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Abstract

Models of non-trivial objects resulting from a 3d data ac-
quisition process (e.g. Laser Range Scanning) often con-
tain holes due to occlusion, reflectance or transparency. As
point set surfaces are unstructured surface representations
with no adjacency or connectivity information, defining
and detecting holes is a non-trivial task. In this paper we
investigate properties of point sets to derive criteria for au-
tomatic hole detection. For each point, we combine sev-
eral criteria into an integrated boundary probability. This
probability is used to present a robust and automatic hole
detection algorithm. The power and feasibility of our al-
gorithm is shown in several examples.

Keywords: Point Set Surfaces, Modelling, Filtering, Re-
pairing

1 Introduction

Point set surfaces have become popular with the rise of
3D data acquisition techniques such as laser-range scan-
ning. Their conceptual simplicity makes them suitable for
both modelling as well as high quality rendering. Usu-
ally, these 3D data acquisition methods deliver unstruc-
tured point clouds, possibly equipped with normals and
additional surface properties, such as color. The surface is
encoded implicitly therein and can only be extracted using
some neighborhood relation between samples. While the
lack of explicit connectivity information simplifies, com-
pared to mesh based representations, the definition and im-
plementation of deformation operations, as, for instance,
encountered in geometric modelling, finding holes in the
surface becomes an ill-defined problem. In this paper we
will assume all surfaces to be 2-manifolds with boundary.

The knowledge of holes in the data can be exploited
in several ways. It can be used to reconstruct surfaces
with boundaries or to direct a further scanning step, gather-
ing missing information in holes, either manually or even
automatically. In postprocessing a smoothing step to re-
move noise can profit from boundary information as many
smoothing operators usually fail on boundaries and special
handling is required at the borders. Identification of points
on the boundary of a hole is obviously required before any
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attempt to algorithmically fill holes, an application useful
not only in surface repairing but also in modelling and in-
teractive editing.

While several authors proposed sampling conditions for
surfaces to ensure correct reconstruction (most notably
[1]), we are not primarily concerned with undersampling
but are interested in holes that a human user might identify
when inspecting a point cloud, often unaware of the origi-
nal surface. Also we want to provide a user with intuitive
parameters making it easy to find the holes needed for a
given application.

2 Previous Work
The problem of detecting holes in point set surfaces is
closely related to surface reconstruction as well as feature
extraction. Thus many algorithms in those areas include
criteria to identify holes or undersampled surface patches.

[4], [6] as well as [2] apply what we shall call the an-
gle criterion. The angle criterion considers for each sam-
ple point p a set of neighboring samples projected into the
tangent plane of p. Then the projected samples are sorted
radially and the angles between consecutive samples are
computed. The maximum of these gaps is used to de-
termine the probability of p being a point on a boundary.
In addition [4] uses the correlation matrix formed by the
neighborhood. The eigenvectors and values of this ma-
trix define a correlation ellipsoid. Its shape, expressed in
the ratios of the eigenvalues, is used to identify corner,
crease and boundary points and also gives an approxima-
tion to crease and boundary direction. These directions,
together with the weights obtained with the angle criterion,
are then used to weight edges of a neighborhood graph. In
a next stage a minimum spanning graph, describing crease
and boundary patterns, is extracted from the neighborhood
graph.

In [3], undersampled regions are detected using the
sampling requirement of [1]. It is based on the approxi-
mation of the medial axis by the poles of each sample’s
voronoi cell. The distance of each point to the medial axis
gives the local feature size. Every point on the original sur-
face needs at least one sample point within a ball defined
by the local feature size and a factor r. This approach fails
to identify holes in flat areas of the surface where only very
few samples are required to fulfill this requirement and



Figure 1: Left: The k-neighborhood of a point is biased towards the densely sampled region. The circles depict the radius of the
k-neighborhood. Middle: Neighborhoods of points in the sparsely sampled region contain points in the densely sampled region. Right:
The neighborhood of a point in the densely sampled region when the neighborhood graph is made symmetric.

holes are only visible if the surrounding area is oversam-
pled. Also we are not interested in undersampled regions
as usually observed at sharp creases where the sampling
requirement can never be met.

