
Out-of-Core Terrain Rendering with Reparameterized
Textures

Joachim Harabasz∗

Institute of Computer Science II, Computer Graphics Group,
University of Bonn
Bonn / Germany

Abstract

Visualisation of terrain data has been an active area of re-
search for more than an decade already and astonishing re-
sults have been achieved already. But there are still some
issues to resolve, e.g. the texturing of current terrain ren-
dering engines is based on orthographic projection, which
leads to artifacts in very steep places like walls or cliffs,
where small pieces of the texture is applied to large parts
of the terrain model. To increase the texture information
in these steep places it is necessary to increase the size of
the texture area that is applied to these pieces of the terrain
model. To solve the problem a new parameterization for
the terrain model is computed and the texture is enhanced
by additional information. Due to the new parameteriza-
tion the orthographic texture has to be resampled to fit the
new parameterization or in other words, the texture has to
be “reparameterized”. Ground-images are merged into the
reparameterized texture to increase the texture details in
steep places.

Keywords: Terrain Rendering, Reparameterized Tex-
tures, Image Projection

1 Introduction

In everyday life everyone is surrounded by some form of
landscape. Modeling and rendering of this terrain is a
much sought-after issue in many areas, like geographic in-
formation systems, space exploration and computer game
development. In most cases an interactive visualization
and a good image quality are desired. To achieve near
photo realistic images a detailed terrain model is required.
Recent improvements in remote data acquisition tech-
niques allow to acquire datasets with a resolution of one
height value per square meter even for large areas, with
even more detailed texture data. This huge amount of
data leads to big terrain models, which makes it difficult
to achieve real-time frame rates in the rendering process.
Wahl et al. [8] [9] created a terrain rendering algorithm
which is capable of achieving frame rates of 150 fps even

∗harabasz@cs.uni-bonn.de

for huge terrain models in high-speed low-altitude over-
flights without concession to image quality.

Nevertheless textures acquired through satellite images
or images taken through over-flights lack details in steep
places. Steep places like house walls, cliffs and canyons
are present in most mountain areas and nearly all man-
made structures. This leads to highly noticeable artifacts
in the rendered image, where a small piece of texture is
stretched over a large piece of terrain model.

To increase the available texture information in these
steep places, it is necessary to integrate information from
additional sources like images taken from the ground. Ap-
plying this additional information can be done using ad-
ditional projective textures. Unfortunately many of them
will be necessary to achive sufficant quality which signif-
icantly affects the framerate of our terrain engine. Since
we aspire to achieve real-time frame rates, this approach
seems not practicable. We therefore decided to integrate
all the additional texture information into the main texture.
With an orthographic parameterization this is not possi-
ble, because the texture space in steep places will be very
small.

To solve this problem, we decided to find a parameter-
ization that respects area preservation, i.e. a parameteri-
zation that assignes texture space according to the surface
area of parts of the terrain model.

For this the algorithm of Degener [4]. The new parame-
terization requires to resample the textures that were gen-
erated from satellite or over-flight images. These textures
are referred to as “reparameterized textures” in this paper.

In general the used texture area will not be square
shaped. To avoide a decrease in texture quality the texture
size has to be increased in most cases. The reparameteri-
zation enables us now to add further details to the texture.
This is done by projecting the additional terrestrial images
that were taken from an arbitrary position and angle on the
terrain model and merging the image data into the main
texture.

First we will describe the principles of the rendering
engine in section 3. In Section 4 we will explain the al-
gorithm that is used to generate the texture coordinates.
Subsequently in section 5 we will describe how the ortho-
graphic textures are adapted to the new parameterization,



and finally in section 6 how images are used to enhance
the reparameterized textures.

2 Related Work

The method described in this paper is not related to a sin-
gle area of research, but mainly combines results from the
areas of terrain visualisation and parameterization meth-
ods.

In the area of terrain visualization much research has
already been accomplished.

