
Web-Based Parameter Space Explorer for Non-Invertible
3D Maps

Vladimı́r Roth∗

VRVis Research Center
Vienna / Austria

&
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava / Slovakia

Abstract

This paper describes the process of interactive dynam-
ical system investigation. We are working with multi-
dimensional econometric dynamical systems. Various
types of visualization are presented, namely the 3D and
2D visualization of the parameter space and also the 3D
and 2D visualization of the phase space (see Figure 1). Ef-
ficient linking of these visualizations is described. Other
related topics are also covered, like automatic matching of
the objects in the phase space and distributed computation
of the difference equations which describe the dynamical
system. Our solutions are implemented in the application
written in Java. The application is also providing a bifur-
cation diagram, visualized as background coloring, based
on the investigation of the parameter space.

Keywords: Dynamical system visualization, Parameter
space, Phase space, Attractor, Basin, Bifurcation, InfoVis

1 Introduction

With the development of computers a new topic came to
attention, namely interactive investigation and visualiza-
tion of dynamical systems (also via the network). Visual-
ization helps us to see the relations and the properties of
the data better and can be crucial while understanding the
relations.

A solution for interactive dynamical system investiga-
tion is described in this paper. Firstly we introduce some
terms and definitions which will be used in the paper. Most
of the work was spent on the visualization which is de-
scribed in the Chapters 4 and 5. In chapter 5 we introduce
Star glyph which is used to visualize positions and char-
acteristics of phase spaces in the parameter space. The
phase space visualization is described in the Chapter 4. In
the Chapter 3 we aim at the dynamical system exploration
and the basic concepts like the topology of the system and
previous work. Additional parameters of the system like
linking and modularity are described in Chapter 6. At the

∗vlado@roth.sk, www.roth.sk

end in Chapter 7 we provide concrete example of econo-
metric dynamical system investigation.

Our system is implemented in Java using RMI (remote
method invocation) for network communication, Java3D
for 3D visualization and a Java library called RTVR [11]
for volumetric data visualization. The system is fully in-
teractive and asynchronous so many tasks can run together.
It is also platform independent thanks to the use of Java.

Figure 1: Main application overview with all types of visu-
alization shown. Namely the 3D and 2D parameter space
visualization and the 3D and 2D phase space visualization.

2 Dynamical systems

Dynamical systems describe the evolution of some enti-
ties within a common space. One example of dynamical
system is a food chain, describing the who-eats-whom
relation between several species, living in the same place.
A 2D predator-prey model by Lotka and Volttera is an
example of such a food chain. This model describes the
evolution of dynamical system consisting of two species,
predator and prey. It consists of two values representing



the amount of predators and preys present in the system
at a certain time, and a description of the change of these
values due to the given setting of the system [8].

A dynamical systemis specified by equations and set
of parameters [2]. There are two types of dynamical sys-
tems,continuousand discretesystems. Continuous dy-
namical systems (also calledflows) are defined by differ-
ential equations and the discrete ones (also calledmaps)
are defined by difference equations [15]. Difference equa-
tions (e.g.,̇x = A ·x) are the discrete analog of differential
equations (e.g.,∆xn = (I + A) · xn).

2.1 Discrete systems

A discrete dynamical systemis given by difference equa-
tions which form a map

f’ p : Rn → Rn (1)

which transfers a point (state of the system)x ⊆ Rn into
another pointx’ ⊆ Rn which is uniquely defined by the
equation

x’ = f’ p(x) (2)

together with a set of parametersp. The statex =
(x1, x2, ..., xn)> ∈ Rn can be seen as a point of
an n-dimensional Euclidean space. The components
x1, x2, ..., xn of the statex are calledstate variablesof the
dynamical system. One state variable therefore is an actual
value of one of the differential equations which specify the
dynamical system.

2.2 Phase space and Parameter space

A phase spaceis defined by associating each of then
state variables to one axis of ann-dimensional Cartesian
coordinate system.

