
Real Time Atmosphere Rendering for the Space Simulators

Radovan Josth
Department of Computer Graphics and Multimedia FIT BUT

Faculty of Information Technology
Brno University of Technology

Brno / Czech Republic

Abstract
This paper presents an algorithm and its implementation
for the atmosphere rendering. It utilizes the Cg
programming language for both the Vertex and the Pixel
shader. The algorithm consists of five steps, every step
generating the depth textures from the Depth buffer. The
depth textures are non-power-of-two textures because we
can not guarantee power-of-two screen size. The main
part of the atmosphere rendering algorithm is using a
programmable pixel pipeline.

Keywords: atmosphere, Cg programming, Shader,
Shadow

1 Introduction
Looking down on Earth from space, one can see very
beautiful transparent blue haze around the planet which
covers the relief of the mountains and the seas. The Earth
is enveloped by a vast amount of air called the
atmosphere. If we fly down to this haze we can observe
that the relief of the mountains and the seas is more
colored and the intensity of blue transparent color slightly
decreases, but the stars and the black color of the space is
fading out in a glow of the shiny atmosphere. If we look
on Earth from a distance, we can see a glowing tiny ring
around the Earth.

White hovering objects in real atmosphere are the
clouds. The clouds are very complicated objects with
various densities. Density and width are very important
parameters for the color of the clouds. For simplification,
we do not render clouds in this work, but it can be
extended to cover this issue.

Realistic atmosphere rendering is a complex work,
requiring much more computational power than for a
simple atmosphere. In games or space simulators we can
not use the CPU just for the atmosphere rendering, we
need it also for physics or something else. The GPU is
utilized to decrease the load of the CPU. For the
implementation of the supporting algorithm we use the
C/C++ language and for the main algorithm we use the
programmable pipeline. The shaders are programmed in
the Cg language developed by NVidia, both for the
Vertex and the Pixel Shaders. The fixed pipeline is turned
off while the atmosphere is rendered. The output of this

algorithm is very accurate because every pixel on the
screen is computed separately according to the
atmosphere depth. Example screen shot of this algorithm
is in Figure.1.

Figure 1: The atmosphere rendered
by this algorithm

Similar algorithms were presented in the past. Many

of these algorithms render atmosphere from the inside of
it and don’t consider a view from the space towards the
Earth. These algorithms are mainly designated for flight
simulators. Very precise rendering of the atmosphere was
introduced by Ralf Stokholm Nielsen (Sept. 2003) [3].
Algorithm presented by Tomoyuki Nishita, Takao Sirai,
Katsumi Tadamura and Eihachiro Nakamae [2] was
mainly designated for view from the space. The
atmosphere seems to be reddish when looking from the
back side of it. List and descriptions of other algorithms
can be found on the web [4]

2 The theoretical background
The atmosphere is relatively thin compared to the size of
the earth and fades away with increasing distance from
the earth's surface. The earth's atmosphere is categorized
into 4 layers - troposphere, stratosphere, mesosphere and
thermosphere. The troposphere where all the weather
takes place and stratosphere, the two closest layers to
earth's surface constitute more than 99% of the
atmosphere. The troposphere and the stratosphere extend
up to 12 km and 53 km respectively from the earth's

surface, these two layers are almost invisible. The earth's
atmosphere is composed of many gases. Gravity holds the
atmosphere close to the earth's surface and explains why
the density of the atmosphere decreases with altitude.

The density and the pressure of the atmosphere vary
with the altitude and depend on the solar heating and the
geomagnetic activity. The simplest is an exponential fall
off model where the pressure and the density decrease
exponentially with the altitude.

The back side of the atmosphere is slightly illuminated
by the stars and in some cases by the Moon. The real
atmosphere color depends on light position and also on
the width of the atmosphere which the light must pass
through. But in this algorithm we consider only the width
of the atmosphere and the shadow of the planet and we
don’t consider the change of the RGB proportion.

3 The Algorithm
In this section we introduce an algorithm for shadow
rendering. The algorithm does not consider the color
dependence between the position of the light and the
atmosphere width. The atmosphere color is evaluated only
from the illuminated atmosphere width and shadowed
atmosphere width.

This algorithm is divided into two parts. One part is
programmed in C/C++ and running on the CPU. This
part: draws the shadowing object, the planet and the
atmosphere; controls programmable pipeline by setting its
state to enabled or disabled and setting its parameters. The
second part of the algorithm is done in the pixel shader. In
this part we are getting color of every single pixel of the
atmosphere.