Among them some papers like Döllner et. al. [5] or
Lindstrom et. al. citeLindstrom95 explicitly cover the
topic of texturing terrain models , non of them tries to in-
crease texture quality in case of steep terrain models. They
mostly deal with topics of multi-resolution texturing of ter-
rains mostly. Döllner et al. also discuss multi-textured
terrains and the application of these techniques.

Many ideas have been developed regarding the fast ren-
dering of terrain data. Some approaches, like the one of
Cignoni et al. [2], are quite similar to the approach of our
visualization engine described by Wahl [8]. They both use
a set of triangulated irregular network (TIN) patches which
provide the benefit that all operations can be performed on
a per-patch instead of a per-triangle base.

Others like Lindstrom et al. [6] or Pajarola et al. [7] fol-
low a view-dependent refinement approach, where a con-
tinuous terrain mesh is generated depending on the current
view.

Although they achieve good results neither of them
deals with the topic of texture parameterization and tex-
ture quality in steep places. Finding a “good” parameteri-
zation becomes normally harder with the size of the mesh.
This makes [6] and [7] per se less suited for our goals.
The patch based approach of [8] and [2] has the advantage
that an independent parameterization can be calculated for
every patch, which should lead to better results. There-
fore choosing one of the patch based rendering engines
for further enhancement regarding texture parameteriza-
tion seems like a natural choice.

Similar to the area of terrain visualization, the topic of
calculating good texture coordinates is not new and a lot
of research has been done. A detailed overview over this
research area can be found in [4].

Unfortunately a parameterization which preserves area,
length and angle can not always be found. Though the
most of the available algorithms calculate such a param-
eterization when it exists, they differ on the kind of com-
promises they make when it does not.

Although a lot of fine tuning can certainly be done by
choosing a more appropriate algorithm, but we simply use
the algorithm of Degener [4] since in our case any param-
eterization that is adapted to the terrain model will give
better results than an orthographic parameterization.

3 The Rendering Engine

In this section the design of the rendering engine is de-
scribed and we explain how the terrain data are structured
to achieve a real-time framerates.

The rendering engine uses a quadtree based approach.
A square cell of the terrain model is recursively subdi-
vided into four sub-cells. Each sub-cell covers a fourth
of the domain of the original cell and provides a more de-
tailed version of the terrain model at this domain. In ev-
ery quadtree cell a triangulated irregular network(TIN) is
used. The quadtree is built in a preprocessing step. As
input for this preprocessing step a height field is used.
The quadtree cells are created in a bottom-up order. In
the simplification process a conservative approximation of
the Hausdorff distance is used as an error metric which di-
rectly corresponds to the screen space error. For each level
of the quadtree an upper bound for the simplification error
will be defined. Alongside with the geometry data in each
cell, a texture and a normal map will be stored in constant
resolution. This leads to an increase in texture data error
by the factor 2 from one cell to a cell on the next higher
level. Because of this, the error threshold for the simpli-
fication process is also increased by the factor 2 from one
level to the next.

During the rendering process, depending on the view
frustum origin and direction, quadtree cells can be cho-
sen in such a way that their screen space error will not
exceed 1/2 pixel. Thus the geometric error and the error
in the chosen texture can be limited to 1/2 pixel. In this
way popping artifacts, which originate from switching be-
tween different levels of details of the geometry or differ-
ent texture resolutions can be avoided. All operations, like
view frustum culling and occlusion culling, are executed
per cell. They are executed by processing the bounding
boxes data of the cells and thereby an unnecessary load-
ing of the cell data into the main memory can be avoided.
By feeding larger chunks of data to the graphic hardware,
at least one cell, a better utilization can be achieved. Not
every triangle has to be processed by the CPU.

Figure 1 shows part of the Puget Sound1 data set2. With
increasing distance from the camera position, larger cells
are used. For each cell size the bounding box is drawn in
a different color.

4 The Reparameterization

In this section the algorithm which is used to compute the
new parameterization is described as well as the issues that
come with this new parameterization. The new parame-
terization is necessary to increase the size of the texture
regions that are applied to steep parts of the terrain model.

1Puget Sound is an area of Washington State USA.
2The Puget Sound data set is the largest terrain model current avail-

able to us. It contains 8 quadtree levels thus 21845 cells.