The parametersp of the dynamical system build up the
parameter space. Different sets of values for parameters
define different phase spaces (See Figure 2).

2.3 Attractor and basin

An attractor A is a kind of steady state in a dynamical
system. It can be described as a set of states (points in
the phase space) of the dynamical system, which do not
change trough the process of iteration of the mapfp. An
attractor is defined as the smallest unit which cannot be
itself decomposed into two or more attractors with distinct
basins of attraction. This restriction is necessary since a
dynamical system may have multiple attractors, each with
its own basin of attraction.

Figure 2: Example of a parameter and a phase space of a
dynamical system with mapfp : (x, y, z) → (a · x+ y, b +
x2, a · z).

Thebasin of attraction(or simplybasin) of an attractor
A is the set of all point that generate trajectories converg-
ing toA

B(A) = {x | fnp(x) → A ⇔ n → +∞} (3)

Basin boundaries of dynamical systems can be either
smooth or fractal. It appears that fractal basin boundaries
are common in typical dynamical systems [10].

3 Dynamical system exploration

To explore a dynamical system we need to know the differ-
ence or differential equations which describe the system.
Hence we have the equations we are just at the beginning
of the exploration process. Then we can do computations
with different sets of parameters to get data. These data
contain objects (attractors and basins) which needs to be
classified and named. We may need to establish some
naming to navigate between the objects. The naming and
the data must be stored effectively because they are huge
(∼GBs). After we have the data, we need to investigate it
and try to find some relations between the computed ob-
jects. We also need to visualize the computed data and
also the parameters and relations between them. The goal
is to make conclusions about the system according to the
computed data.



3.1 Complex systems

We are dealing with econometric dynamical systems pro-
vided by Gian-Italo Bischi1. These systems may have
many parameters (up to 10 or 15), so we are working with
multi-dimensional parameter space. Therefore it is essen-
tial to have a clear visualization to not get lost in the para-
meters, but still try to show as much information as possi-
ble. Also when investigating such systems we need to iter-
ate the equations for many sets of parameters. This gives
us a lot of data which needs to be managed and visualized.
There is also need to have some linking between the pa-
rameter space and the according phase spaces, because to
each set of the parameters in the parameter space belongs
one phase space. Linking between the different visualiza-
tions (3D, 2D) of the parameter and phase spaces is also
needed because the 2D visualizations are sections through
the 3D spaces.

3.2 Distributed computation

When working with dynamical systems with multi-
dimensional parameter spaces the difference equations
used can be complex. We are working with volumetric
data of the dimension2563. For every point of this2563

cube we need to iterate the difference equations several
times (∼1000 times). As they are complex this cannot be
done in real-time, in some cases even not in a single day.
Therefore we need distributed computation.

In our project we used Java RMI (remote method in-
vocation) to implement the distributed computation part.
The computational system consist of one master which is
also the main data storage and computational clients called
slaves (see Figure 3). Master is distributing the computa-
tional tasks to the slaves and collets the results. Than the
naming is done and data are stored to files. The system
is also robust and can fix corrupted tasks or assign them
again.

Figure 3: Topology of the computational system.

1Istituto di Scienze Economiche, Department of Economics Univer-
sity of Urbino, Italy

3.3 Previous work

Although a variety of software which can be used for
dynamical system investigation is available, few of them
are primarily focused on general dynamical system
visualization. Our solution provides a system for the
visualization of high-dimensional dynamical systems as
described by difference equations, which is modular and
does not depend on one concrete system. We are using
it mainly for investigation of econometric dynamical
systems as mentioned before.

