin Wicke, Matthias Teschner.
CSG-Tree Rendering for Point-Sampled Objects.
Computer Graphics and Applications, Proc. Pacific
Graphics PG’04, Seoul, Korea, pp. 160-168, 2004.

[6] Matthias Zwicker, Jeroen van Baar, Markus Gross,
Hanspeter Pfister.Surface Splatting. SIGGRAPH,
2001.

[7] J O’Sullivan, O’Loughlin. Real-Time Animation of
Objects Modelled using Constructive Solid Geome-
try. CG, 1999.

[8] Mark Pauly. Point Primitives for Interactive Mod-
eling and Processing of 3D Geometry. A disserta-
tion submitted to the Federal Institute of Technology
(ETH) of Zurich, 2003.

[9] Mark Segal. Using Tolerances to Gurantee Valid
Pilyhedral Modelling Results. Computer Graphics,
Vol.24, No.4, 1990.

[10] Szirmay-Kalos Ĺaszĺo, Csonka Ferenc, Antal
György. Háromdimenzíos grafika, aniḿació és
játékfejleszt́es (Hungarian book). ComputerBooks,
2003.