Figure 1: Image of the Puget Sound data set with bounding
boxes for each cell.

The original terrain engine uses an orthographic param-
eterization. This parameterization is naturally associated
with satellite or high altitude over-flight images when they
are used for texturing. Using any different parameteriza-
tion without the further enhancement of the texture leads
mostly to lesser texture quality.

Choosing an area preserving parameterization also re-
quires an increase of texture resolution, because the sur-
face area of the terrain is larger than its orthographic pro-
jection. Keeping the old resolution would effectively mean
to decrease the texture resolution for all parts of the ter-
rain model, except for the steep ones. Also because of
the new parameterization, the used texture area will not
be perfectly square shaped any more. This means that the
used texture area would be decreased without an increased
resolution. Because most graphic hardware restricts the
texture resolution to the power of 2, the next smallest tex-
ture size would thus mean a texture size increase by factor
4.

This also means that using an area preserving parame-
terization is only reasonable if the terrain model features
areas with a rise of more than 60 degrees, because for a
rise of 60 degrees an area preserving parameterization and
an increase of the texture resolution by the factor 2 result
in the same effect.

Increasing the texture size by a factor of 4 for all cells,
means a significant increase of the total terrain model size.
In natural terrains steep areas will appear in combination
with very flat parts. For very flat terrain cells the new pa-
rameterization will mostly correspond to an orthographic
parameterization. Thus the effect of the increased terrain
area and the reduced used texture size will be very mini-
mal. Therefore we analyzed how strong these two effects
would be for an example terrain. For each cell we calcu-
lated the relative increase of terrain area that is covered by
a texel Reltexel. This is done by calculating the quotient
of the terrain surface size of one cell over the cell base size

and dividing it by the relative used texture size.

Reltexel = surfacesize/basesize
usedtexturesized/texturesize

This formula calculates the average texture stretch for
one cell. If the parameterization is area preserving, the av-
erage stretch will be identical to the stretch of each texel.
It is not always possible to achieve an area preserving pa-
rameterization, but for flat areas this will mostly be well
approximated.

A value of one indicates an optimal texture utilization.
To increase the performance, it is reasonable to limit the
texture size enlargement to cells that need it. Thus a
threshold to characterize these cells is needed. We pro-
pose a threshold in the area of 1.1; this would limit the
average stretching of a texel to 10%.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  0.5  1  1.5  2  2.5  3  3.5  4

fr
eq

ue
nc

y

average stretch

"ps_ns2.hist"

Figure 2: Histogram of the average texel stretch of the
cells of the Puget sound data set.

Figure 2 shows the average stretch for the Puget sound
data set. In this example 65% of all cells lie under the
threshold of 1.1. In a more cliffy terrain model a worse
ratio is to be expected, the Puget sound model is mostly
quite flat.

The decision whether a new parameterization should be
used or not, is independent of the question of the increased
texture size. Thus only in cases where the steep area of a
cell is very small, the use of area preserving parameteriza-
tion without an increased texture size is reasonable. The
use of an orthographic parameterization, were it is possi-
ble, is recommended. This way the unnecessary transfer
of the texture coordinates to the GPU can be avoided. The
mixed use of orthographic and area preserving parameter-
ization has yet not been implemented because of time con-
strains.

4.1 The reparameterization algorithm

To compute the new parameterization we use an algorithm
that was designed by Patrick Degener [4]. This algorithm
can be applied to generate a parameterization for objects of



disc-like topology. Thereby it is selectable to what degree
the area preservation is favored in opposition to the angle
preservation, and vice versa. We have chosen to optimize
both equally.

The algorithm can be subdivided into two major steps.
First a simplification algorithm is used to simplify the ob-
ject down to a single triangle. Second the simplification
steps are reversed and for every vertex the texture coordi-
nates are placed and optimized.

