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Abstract 
In this paper we present on-line structure from motion 
reconstruction. Input to our algorithm is un-calibrated 
images from video sequence. We assume that images 
have zero-skew, principal point is at image center and 
aspect ratio is equal to 1. We are able to detect and 
correct small radial lens distortion of camera using fast 
iterative method. Camera focal length can vary across 
sequence. With these assumptions we are able to self-
calibrate cameras using input image sequence and restrict 
space ambiguity from projective to metric one. In our 
approach we use linear self-calibration method. 
 
Keywords: Visual modeling, Structure-from-Motion, 
Projective reconstruction, Self-calibration, Radial lens 
distortion 

1 Introduction 
In many nowadays applications such architectural 
visualization, cultural inheritance, medicine, movie and 
computer games industry it is required to acquire high 
detail photo-realistic 3D model/representation of some 
real objects. There exists several methods how to create 
virtual copy of existing real object – from modeling by 
artists to laser scanning. 
Obtaining sparse scene reconstruction (structure) and 
camera positions (motion) is almost last step before 
dense 3D reconstruction. Sparse scene can be used as 
reference points for adding new 3D object to scene. With 
reprojecting new model to known cameras we can easily 
add virtual objects to existing video sequence. 
We take a closer look to the one of the most accessible 
and cheapest way of obtaining motion and structure – 
using video sequences. With such methods user can 
freely move camera around an object or scene and record 
video. From this video we are able to reconstruct motion 
of the camera and sparse scene reconstruction. Neither 
camera position, nor camera setting has to be known a 
priori. 
Our approach tracks point features across video 
sequence. From tracked features we create two-view 
geometry using robust algorithm. Then multiple view 
structure and motion is created. Every change of 
structure must kept sparse scene consistent. It means that 
all re-projected 3D points must be lying on its 2D 

corresponding feature (practically due to discrete space 
and noise we want to achieve minimal quadratic error – 
further in text we will call these “error aspects”). If mean 
error exceeds threshold we perform non-linear 
minimization. Using self-calibration we restrict space 
ambiguity from projective to metric.  
In the past years many similar approaches has been 
proposed. The most similar - in way of how input and 
output are defined - are approaches of Marc Pollefeys[1], 
and Kanade et. al[2]. The main difference against these 
works is that we process input on-line and thus we can 
create model directly from camera stream. Sequential 
approach has been also proposed by [15], but unlike this 
algorithm, our does not require quasi-Euclidian 
initialization.  Pollefeys uses stratified approach so as we 
do and Kanade uses perspective factorization method. 
There exist many other methods where more assumptions 
or space markers are required. Detailed description can 
be found in [3]. 
In this paper we describe our sequential stratified 
approach in three sections - feature tracking, structure 
and motion, self calibration. Each section contains 
overview and comparison of already proposed methods. 
In our work we target to feature tracking with our 
modification of guided matching, radial lens distortion 
removing and two-view to multiple-view merging. Other 
intermediate processes are described with smaller detail 
with references to complete description so that reader 
will get complete look to the problem. The paper is 
concluded with Results and Conclusion with future work. 

 
Authors note : If we could effectively find global minima 
of following expression 

 
 
 

 
 

 
where mij is known 2D re-projection of unknown 3D point 
X j by unknown camera Pi and  d(x, y) is distance of two 
2D points, then all efforts behind reconstruction would be 
futile. Therefore all the effort is being put into finding 
initial condition for numerical minimization methods 
minimizing this formula. 
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2 Feature tracking  
We define feature point as point that can be differentiated 
from its neighbouring points. Feature matching plays key 
role for most of the photo/video based modelling tools. 
We transformed this problem in computer vision to 
simpler problem of feature tracking with adding 
assumption on maximal motion between two input 
frames.  
There already exists robust commercial feature tracking 
package like described in [4]. For our work we have 
selected free KTL feature tracking toolkit [5] and 
developed new feature tracker similar to KTL. 

 

2.1 Harris based feature tracker 

Ours feature tracker uses Harris point feature detector 
[6]. We detect feature points on two neighbouring images 
from sequence. Similarly as in KTL we select features 
that are good to track. As we assume small motion 
between neighbouring images, we can remove all 
features that can be miss-exchanged with its 
neighbouring feature points in the same image – we will 
refer to this as self-correlation (see Figure 1 left). 
 