3 The Algorithm

We use three criteria to identify points lying on a surface
boundary. All expect the surface to be a 2-manifold and
use a local neighborhood Np for each sample point p. The
widespread k-nearest samples neighborhood, denoted as
Nk(p), does not cope well with irregularly sampled sur-
faces. Therefore we extend this neighborhood definition
in order to be able to handle these cases satisfactorily.

3.1 Neighborhood

We capture the neighborhood relation between samples in
a directed graph N = (P,E), P being the set of points.
By Np we denote all points in P adjacent to p in N , also
we define the following radii for each point:

Rp = max{‖p− q‖ | q ∈ Np}

Rp =
∑k

i=1 ‖p− qi‖
k

, qi ∈ Np

Starting point for the construction of N is a graph with
E containing all edges (i, j) where pj is one of the k-
nearest samples to pi. In points lying on the edge of a
densely sampled region the k-neighborhood will be biased
towards the densely sampled region and thus fails to find
a neighborhood homeomorphic to a disc, characterizing
interior points (see figure 1). Since we do not consider
a drop in sampling density to constitute a hole, we over-
come this deficiency by making the neighborhood relation
defined by the k-neighborhood symmetric, that is

E = {(i, j)|pj ∈ Nk(pi) ∨ pi ∈ Nk(pj)}

This definition is closely related to a measure of the lo-
cal sampling density gained by the maximum distance of
all points in Nk(p) to p. Thus the neighborhood relation

stretches over holes in a locally adaptive manner guided
by local sampling density, see figure 1.

The above neighborhood definition handles well all sit-
uations in which the sampling density falls off sharply, as
often observed where patches from different scans overlap.
Nevertheless, small holes with dense sampling on all sides
will still be detected. Usually this conforms with appli-
cation requirements together with human intuition, but if
the samples occur in small, extremely dense, clusters, or if
for some application a minimum hole size is required, we
also include in the neighborhood all points within a user
defined minimum radius. Then only holes with a diameter
larger than that radius will be found.

In unprocessed data gained through a 3D-scanning de-
vice there sometimes are outliers located inside a hole.
Due to the symmetry of the neighborhood relation they
often are included in the neighborhood of many boundary
points so that no hole can be detected. This holds for the
angle criterion in particular. To avoid such cases an out-
lier removal step as in [7] should precede the detection of
holes.

3.2 The angle criterion

Figure 2: The angle criterion is based on the maximum gap,
depicted in red.

As described above the angle criterion projects all
neighboring points on the tangent plane and sorts them ac-
cording to their angle around the center sample. Then the



largest gap g between two consecutive neighbors is com-
puted and the boundary probability is given as

Pangle(p) = min(
g − ( 2π

k )
π − 2π

k

, 1)

where k is the number of neighbors. Modifying the stan-
dard angle criterium described in [4], [6] and [2] we ig-
nore all points in Np with 6 (n, pi − p) < 10, n being the
normal in p. This way the angle criterium becomes less
susceptible to small inaccuracies in the normal direction
which is especially beneficial in the case of point clouds
constructed from multiple range images, as here small er-
rors in normal direction often cannot be avoided.

3.3 The weighted average criterion

Figure 3: Left: The average criterion computes the average in
the tangent plane. The difference vector in red points in direction
of the interior surface. Right: The center of mass of a halfdisc is
located at a distance of 4

3π
r to center of the full disc.

Since the neighborhood of points on the boundary is
homeomorphic to a halfdisc the average of the neighbors
will deviate from the center point in direction of the inte-
rior surface. In fact we expect it to lie in the center of mass
of a halfdisc in the plane, see figure 3. Thus we compute
the weighted average

µp =
∑k

i=1 wp(qi)qi∑k
i=1 wp(qi)

, qi ∈ Np

of the neighborhood and project it onto the tangent plane.
We use a Gauss kernel

gσ(d) =
1√
2πσ

exp
−d2

2σ2

with σp = maxi=1..k ‖p− prj(qi)‖ for weighting with

wp(q) = gσp(‖p− prj(q)‖)

This reduces the influence of variations in the sampling
density. The boundary probability can then be deduced
from the distance between the center point and the pro-
jected average in the following manner:

Pµ(p) = min(
‖p− prj(µp)‖

4
3π r

, 1)

where r = 1
2k

∑k
i=1 ‖p− prj(qi)‖

3.4 The ellipsoid criterion

As noted in [4] the shape of the correlation ellipsoid of Np

approximates the general form of the neighboring points.
The shape of the ellipsoid is encoded in the eigenvalues
{λ0, λ1, λ2}, where λ0 ≥ λ1 ≥ λ2, of the weighted co-
variance matrix Cp.