There were programs to visualize dynamical systems in
the past. One of the oldest programs is AUTO from 1986
[5]. It can do a limited bifurcation analysis of algebraic
systems and of systems of ordinary differential equations
subject to initial conditions, boundary conditions, and
integral constraints. Later came AVS (The application
visualization system) [16] and VTK (The visualization
toolkit) [13] which were not primarily intended to be
used for dynamical system visualization, but for general
visualization. Another program named DsTool is focusing
on the interactive dynamical systems investigation using
Unix and the X window system. It has interactive graphi-
cal interface [3]. There has been little development of the
programs since 1997. Therefore the graphical interface
is outdated and does not support techniques like opacity,
two-level volume rendering, etc. One of the youngest
environments is DynSys3D from 1998 [9]. It is based on
AVS and allows to easily combine different visualization
techniques corresponding to the needs of the user.

Even though there were solutions and environments to
investigate dynamical systems, none of them was provid-
ing both a parameter and a phase space visualization next
to each other and these systems also were not general
enough to handle sundry dynamical systems.

4 Phase space visualization

To visualize the phase space we need a slightly different
approach than for the visualization of the parameter space
because we have only a three-dimensional space because
we are using dynamical systems defined by three differ-
ence equations (which forms 3D phase space). We decided
also to use an additional 2D visualization of the 3D phase
space. The 2D visualization is in fact a slice view on a
plane through the 3D phase space. With this 3D projection
and 2D section has the user full knowledge about the ob-
jects in the phase space. Each of them is described below.
Every phase space has accurate position in the parameter
space of the dynamical system which can be denoted by a
point. This point is called node, so each node contains 3D
phase space.



4.1 Naming

To distinguish between the objects in the different nodes
(phase spaces) we need to build up some naming scheme.
We have found that it is better to do the naming on the
server side so the client is not loaded with too many tasks
and can run at interactive frame-rates.

Naming is done immediately after a new node in the
parameter space is computed. As mentioned before this is
done on the server also because the server has all the data
which is needed to compare the objects in the nodes. The
server takes newly computed objects and compares it to
the adjacent objects to decide whether they match. If they
fulfill the criteria, then the same name is assigned to them.
The criteria depend on the type of the objects. The objects
are compared by the size, box dimension and position in
phase space.

This simple naming scheme works fine in real use and
can be tuned up by different comparing criterions. Also for
different object types different sets of comparing criteria
can be used.

4.2 3D projection

Figure 4: 3D phase space visualization. There are three
basins in the image (blue, orange, and yellow). On the
left is a slider to move 2D section. At the bottom is an-
other slider to move between nodes opened in the actual
window.

The main purpose of the 3D phase space visualization
is to show the shapes of the objects (attractors, basins) in
the node and their relations (naming). The user needs the
possibility to rotate and zoom the view at interactive frame
rates and a suited data representation should be used. We
decided to use a voxel data representation rather than poly-
gons. The choice was simply because voxel data repre-
sentation can better handle points and in many cases the
objects in the phase space consists of many disjoint points

(like chaotic attractors [10]). With the use of a voxel data
representation the voxel data visualization problem arises.
For this purpose we have chosen two-level volume render-
ing [6] as a solution. This solution is fusing many tech-
niques, maximum-intensity projection (MIP) [12] and di-
rect volume rendering (DVR) [7], and also others like non-
photorealistic rendering, phong shading, etc. It provides
better results than the techniques used only alone.

In the visualization of phase space, the naming can be
also used to bring order into the chaos. The possibility to
open more nodes in one window and to navigate through
them with a slider is highly suggested. This adds another
dimension to the 3D visualization.

Our implementation meets all the requirements men-
tioned before. For the visualization of the voxel data
RTVR [11] is used. RTVR is a flexible Java library for
interactive volume rendering. It offers real-time rendering
of volume data. The RTVR library uses a fast shear-warp
projection achieving interactive frame-rates also on low-
end hardware. It also uses the two-level volume rendering
as described above.

The rotation and zooming is done with the mouse while
pressing the right button or right button and Shift key. Ac-
tual parameters as used for the computation of the node
are shown at the top of the window (see Figure 4). On
the right side there are controls to select the objects and a
checkbox to show or hide them. The user can also interac-
tively change the color and transparency of the objects by
holding the control keys and moving the mouse.