 

 
 

Figure 1 : left – self correlating feature, left bottom – 
correlation to two self correlating features, right – good 
feature to track, right bottom – neighbours correlations. 

 
 
Each feature point is extended by its orientation. We 
defined orientation of feature point by two principal axes 
of covariance matrix formed from small region 
surrounding feature point. (Figure 1, top-left).  
We also remove the features that have one principal 
component much bigger than second one. This is typical 
for edges. Due to noise in image and discrete sampling 
these features are not stable when we rotate image (see 
Figure 2). 
Features left in two images are than matched using zero-
mean normalized cross-correlation (ZNCC). We 
modified ZNCC to take in account feature orientation. 
This is done by changing coordinate system to polar 
coordinate system. 

 

 
 
 
 

 
 

Figure 2 : Principal components marked by red. The 
only good feature is marked by green colour. 

 
 

2.2 Removing outliers 

From both KTL and our feature matching algorithms, we 
get well correlating feature pairs. In real images we 
noticed that these pairs sometimes do not point to the 
same object in the scene (see Figure 3). Such feature 
pairs (further in the text outliers, similarly good 
correspondences are called inliers) have to be removed as 
in next stages they may cause numerical errors.  
 
 

 
 

Figure 3 : Feature match perfectly to more features in 
second image. 

 
In our approach we use RANSAC paradigm [7] to find 
two-view geometry. We use epipolar geometry described 
by fundamental matrix. All inliers will satisfy epipolar 
constrain  
 

  (1) 
 

where m and m’ are two corresponding feature points, and 
F is fundamental matrix. 
Using this constraint we eliminate almost all outliners. 
 

2.3 Finding more features 

After two view geometry is obtained we can perform 
guided searching. Fundamental matrix restricts searching 
region for each point in first image to line in second  
image (see Figure 4). 
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Figure 4 : Corresponding point to the point in right 

image must lay on (or due to noise lay near) the line in 
the left image. 

 
 

Using this we can effectively find new features and 
matches.  
In our approach we find epipolar lines for each feature. 
Guided matching is performed on these lines with taking 
ordering constraint into account. Two features are 
correlated only if length of epilolar line segment from 
previous feature point is similar to length on 
corresponding epiloar line (see Figure 5). 

 
 

 
Figure 5 : Pair P1 1-1 will be added if correlation 

exceeds threshold. Pairs 1-3, 2-1 2-3 will not be tested 
because lengths of line segments are too different. If 2-
2(If not missing) is used, 3-1 would not be tested due to 

ordering criterion. 
 

 
From new matches we calculate new fundamental matrix 
using normalized 8point algorithm [8]. Normalized 8 
point algorithm uses linear least-square error methods to 
find fundamental matrix. This method does not perfectly 
distribute error as pointed in [8]. Therefore we use result 
from 8point algorithm as an initial estimation for 
nonlinear numerical minimization of  

 
 

 
 
 

where 0it itm Fm′ = , mi and m’i are i-th corresponding 
feature pair and  d(x, y) is distance of two 2D points. 

 

We minimize cost function using sparse Levenberg-
Marquard [9] algorithm. 

3 Structure and Motion 
From previous step we have pairs of matching features 
and also two-view geometry of last and new frame from 
image sequence. Note that we add frames sequentially. 
From relation between the views and feature 
correspondence we will create structure of the scene and 
motion of the camera.  
Approach proposed here is similar to [1]. Unlike [1] we 
don’t require to search for initial frame. All 
measurements are carried out in image space so that we 
can stay in projective space too. Structure and motion is 
built sequentially by merging camera pair with previous 
structure using common features. There must be enough 
– at least 4 – common feature points. Introducing image 
based measurements allows us to measure amount of 
motion parallax between image pairs. During merging 
step we take this motion to assign weight to common 
feature points. 