Cp =
k∑

i=0

w(qi)(µp − qi)(µp − qi)t, qi ∈ Np

We collect the relative magnitudes of the eigenvalues in a
vector Λp = (λ0

α , λ1
α , λ2

α ), with α = λ0 + λ1 + λ2.

Figure 4: The triangle formed by all Λ values and the charac-
teristic points for certain shapes. The circles show the 2σ radius
for each shape.

In the case of a boundary point, the ellipsoid becomes
an ellipse in the tangent plane and thus Λboundary ≈
( 2
3 , 1

3 , 0), for points on a ridge Λridge ≈ ( 2
4 , 1

4 , 1
4 ) ap-

plies. In interior points the ellipsoid degenerates to a cir-
cle and Λinterior ≈ ( 1

2 , 1
2 , 0) holds. For either a corner

point or a noisy region there is no preferred direction and
Λcorner ≈ ( 1

3 , 1
3 , 1

3 ). Finally, for points on a line in space
Λline ≈ (1, 0, 0). The latter three values of Λ span a trian-
gle TΛ, depicted in figure 4, containing all possible values
for Λ. We can now extract tentative classification probabil-
ities

∼
P shape for each of the shapes described above from

Λp by evaluating a spatial kernel around the characteristic
Λ of the desired shape. We use a Gauss kernel gσ for this
with σshape = 1

2‖Λshape − centroid(TΛ)‖. Now
∼
P shape

is given as

∼
P shape(p) = gσshape

(‖Λp − Λshape‖)

Obviously, the regions for different shapes overlap (see
figure 4). Therefore we define the final probability Pshape

as

Pshape(p) =
∼
P shape(p)∑

shapes

∼
P shape(p)



For the boundary probability, we found it advantageous to
combine it with the line probability in the following man-
ner:

Pellipsoid(p) = Pboundary(p) +
1
2
Pline(p)

This is due to the fact that, because of gracing sensor
views, close to boundaries, the sampling often is dense
along lines, but sparse in between.

3.5 Normal estimation
Both, the angle and the average criterion, depend heavily
on the normal in the point p. Therefore, if the data comes
without normal information, a good estimation of the nor-
mal is mandatory. Similar to [5] the normal is given as
the eigenvector corresponding to the smallest eigenvalue
of the weighted covariance matrix of Np. In a first step
the points in Np are weighted according to their euclid-
ian distance to p using the Gauss kernel gσ as above with
σ = Rp

2 . In the following steps, points are weighted using
their distance to p in the estimated tangent plane and sub-
stituting σp = maxi=1..k ‖p− prj(qi)‖, qi ∈ Np, similar
to the weighted average criterion. This is repeated until
convergence. In our experiments three iterations usually
suffice. In addition, it is possible to integrate the angle

Figure 5: In sharp creases the fitting plane sometimes becomes
normal to the surface. These cases can be detected with the angle
criterion and the normal can then be flipped.

criterion in the normal estimation process as suggested in
[6]. Sometimes, at sharp creases, the fitting plane is nor-
mal to the surface, see figure 5. To detect this situation,
after the normal has been estimated, the angle criterion
is evaluated. If the boundary probability Pangle(p) ex-
ceeds a given threshold, the estimated normal is rotated
by 90 degrees about the axis defined by the two points on
both sides of the maximum gap, projected into the tan-
gent plane. Then the angle criterion is evaluated again,
this time using the rotated normal, and the new normal is
kept if the boundary probability has been reduced signifi-
cantly, i.e. by more than 50%. This helps at sharp creases
where sometimes the fitting plane is normal to the surface,
see figure 5.

The estimation algorithm does not yield consistently
oriented normals. Although none of our criteria requires
this, it can easily be achieved by applying the minimum
spanning tree traversal introduced in [5] on the neighbor-
hood graph. We use this approach for visualization pur-
poses.

3.6 Combining the criteria

Figure 6: A small hole, that is crossed by some edges of the
neighborhood graph. Left: Boundary detected by the angle cri-
terion. Right: Boundary detected by the weighted average crite-
rion.