The pixel color depends on the atmosphere width. The
color is composed of three parts, the atmosphere behind
the shadow, inside the shadow and last, the atmosphere in
the front of the shadow. For this reason we need to divide
the algorithm into more steps.

1. render the depth value for the back side of the

shadow
2. render the depth value for the front side of the

shadow
3. render the planet
4. render the depth value for back side of the

atmosphere
5. render the front side of the atmosphere

Parts 1, 2, 3, 4 are passed without a use of the pixel
shader. Parts 1, 2, 4 are required only for generating the
depth texture. The third part renders planet to the depth
buffer and to the color buffer. In the last part we enable
the pixel shader and compare the depth textures.

Shadow object is modeled with a simple cone. The
shadow cone diameter is equivalent to average diameter
of the planet. The color of the atmosphere in the shadow
doesn’t depend on the moon phase or the stars.

1.) The first step renders the depth value for the back
side of the shadow, which is used for clipping in the fifth
step. (Fig.2.)

Figure 2: Back Shadow Face

2.) The second step is very similar to the first one,

only one difference is between them. The second step
renders the depth value for the front side of the shadow.
(Fig.3.)

Figure 3: Front Shadow Face

Steps number one and two divide the depth values in

three parts:
• the atmosphere behind the shadow
• the atmosphere inside the shadow
• the atmosphere in the front of the shadow

3.) The third step renders the planet surface into the

color buffer and into the depth buffer. The depth buffer
will be used later for clipping the atmosphere behind the
planet. (Fig.4.)

Figure 4: Planet Depth

4.) The fourth step renders the back side of the

atmosphere into the depth buffer. This step divides the
depth buffer into two parts: behind the atmosphere and
inside or in front of the atmosphere. (Fig.5.)

Figure 5: Planet + Back Atm. Depth

Having all the depth information in the textures, we

can start with creation of the atmosphere itself.

5) The main step is the fifth step. This step renders the
complete atmosphere using the Pixel Shader. This step
needs the four depth textures which are passed through
the pixel shader parameters. Now, having these textures,
we can compute the color for every pixel. Each pixel is a
sum of three values:
• the atmosphere behind the shadow
• the atmosphere within the shadow
• the atmosphere in front of the shadow

These three values are computed separately. For

computing the first value, the precomputed shadow depth
values are required. Every value in the shadow depth
buffers must be clipped with the front and the back side of
the atmosphere and the planet depth textures. (Fig.6.)

Figure 6: Front(a) and Back(b) side of clipped shadow

The atmosphere behind the Shadow
For the atmosphere color behind the shadow we use the
clipped front shadow depth value (Fig.6a.) and the depth
value from step 4.) (Fig.5.)

atm_width1 = z_atm_back - z_shadow_back

Figure 7: The atmosphere width behind the shadow

The atmosphere inside the shadow
The second step is computed from the subtraction of the
two clipped shadow depth values (Fig.6a, Fig.6b). We
can see the result of the subtraction in Fig.8.

atm_width2 = z_shadow_back - z_shadow_front

Figure 8: The atmosphere width within shadow

The atmosphere in front of the shadow
We get the third value from subtraction of the front side
clipped shadow (Fig.6a) and the front side of the
atmosphere.

atm_width3 = z_shadow_front – z_atm_front

Figure 9: The atmosphere width in front

of the shadow

The final illuminated atmosphere width is a sum of the
first and the third value.

atm_light = atm_width1+ atm_width3

The second value (atm_width2) is equivalent to the

width of the atmosphere in the shadow. The color of the
atmosphere is now computed from atm_light and
atm_width2.

4 Implementation
For implementation, the Cg language was used for
pixel/vertex shaders and C/C++ for the main application
program. The application is using the OpenGL standard
for fast rendering. The pixel shader must be ARBFP1 or
FP30.

The following problems have been faced during the
experimenting with the algorithm.
• In some cases the shadow object may be closer than

Z-near clipping plane, in this case an extended Pixel
shader is used for changing the depth value of the
fragment to z-near. This approach avoids the need of
using an extra shadow cap above the atmosphere cap.
Without this clipping, some errors may occur in the
picture in some cases (Fig.11.).

• Next problem can be too small value of z-near
clipping plane. When the observer is very close to the
front side of the atmosphere, very sharp steps
between separate atmosphere layers can be
seen (Fig.12.). This artifact is caused by the depth
buffer being non-linear and for the farthest objects
(values) the depth value features too low resolution
compared to the closer objects (values).

• We need non-power-of-two-textures for the depth
textures. For work with these textures
GL_TEXTURE_RECTANGLE_NV must be
enabled and used as the target for binding textures.