3.1 Camera pair 

3.1.1 Quasi-calibrated camera pair 

 
Using epipolar geometry - known from previous step - 
we create projective camera pair. Canonical pair is 
defined as follows 
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where F12  is fundamental matrix from image 1 to image 
2, e12 is epipole. Note that o and  a are free parameters 
and changing them will let epipolar geometry of camera 
pair unchanged [3]. o determines the global scale of 
reconstruction and a position of reference plane. Thus  o 
can be simply set to one. In our approach we find a so 
that camera P2 will hold calibration condition - zero 
skew, principal point at image centre and varying focal 
length. Note that we need at least 3 cameras to perform 
full calibration with our input assumptions. Therefore 
further in the text we will call this camera pair as quasi-
calibrated. 

3.1.2 Sparse scene from camera pair 

 
Having projective matrices we are able to calculate 3D 
position for each feature pair. Usually, this is done using 
triangulation. Due to noise and discrete image space, 
sight lines may not intersect perfectly. We calculate 3D 
point so that distance between reprojected 3D point and 
matching 2D point is minimal: 

2 2cost( ) ( , ) ( , ) ,i it i it
i

F d m m d m m′ ′= +�

P1 

P2 

2 - missing 

1 

2 

1 

3 

P3 

Left image 

Right image 
3 



 
 

2 2
1 2( , ) ( , ) ,d m PM d m P M′+  

 
where m, m’ are corresponding 2D feature points, both 
corresponding to M, and P1, P2 are camera matrices pair 
and  d(x, y) is distance of two 2D points. 
Many methods how to obtain optimal 3D position are 
proposed in [3]. In our work we statistically find 3D 
position M by minimizing following formula: 

 
 

 
 
 
Sum members are distances of unknown point M and 
sight lines (Ai is camera centre, m point in 3D on 
projection plane). Such point can be computed using 
least squares method. If reprojected 3D point is to far 
from its 2D match, the feature is considered to be outlier. 

 

3.1.3 Small motion – precision issues 

 
Sometimes we are not able to calculate projection 
matrices. This occurs when no-motion was made, or 
virtual parallax occurred. In that case the epipolar 
geometry (fundamental matrix) is poorly estimated.  To 
detect this in early phases of algorithm we perform 2D 
measurements and skip frame if median length of motion 
vectors is smaller than threshold. Virtual parallax caused 
by pure rotation around axis passing through focal point 
combined with pure zooming can be detected by 
thresholding fundamental matrix eigen values. 
Even if fundamental matrix is well defined, discrete 
space and noise can cause too big freedom for placing 
3D point (see Figure 6). The error can be enormous when 
camera motion is small. For that case we introduce image 
based measure (weight) for each 3D feature saying, how 
precisely we estimated 3D point (volume of intersection 
of sight lines). Similarly, if median weight is smaller than 
threshold we skip frame.  
 
 

 
 

Figure 6 : Volume of intersection of sight lines grows 
with smaller angle between sight lines. Placing 3D point 

anywhere inside this volume will be perfect match. 
 
 

Note that photo-consistent 3D point lays in intersection 
of all sight lines from all cameras from which the 3D 
point is visible. 
Also note that skipped frames are hold in memory for 
feature tracking purposes. 
 

3.1.4 Radial lens distortion 
 
Optical distortion of camera lens can move 2D points 
from original position far away – even more than 10 
pixels. In our work we take into account only radial lens 
distortion that can be approximated as 
 
 
 
 
 
 
 
where κ  is unknown distortion factor. 
Our algorithm is similar to [9]. In [9] authors modified 
distortion equation to 1/λ and this allowed them to 
modify linear algorithm for calculating fundamental 
matrix to calculate κ too.  New equation for F matrix 
returns more roots (around 10) and all must be tested. 
Also authors comment that change of radial distortion 
equation creates many local minima around global 
minima. 
Our radial lens distortion removal algorithm search for 
κ directly by minimizing  
 
 
 
 

 
where mi, mi’  are corresponding 2D feature points, F is 
fundamental matrix and  d(x, y) is distance of line and 2D 
point. For each κ we un-distort features position and 
find new fundamental matrix. Features are scaled to fit 
window. κ  is found using stimulate annealing [17]. 
We assume that κ is equal for two neighbouring 
cameras. κ for i-th camera is approximated by averaging 
κ obtained from both pairs (i-1th and i+1th cameras). 
For small motion this algorithm does not find good κ . 