Every criterion has its own advantages. Compared to
the angle criterion, the weighted average criterion is bet-
ter capable of detecting small holes, especially when the
hole is crossed by some edges of the neighborhood graph,
see figure 6. On the other hand, while the weighted av-

Figure 7: Left: The weighted average criterion finds a band of
boundary points. Right: The angle criterion finds a sharp bound-
ary.

erage and the ellipsoid criterion sometimes find a narrow
band of boundary points around holes, especially for larger
k, the angle criterion differentiates better, see figure 7.
Finally the ellipsoid criterium performs best in the pres-
ence of noise, see figure 8. Therefore, we propose two
ways to combine the criteria. The first is a weighted aver-
age and the second a voting scheme. The combination in
a weighted average is given by

Paverage(p) = waPangle(p)+wµPµ(p)+wePellipsoid(p)

The weights for the average, wa, wµ and we, where
wa + wµ + we = 1, can be chosen by the user upon visual
inspection. Usually a uniform weighting produces good
results, but for noisy models the weight of the ellipsoid cri-
terion should be increased since it is most robust to noise.



Figure 8: Left: The angle criterion identifies many false bound-
ary points in a region of noise. Right: The ellipsoid criterion is
not affected.

The voting scheme is based on a user defined threshold.
A point is declared a boundary point only if at least two,
or, even more restrictive, all three, probabilities exceed the
threshold.

3.7 Extracting the boundary
The extraction stage of the algorithm aims at producing
a classification for each point, stating if it is a boundary
or an interior point. Here we will use the coherence be-
tween boundary points, having been neglected so far. This
greatly improves the robustness of our method. Moreover,
connected loops of points, circumscribing a hole, can be
found, providing immediate access to the boundary.

Figure 9: For points on a boundary loop, the two neighbors
comprising the maximum gap will also be boundary points.

All holes in a manifold surface possess a closed bound-
ary that we shall call a boundary loop. Thus any point on
such a loop has at least one neighbor to each side, also
belonging to the boundary (see figure 9). This property
can easily be exploited using a simple and efficient classi-
fication step. First, all points with a boundary probability
greater than a user defined threshold are declared bound-
ary points. Then, for each of these points, the two neigh-
bors forming the maximum gap in the sense of the angle
criterion are found. A point stays classified as boundary

point if and only if both of these neighboring points have
also been declared boundary points. All other points are
marked as interior points. This process is repeated until
no more points change their status. Obviously only the
neighbors to points that did change previously have to be
reconsidered in every iteration.

For extraction of the actual loops we use an algorithm
that is similar to the one presented in [4]. The algorithm
builds a minimum spanning graph on the neighborhood
graph N . A minimum spanning graph (MSG) is based on
a minimum spanning tree, in fact the minimum spanning
tree is a subgraph of the MSG, but the MSG does contain
loops under certain circumstances. These loops are what
we will be interested in.

To construct the MSG, every edge in N needs to be
assigned a weight w(i, j). Similar to [4] we derive the
weight in two parts. The first part uses the boundary prob-
ability of the adjacent points:

wprobability(i, j) = 2− P (pi)− P (pj)

Only edges with wprobability less than a user defined maxi-
mum are considered for inclusion into the MSG (we found
1.1 to be a good choice, suitable in most of our test cases).
The second part incorporates the local sampling density
measured by Rp:

wdensity(i, j) =
2‖pi − pj‖
Rpi + Rpj

The total weight is then given by

wtotal(i, j) = wprobability(i, j) + wdensity(i, j)

Again, only edges with wtotal less then a threshold be-
come eligible for selection into the MSG. This second
threshold is less critical though and we typically use a
value of 3 for it. Alternatively, only edges running between
points marked as boundary points in a previous classifica-
tion step can be used. In contrast to [4], we do not use any
vector valued penalties, rewarding edges in the direction
of the boundary, approximated by the eigenvector corre-
sponding to λ1 in the ellipsoid criterium, since they did
not improve loop quality in our experiments.

The construction of the MSG uses an extension to
Kruskal’s minimum spanning tree algorithm. In the begin-
ning, every vertex of N is a stand-alone component of N .
Then the edges are processed in ascending order, accord-
ing to their weight. If an edge (i, j) connects to distinct
components of N , the edge is added to the MSG and the
two components are joined. If, though, the edge runs be-
tween two vertices of one component, it creates a cycle in
the MSG. Such edges are included in the MSG only if the
loop they create is longer than a predefined minimum loop
length ρ, taken as the number of edges in the loop. To find
out the loop length a breadth first search is spawned on the
MSG that has been constructed so far, originating in pi and
counting the number of edges on the shortest path to pj .