Rendering of the atmosphere Step-by-step:
• Clear Buffers (Depth, Color)
• Set ColorMask to FALSE for all colors
• Render the clipped back side of the shadow
• Save the depth texture (ShadowBack)
• Render the clipped front side of the shadow
• Save the depth texture (ShadowFront)
• Clear the depth buffer
• Render the planet
• Render the back side of the atmosphere
• Save the depth texture (PlAtDepth)
• Enable the Pixel Shader
• Set parameter ZParam for the pixel shader (constants

for linearization)
• Render the front side of the atmosphere

Depth Buffer Linearization:
As we know, the depth buffer is not linear. Closer objects
are more detailed. When we want to get the atmosphere
width, we need to compute with the linear values. We
must linearize the depth values.

z_linear = b / (z_buffer_value – a)

Where:
 a = zFar / (zFar - zNear)
 b = zFar * zNear / (zNear - zFar)

Pixel Shader code:
struct input{

 float4 position : WPOS;

 float4 color : COLOR;

};

struct output{

 float4 color : COLOR;

};

output FragmentProgram(input IN,

 const uniform samplerRECT PlAtDepth,

 const uniform samplerRECT ShadowFront,

 const uniform samplerRECT ShadowBack,

 const uniform float4 ZParam)

{

 output OUT;

 float zback = texRECT(PlAtDepth,

 IN.position.xy).r;

 float zshb = min(max(texRECT(ShadowBack,

 IN.position.xy).r,

 IN.position.z), zback);

 float zshf = min(max(texRECT(ShadowFront,

 IN.position.xy).r,

 IN.position.z), zback);

 // Linearize Z values

 float4 z = float4(zback, zshb, zshf,

 IN.position.z);

 z = ZParam.y/(z-ZParam.x); // z_lin=b/(z-a)

 // dz.x�width of the illuminated atmosphere

 // dz.y�width of the shadowed atmosphere

 float2 dz = float2(z.x-z.y+z.z-z.w,z.y-z.z);

 // Stretch dz to correct depth ratio

 // ZParam.w�Zfar; ZParam.z�ZNear

 dz = dz / (ZParam.w - ZParam.z);

 OUT.color.a = IN.color.a;

 // 3.0 � Atmosphere brightnes

 // 20% color of the shadowed atmosphere

 OUT.color.rgb=3.0*(IN.color.rgb*(dz.x+

 0.2*dz.y));

 return OUT;

}

5 Results
The algorithm described in this paper has been
implemented and experimented with in the Microsoft
Windows operating system. Figures 11-15 show several
screenshots.

All tests were performed on Athlon 3400+ with the
NVidia FX5200 graphics card. Average frame rate was 9
fps at resolution 1280x1024. FX 5200 graphics card is too
slow for rendering full screen picture with the Pixel
Shader. Without the atmosphere rendering, we can get 26
fps. Rendered planet has got 196000 triangles. Earth
sphere is very densely tessellated sphere. Mountain scale
depends on the camera distance. The scale factor is
changing dynamically in the programmable vertex shader.
The mountain scaling is very good visual improvement
because the observer will get nice look from the space
down to the earth. This technique is very time-consuming
and many algorithms do not use it.

Figure 11: Shadow object is not correctly

clipped with z-near

Figure 12: Bad Z-near (very close)

Figure 13: The atmosphere width

Figure 14: Front view of Earth

Figure 15: Back view of Earth

6 Conclusions and Future work
The presented algorithm can be used for rendering
positional fog with shadow or for nebulas. This method is
very fine for the atmosphere width in rugged relief
(Fig.13.), most of other atmospheric algorithms do not
consider the planet relief from the space when the relief is
scaled.

Further work now continues on the atmosphere
rendering from earth’s surface and in the future I want to
implement static/dynamic clouds which will greatly
improve the visual quality of the atmosphere from the
space and from the earth. Another future improvement
will be rendering the eclipses. If some planet is eclipsed,
the atmosphere of it must be shadowed too. This
improvement will involve rendering and combining two
shadowing objects.

References
[1] NVidia, Cg-Toolkit (Release 1.2, 2004)

[2] Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura,
Eihachiro Nakamae. Display of the Earth Taking into
Account Atmospheric Scattering, SIGGRAPH, 1993

[3] Ralf Stokholm Nielsen. Real Time Rendering of
Atmospheric Scattering Effects for Flight Simulators,
Sept. 2003

[4] http://www.vterrain.org/Atmosphere/