 

3.2 Updating the structure and motion 

In this section we describe how camera pairs are merged 
together with existing reconstruction. Our algorithm 
merges new camera pair with existing structure and 
motion using their common camera. Due to noise, 
estimation errors, amount of outliners and so on, error 
will accumulate and after few camera are added the 
resulting scene will be inaccurate. In our approach we 
calculate re-projection error of 3D space on each camera. 
If mean error exceeds threshold value, than we perform 
nonlinear minimization - bundle adjustment [11]. Taking 
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in account sparsity of the problem, this problem can be 
solved effectively [12]. 

3.2.1 Merging camera pairs 

 
For merging process we have new camera pair P1, P2 - in 
canonical form, and existing reconstruction. Let P be last 
camera in existing motion structure. P corresponds to P1 
camera in new pair. Merging pairs means to transform 
both P1 and P2, so that P1 will be equal to P. After that P2 
will not be correctly placed as P2 can differ in position of 
reference plane and scale factor (see Figure 7). 
 
 

 
 

Figure 7 : Merging new pair and existing space using 
common features. 

 
 
In ideal conditions we can express homography 
transformation that will fix P2 camera from known 3D 
space and common correspondence as 

 
 

,Y HX=  
 

where X and Y are corresponding 3D points in new pair 
3D structure and existing structure. 
From four 3D points we are able to calculate H. 
Practically due to error aspects we need robust approach 
as not all 3D points are suitable for calculating such 
homography. In ours approach we select bundle of those 
points that have biggest weight (see Small motion – 
precision issues). From these 3D points we calculate 
homography using RANSAC paradigm [7]. Homography 
is calculated so that error is measured in 2D. 

After transforming P2 with H we merge 3D structure of 
new pair into existing structure. Already known 3D 
points are merged with new points and are recalculated 
as described in section 3.1.2. 
To minimize accumulated error we calculate mean 3D to 
2D re-projection error. If this error exceeds threshold 
value we perform bundle adjustment. 

4 Self-calibration 
 
Until now we did not care about camera parameters. 
Reconstructed space and camera poses are locked by 
photo consistency constraints (reprojection error is small) 
but such reconstruction is not unique. Now we will detect 
camera intrinsic parameters using only images - this is 
called self-calibration. Many technics how to perform 
self-calibration of cameras are described in [3]. 
Let X by any 3D point of reconstruction, P any camera 
and m corresponding 2D feature in camera P. For any 
homography H4x4 we get: 

    
 

  (2) 
 

 
It means that we can transform both cameras and 3D 
points so that reprojection error will stay unchanged. 
Without loss of generality consider that H does not 
rotate, translate and scale. These components are 
interesting only if we want to align reconstruction to 
some existing space. Now, the only component that we 
will care about is projective part of the homography - the 
only part that can transform plane at infinity. Such 
homography can be described as follows: 
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where a, b, c, k are unknowns. 
Camera matrix can be factorized into upper triangular 
3x3 calibration matrix (4), 3x3 rotation matrix and 3x1 
translation matrix.  
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where � x, � y  - focal length, � x : � y aspect ration,  s – 
skew, [x0, y0 ]  principal point. 
In our approach we find homography H so that all 
cameras transformed with H will have calibration 
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matrices as assumed – skew equal zero, principal point at 
image centre, aspect ration equal 1 and varying focal 
length. Key of finding such homography lays in 
projection of absolute conic. Absolute conic can be 
represented using dual absolute quadric [13]. One of the 
most important properties of absolute quadrics 

�
 is that 

they are invariant to similarity transformations. Another 
property leads to direct key to how to find H: The 
projection of dual absolute quadric is directly related to 
the intrinsic camera parameters [1] : 

   

 (5) 

 
where P is 3x4 projection matrix. 
Since the images are independent to the projective basis 
of the reconstruction, equation (5) is always valid and 
constraints on the intrinsic can be translated to 
constraints of absolute quadric [1]. With our assumptions 
(5) can be rewritten into linear system with one cubic 
constraint [14]. 
Using H we transform whole structure and cameras as 
shown in (2). This will cause that re-projection error will 
stay unchanged and cameras hold ‘real’ conditions. 

5 Results 
In our work we aimed on feature tracking with our 
modification of guided matching, radial lens distortion 
removing and two-view to multiple-view merging. 