When the MSG is complete, the boundary loops can be
extracted. Again breadth first search is applied. The al-
gorithm maintains for all vertices a color value signaling
one of three states: white, grey or black. White vertices
have not been touched by the search yet. Grey vertices
are queued for visitation while the search has already ex-
tended beyond black ones. In the beginning, all vertices
are white, except the origin, which is grey. All grey ver-
tices are managed in a queue. In every step the vertex on
the front of the queue, becoming black, is removed and all
its white adjacent vertices are marked grey and appended
to the queue. If an adjacent vertex is black it is ignored,
but if one of the adjacent vertices is grey already, a loop
has been found. The loop can be extracted by tracing back
the steps of the breadth first search along the two branches
originating in the grey vertex and the vertex just removed
from the queue. For this purpose we save with every vertex
its predecessor. This search is started once for each vertex
in the MSG, unless it has become part of a loop already.

In a final step, points belonging to a loop are marked as
boundary points.

4 Results

Figure 10: The effect of the symmetric neighborhood relation.
Left: k-nearest neighbors Right: Symmetric neighborhood graph

We applied our algorithm to a variety of models. Fig-
ure 10 illustrates the effect of the symmetric neighborhood
graph when using the angle criterion. Note how well the
drastic change in sampling density is handled. Figure 11
shows that our method extracts holes similar to that found
in [3]. A classification step with a threshold of .3 was
applied. Figure 12 shows boundary points found by a
weighted combination of all three criteria after a simple
threshold value of .6 has been applied. Figure 13 and
14 demonstrate the effect of including all points within a
user defined radius in the neighborhood relation. This way
we are able to ignore the many small holes in the dragon.
Figure 15 shows the performance of the ellipsoid criterium
in the presence of heavy noise and many outliers. We used
a value of k = 40. Note that our algorithm was unable to
produce a consistent normal orientation due to the noise.
In figure 16 the boundary of a single scan of the bunny
has been extracted as a loop. A minimum loop size of

Figure 11: Boundary points identified in the mannequin model
when a symmetric neighborhood graph constructed with k = 15
is used.

Figure 12: Boundary found in a scan of a sea urchin. All three
criteria were combined with equal weight.

ρ = 1000 was used to suppress the detection of loops in
the smaller holes.

5 Conclusions

We have presented a method to identify holes in point set
surfaces. Our probabilistic method is based on the combi-
nation of three different criteria that assign to every point
in the data set a boundary probability, i.e. the probability
of being situated on a boundary of the point set.

Starting point of our hole detection method is a novel
neighborhood construction that is designed particularly to
filter out even abrupt sampling density changes, a situa-
tion which causes even well-established hole criteria to
fail. Although this already considerably improves the per-
formance of the so-called angle-criterion, holes cannot be
robustly detected in the presence of noise or in cases when
also holes of small size are to be detected.

To this end we presented two novel boundary criteria:
The weighted average criterion is the 3d-analogue to the
well-known border detection in images, whereas the el-



Figure 13: Numerous small holes are detected in the dragon
model for k = 15.

Figure 14: Only larger holes remain if all points within 0.01 of
the bounding box diagonal are also included in the neighborhood.

lipsoid criterion exploits a classification scheme based on
local data analysis.

As the notion of a hole is per-se ill-defined in the context
of point set surfaces, any classification ultimately needs to
adapt to the application’s (or rather the user’s) interpreta-
tion, and therefore our approach can be trimmed using in-
tuitive parameters, rendering the method easily adjustable
to the task at hand.

Also, in a second stage, our algorithm makes use of the
coherence between boundary samples, further increasing
robustness. As a by-product of this stage, boundary loops
are extracted, delivering subsequent processes direct ac-
cess to the contours of the holes.

Figure 15: In this extremely noisy scan, the ellipsoid criterion
was used followed by a classification step. Due to the many out-
liers scattered in the holes not all of them could be found.

Figure 16: The boundary of a single scan of the bunny has been
extracted as a loop.
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