If the user opens more than one node in the same win-
dow he (or she) can navigate through the opened nodes by
the slider which is situated at the bottom of the window.
Only one node is visible in the window at the moment so
the other ones are temporary invisible. Also when rotat-
ing the actual 3D view the other invisible nodes which
are opened in the actual window are rotated so the sys-
tem is consistent. When the objects in different nodes are
the same (this is decided by the naming) and the user can
change the color in the actual view the color changes also
in the temporary invisible nodes in the actual window.

Another possibility is to open each node in a single win-
dow and link these windows together. So the transforma-
tions (rotation, zooming) and the color are changing in all
linked windows simultaneously. User can link just some
windows, when needed.

There is another slider on the left side of the window
which controls the 2D phase space visualization (slice
view). The user has the possibility to move the 2D pro-
jection plane by adjusting the slider. The 2D section view
is described in the next section.

4.3 2D projection

The 2D phase space visualization is actually a slice view
through the objects in the 3D phase space. It is important
to show the alignment of the view as compared to the



Figure 5: 2D phase space visualization. The section
through two basins (blue and yellow) can be seen in the
image. The caption of the window shows the correspon-
dence to the 3D phase space window.

3D view. Also coloring is useful to differ between the
object on the slice. Every 2D phase space visualization
is strictly connected to some 3D phase space so it needs
some indication to which window it belongs.

Our 2D phase space visualization can be seen in Fig-
ure 5. At the left upper corner two axes are shown of the
3D space which are used. The coloring is used also from
the 3D visualization and changes in real-time. The corre-
spondence to the 3D phase space window (called frame) is
in the caption of the window.

Figure 6: Tracing of objects with 2D phase space visual-
ization. There are three states of 2D phase space visualiza-
tion after adjusting the slider which controls the position
of the 2D section in the 3D phase space. There are two
basins on the image, blue and orange.

The main purpose of this visualization is to trace the ob-
jects which are inner structures (inside other objects). This
can be successfully done as shown in Figure 6. There are
two basins in the image, one blue and one orange. The or-
ange is the inner one. The figure show 2D phase space vi-
sualizations after adjusting the slider in the 3D phase space
window which controls the position of the 2D plane.

5 Parameter space visualization

As mentioned before, we are working with a multi-
dimensional parameter space. We live in a three-
dimensional world so we can visualize just in three dimen-
sions. We do not know how to draw four-dimensional or
even more-dimensional system. So what to do when we
have ten or fifteen dimensions? We have decided to visu-
alize the multi-dimensional parameter space as 3D projec-
tion and 2D section of the n-dimensional space. This is
sufficient for our needs, because through the investigation
of the dynamical system we change just few parameters,
not all of them. Some parameters are more interesting than
others. Also the 3D visualization provides knowledge of
the position of the 2D section within the 3D projection.
A description of the 3D and 2D projection is below. To
represent the positions of the phase spaces for different
sets of parameters in the parameter space we need suitable
glyph. We have found that the star glyph design is capable
to show the main characteristics of the phase space, like
count and type of the objects (attractors and basins) in the
node. It is described in detail below.

5.1 Star glyph design

Figure 7: Star glyph design (p - position in the parameter
space,ν - attractors,ν′ - basins,λ - length of the ray,α -
angle between rays).

The star glyph [14] was designed to represent the nodes
(phase spaces) in the parameter space visualization. The
final design is shown in Figure 7. In the middle there is a
small rectangle which is situated at the accurate position of
the node in the parameter space (denoted byp). Its color
depends on the state of the node (see Figure 8): when com-
puted and ready for opening, the node is green. When the
node was assigned for computation but, still the computa-
tion did not finish, the color of the node is yellow. After
opening of the node, the color of the glyph changes to red.
When several nodes are opened, the actual one on which
the user is looking, is colored purple. The colors change
interactively so user knows exactly which node is opened
and active directly just from the coloring.