 
 

 
 

Figure 8 : Our tracker – traceable features marked white. 
 

Our feature detector does not differ from KLT detector a 
lot. Comparing with KLT we introduced feature 
orientation, perform feature correlation in colored images 
and have other criterion for selecting features that are 
good to track. Taking orientation into account caused that 
our feature tracker does not lose features when camera is 
rotated. For small camera rotation even KLT will work 
fine. Because we perform feature correlation on colored 

images we can track more features if these can be 
differentiated by color. 
Our criterion for selecting traceable features keep main 
role in scenes like in Figure 8 (compare to Figure 9). 
Here KLT selects features that are not suitable for 
tracking and will cause many bad matches. For small 
motion both KTL and our feature trackers give the same 
results in comparable time. 

 

 
 

Figure 9 : KLT good features – traceable features 
marked red. Bigger motion results in invalid matching. 

 
Guided matching algorithm finds matches that satisfy 
epipolar constraint (1). If two matching pairs lay down 
on their epipolar lines, than epipolar constraint is 
satisfied even if these features are outliers.  
Ordering constraint and length criterion dramatically 
eliminate number of outliers. Computational complexity 
stays in worst case O(nm) - for n features in first and m 
features in second image. New criterions reduced number 
of expensive cross correlation tests (Figure 10).  

 
 

 
Figure 10: Guided matching. Matching is processed on 

two corresponding epipolar lines. 
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We tested our radial distortion on grid patterns and real 
images. We did not aim to find perfect calibration, 
because global nonlinear minimization corrects radial 
distortion too. Numerical complexity depends on number 
of feature pairs because we recalculate fundamental 
matrix every iteration. Our experience show that linear 
estimation suffices. For 200 feature points we estimate 
radial distortion under 1 second on 2.8GHz machine.  
For grid pattern the error against ground truth was under 
2 pixels at image corners (measured on feature points).  
 

 
Figure 11: Radial distortion test. Left original, right 

undistorted. Under images are error graphs. 
 
Ransac paradigm in both two-view and merging to n-
view processes makes algorithm robust for presence of 
outliers. Tests on synthetically generated data showed 
that algorithm can also deal with 30% amount of outlier 
(for 100 feature correspondence). Radial lens distortion 
influence 3D scene, but 3D to 2D re-projection error 
stays under 1pixel. Adding noise with gaussin 
distribution to the images will cause problems for linear 
algorithms. Having more cameras will cause that 3D 
points are estimated from more 2D correspondences and 
thus noise is slightly suppressed so that structure does not 
change dramatically. Because camera projection matrix 
is calculated from only from using fundamental matrix, 
numerical minimization on fundamental matrix is in this 
case essential. For noise with radius 3pixels, cameras 
were estimated poorly even after numerical 
minimization. For such case it would be better to 
calculate projection matrix from 3, 4 or more view image 
constraints.  
Tests on real data give good results even for small 
resolution camera. Figure 12 shows sparse reconstruction 
of scene captured by digital camera in resolution 
320x240.  
Although quasi-calibration of pairs is not required, our 
experiences show that it helps in merging processes. 
 

 
 

Figure 12 : Sparse reconstruction of the scene. 
 

Merging quasi-calibrated pairs will cause that sparse 3D 
space is not so distorted by perspective. Such 3D points 
are near true position and space is more uniformly 
distributed. We explain better results by better uniformity 
of distribution of the space. 

6 Conclusion and future work 
We have presented a sequential stratified approach for 
creating calibrated motion and structure from un-
calibrated video sequence. Sequential processing allows 
us to process input video directly from camera stream. 
Biggest advantage of processing from stream is that we 
can skip process of storing to disk and video compression 
which leads to better quality (due to uncompressed 
transfer). 
Because there is always noise in the images it is not good 
to calculate camera from only two views. Therefore we 
want to improve camera projection matrix calculation, 
using more images. Our experiences also showed that if 
principal point is not in image centre, than scene stay 
skewed even after self-calibration. For cheap hand held 
cameras it is unexpected to have principal point at image 
center. Allowing principal point to be constant (non zero) 
or to be varying leads to non-linear self-calibration 
algorithm.  
As future work we plan to extend algorithm to extract 
dense scene structure and reconstruct textured 3D mesh. 
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