The rays (denoted byν) of the glyph represent the ob-
jects in the node. When investigating dynamical systems
we encounter objects like attractors, basins, and critical



Figure 8: Star glyph implementation. There are four
glyphs on the image, each with different colour and differ-
ent meaning (green-computed, yellow-not yet computed,
red-opened, purple-opened and shown in the actually fo-
cused window).

surfaces in the phase space of the system [2]. Each ray
represents one of these objects. Rays in the upper right
corner represent attractors and the ones opposite to them
represent basins of attraction, related to the attractors. The
length (denoted byλ) of a ray depends on the type of the
object in the case of attractors and on the box dimension
of the object in the case of basins. The angle (denoted by
α) between the rays is fixed and based on a maximal count
estimation. It can be changed to meet the needs of the ac-
tual dynamical system. For our systems the estimation is
maximally six objects for each type.

5.2 2D projection

Figure 9: 2D parameter space visualization. We can see
25 nodes (phase spaces) visualized by star glyphs in the
image. The background coloring interpolates between the
count of objects in the nodes. Actual parameters of the
axes are also shown.

The visualization as a 2D projection of the parameter
space is more challenging than the 3D case. The main pur-
pose is to show as much information about the nodes of the
parameter space as possible without the need to directly
open them. This can by done by a careful glyph design
which represent the nodes and by additional background
visualization. There is also the need to navigate through
the space and zoom. This can be done as in the 3D case

simply just by mouse and control keys. Users must be able
to change the parameters which are shown on the axes of
the 2D parameter space. An additional overview showing
the actual position and size of the main view of the para-
meter space is highly suggested so the user knows over-
all density and distribution of the nodes. The background
of the parameter space can be colored depending on the
properties of the nodes (phase spaces). We are using the
triangulation between the nodes and then interpolate color
between the vertices of the triangles depending on some
property of the node, like a count of the attractors.

This visualization is also very suitable for assigning
new computational tasks. Computational task is a request
for the master to compute (iterate) the difference equations
of the system for given set of parameters. By clicking
on a point in the parameter space the user can simply
select the place of his (or her) interest and the data for the
phase space can be computed (new computational task is
assigned to the master). When we want to view the node
(phase space) of the parameter space we need to open the
3D phase space visualization window. This can be solved
in the same way by as assigning of new computational
tasks by clicking on the nodes.

Our implementation, also using Java3D [1] like in the
3D case, can be seen in Figure 9. For background visual-
ization the triangulation between the nodes is used. This
is computed in the real-time from the actual visible nodes.
For the node visualization the Star glyph design is used
which was described widely in the previous section. As
in the 3D case there are axes and actual parameters on the
screen so the user knows the exact position of the nodes.
To fulfill this task a small overview is situated on the side
of the main window, showing the spread and density of
the nodes and the actual position of the main viewing win-
dow. There is the possibility to change the type of the
background visualization and also the color. The type de-
pends on the contents of the nodes.

In some parts of the parameter space the distribution of
the nodes can be dense, so it is hard to see the glyphs which
represent the nodes. To solve this problem we divided the
parameter space into parts and assigned different glyph-
zoom factors for each part, depending on the density of the
nodes in the part. This is done in real-time, so when the
user changes his (or her) place of interest to a place with
a small density of nodes, the nodes become interactively
larger and vice versa.

Assigning of new nodes and opening of the existing
ones is done by clicking on them with mouse. This is sim-
ple enough to not overload the user with fruitless activity.
After clicking on the node there is the possibility to open
it in new window or in the existing one. When clicking on
the empty space a table is shown which provides the pos-
sibility to tune the parameters which will be used for new
computation.



5.3 3D projection

Figure 10: 3D parameter space visualization. There are
Star glyph nodes in the 3D parameter space projection in
the image. Actual parameters and 2D section position is
shown.

The main purpose of the 3D projection is to show
arrangements of the nodes (phase spaces) in the 3D space
to get a better insight into the spatial distribution of the
nodes. So there is need to show a 3D space and it is
important to have the ability to rotate, pan, and zoom in
this space. The presence of actual parameters of the nodes
is also important. There must be also the possibility to
select which parameters are mapped to the axes because
we are working with a high-dimensional dynamical
system but 3D parameter space is able to show just three
of them at a time.

For implementation of this projection Java3D [1] was
used. A sample result can be seen in the Figure 10. Rota-
tion, panning and zooming can be done done by the mouse
and the control keys so user can simply navigate through
the space and is not confused by complex controls. The
orientation of the space is represented by three axes. Ac-
tual parameters of the intersection of the axes are shown.
Switching of the parameter-to-axis mapping is done by se-
lecting the parameter for each axis in the menu (on the
right in the image). We have added also a color setup so
the user can select the color of the background and other
elements in the view.

6 Linking and Modularity

All the visualizations of the parameter and the phase
spaces are useful and satisfy the needs of interactive inves-
tigation of dynamical systems. But they are much more
useful when linked together by some relations. Namely
when the user changes the parameter on the axis in the
3D parameter space visualization window the parameter

should also change in the 2D parameter space visualiza-
tion and the same with naming and coloring of objects in
the phase space visualization.

Linking is also implemented in our system and wages in
real-time. So the system is even more interactive because
all changes done by the user are reflected immediately in
other windows if needed.

The 2D parameter space visualization is connected with
the 3D phase space visualization by the relation of color-
ing the star glyphs, depending on the state of the node.
This was described before.

Also the 3D phase space visualizations windows can be
linked together and each of them can have 2D phase space
visualization window linked with it.

All the parts of the system will be useless when focused
only on one concrete dynamical system. Therefore there
is need that the system is modular enough to easily imple-
ment new dynamical system.

Our implementation meets this condition. All classes
are modular and do not use fixed numbers for count of
parameters or objects. Also they do not use fixed names
for dynamical systems and objects in them. Everything
is dynamically loaded at the runtime depending just on
one class for each dynamical system. This class contains
count of parameters, names of parameters and other con-
crete values.

7 Concrete dynamical system

Images used in this paper were created by using real
econometric dynamical systems. One of them is called
triopoly game (Game3D). It is three-dimensional discrete
dynamical system with six-dimensional parameter space,
which simulates the time evolution of an oligopoly game
with three competing firms [4]. The time evolution is ob-
tained by the iteration of the three-dimensional map T:

q′1 = (1− λ1)q1 + λ1µ1[q2(1− q2) + q3(1− q3)]
q′2 = (1− λ2)q2 + λ2µ2[q3(1− q3) + q1(1− q1)] (4)

q′3 = (1− λ3)q3 + λ3µ3[q1(1− q1) + q2(1− q2)]

whereqi, i = 1, 2, 3, represents the productions at timet
of the competing firms which sell the same good in a given
market, andq′i the respective productions at timet + 1.

One of the tasks which can be solved by interactive
investigation is detection of the global bifurcations that
cause the creation of non-connected basins.

A part of its parameter space can be seen in Figure 9 and
Figure 10. Phase space for parametersµ1 = µ2 = µ3 =
1.95, λ1 = 0.44, λ2 = 0.3, λ3 = −0.14 is shown in Fig-
ure 4. We can see that for these parameters the system has
three basins so all three firms still figurate on the market.
From the parameter space visualization (Figure 10) we can
see that when increasingµ2 the count of basins decrease.
Deeper investigation of this system is described elsewhere
[4].



8 Conclusions

During the work on this project I have found that it is pos-
sible to show very much properties of the data at a small
space. This can be achieved by a careful selection of the
type of the visualization and also the design of the parts
of the visualization like star glyph in our case. Star glyph
showed to be really suitable to visualize positions of the
phase spaces in the parameter space, because it provides
also wide knowledge about the properties of the objects
in the node (phase space) without directly visualizing it
in 3D. The background coloring of the parameter space
also greatly improves ability to see the distribution of some
characteristic (like count of attractors) of the nodes in the
parameter space.

9 Acknowledgements

This work was done as part of the basic research on in-
formation visualization at the VRVis Research Center in
Vienna, which is funded by an Austrian research program
called K plus. The author would like to thank Lukas
Mroz2 and Helwig Hauser3 for supervising the whole
work. Thanks goes also to Gian-Italo Bischi4 who is the
end user of the application and provides all the dynamical
systems information. Special thanks go to Andrej Ferko5

for the advices given while guiding the diploma seminar
on our school.

References

[1] Java3D : The API for 3D graphics for Java.URL:
http://java.sun.com/products/java-media/3D/.

[2] D. K. Arrowsmith and C. M. Place.An Introduction
to Dynamical Systems. Cambridge University Press,
1990.

[3] A. Back, J. Guckenheimer, M. Myers, and P. Wor-
folk. dstool: Dynamical systems toolkit with interac-
tive graphic interface user’s manual. User’s manual,
Cornell University, 1992.

[4] G.-I. Bischi, L. Mroz, and H. Hauser. Studying basin
bifurcations in nonlinear triopoly games by using3D
visualization. Nonlinear Analysis, 47/8:5325–5341,
2001.

[5] E. J. Doedel and J. P. Kernévez. AUTO: Software
for continuation and bifurcation problems in ordi-
nary differential equations. Applied mathematics

2Tiani Medgraph, Austria
3VRVis Research Center, Austria
4Istituto di Scienze Economiche, Department of Economics Univer-

sity of Urbino, Italy
5Faculty of Computer Graphics and Image Processing, Department of

Comenius University, Slovakia

report, California Institute of Technology, Pasadena
CA 91125, 1986.

[6] H. Hauser, L. Mroz, G.-I. Bischi, and E. Gröller.
Two-level volume rendering - fusingMIP andDVR.
In Proceedings of IEEE Visualization 2000 (Vis
2000), pages 211–218, October.

[7] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applications,
8(3):29–37, May 1988.

[8] H. Löffelmann. Visualizing Local Properties and
Characteristic Structures of Dynamical Systems.
PhD thesis, Vienna University of Technology, Aus-
tria, 1998.

[9] H. Löffelmann and E. Gr̈oller. DynSys3D: A work-
bench for developing advanced visualization tech-
niques in the field of three-dimensional dynamical
systems. InProceedings of The Fifth International
Conference in Central Europe on Computer Graph-
ics and Visualization ’97 (WSCG ’97), pages 301–
310, 1997.

[10] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke.
Fractal basin boundaries.Physica D, 17:125–153,
1985.

[11] L. Mroz and H. Hauser. RTVR - a flexible Java li-
brary for interactive volume rendering. InProceed-
ings of IEEE Visualization 2001, pages 279–286,
2001.

[12] G. Sakas, M. Grimm, and A. Savopoulos. Opti-
mized maximum intensity projection (MIP). InRen-
dering Techniques ’95, Eurographics, pages 51–63.
Springer-Verlag Wien New York, 1995.

[13] W. J. Schroeder, K. M. Martin, and W. E. Lorensen.
The design and implementation of an object-oriented
toolkit for 3D graphics and visualization. InProceed-
ings of IEEE Visualization ’96, pages 93–100, 1996.

[14] J. H. Siegel, J. E. Farrell, R. M. Goldwyn, and H. P.
Friedman. The surgical implication of physiologic
patterns in myocardial infarction shock.Surgery,
72:126–141, 1972.

[15] A. A. Tsonis. Chaos - from theory to applicatons.
Plenum Press, New York and London, 1992.

[16] C. Upson, T. A. Faulhaber, D. Kamins, D. Laidlaw,
D. Schlegel, J. Vroom, and R. Gurwitz. The Appli-
cation Visualization System: a computational envi-
ronment for scientific visualization.IEEE Computer
Graphics and Applications, 9(4):30–42, July 1989.