The simplification algorithm in the first step generates
a Level of Detail structure, by generating lists of indepen-
dent edge collapses. After each edge collapse the 1-ring
around the resulting vertex is locked, and no edge collapse
regarding one of these vertices is allowed. When no more
edge collapses are possible, the locking of the vertices is
released and a new edge collapse list will be generated.
Because of the disc-like topology of the input object this
process stops when a single triangle is reached.

For this single triangle trivially a parameterization can
be found.

In the second step the lists of edge collapses are used to
generate more detailed versions of the model, by applying
the reverse operation of the edge collapse, the vertex split.
For each vertex that is inserted an initial texture coordi-
nate is computed. After a complete list of edge collapses
is applied, a relaxation step is performed. In the relaxation
step repeatedly a vertex is chosen and its texture coordi-
nate is optimized regarding a special energy function. If
no more improvement can be reached, the next list of edge
collapses is applied. The whole process is also illustrated
in figure 3.

This procedure avoids the problem that the relaxation
process converges to a local minimum that only exists on
a higher level.

For further details regarding this algorithm and the used
energy function please refer to [4].

5 Resampling

In this section the resampling and filtering of the old ortho-
graphic texture is described, which is necessary to adapt
the old texture to the new parameterization. A poor filter-
ing in this step would lead to a texture quality decrease,
which is contrary to the goal of increased texture quality
(in steep places).

As well as the quadtree generation and the calculation
of the texture coordinates the resampling is done in a pre-
processing step. To avoid aliasing artifacts the resampling
and filtering is mostly done in software. The fastest way
would be to render the triangles of the geometry with the
new texture coordinates from the reparameterization step
as vertex coordinates and with applied texture, using the
old texture coordinates for the texturing. This way the
resampling could be done with fast hardware accelerated

3This figure is from [4] page 62.

Figure 4: Reparameterized and resampled texture of a cell
of a small box-like terrain.

rendering, by using OpenGL [3]. But to avoid aliasing ar-
tifacts in the resampled texture, and to achieve an as good
as possible texture quality we decided to do the filtering
and resampling mostly in software, although we use hard-
ware accelerated rendering to find the matching triangle to
each texel of the reparameterized texture. But this results
only in a speedup of 20 %. The most time consuming part
of the resampling is still the filtering.

The filtering is done by approximating the intersection
area of the texel of the resampled texture with the texels of
the original texture by the use of subtexel. The final color
of a texel of the resampled texture CR is calculated as the
weighted sum of colors of texel Ci that intersect with the
footprint by the area Ai.

CR =
∑

i∈I Ci ∗ Ai/
∑

i∈I Ai

To increase the quality of the area estimation, the sub-
texels are evaluated inside a bounding box of the inter-
section area, of the footprint and the texel, also shown in
figure 5.

In cases where the total intersection area
∑

i∈I Ai falls
below a threshold of 0.1 we fall back to bilinear filtering.
This is mostly the case where the terrain makes vertical
leaps, because in this case all four corners of the texel foot-
print will be collinear.

To reduce artifacts of applied texture compression algo-
rithms, like S3TC or JPEG, the empty parts of the resam-
pled texture are filled with an average border color. The
average boarder color is an average color of filled texels of
the texture which boarders on an empty texel.

Nevertheless, decrease in texture quality cannot be



Figure 3: An overview over the process of texture coordinate calculation.3

avoided in all cases, especially when the texture has strong
features like a chessboard texture. In the reparameterized
texture the texels are no longer aligned with the feature
edges, which in case of a chessboard texture is quite no-
ticeable.

Figure 4 shows a resampled texture for a small box like
terrain also shown in figure 6. Due to the parameterization
not the whole texture space is used. The texture area with
the two paintings is applied to vertical parts of the box-
terrain. The whole texture covers a fourth of the terrain.
An image of this terrain is also given in figure 6.

6 Image Projection

In this section it is described how ground images are ap-
plied to the resampled texture, which is necessary to add
texture information to the texture in steep places.

The process of image projection can be imagined as the
reverse operation to the rendering process. As in the ren-
dering process it is necessary to find the parts of geome-
try and texture that are projected to a specific pixel by the
projection matrix. In opposition to the rendering process,
not the texture color is written into the framebuffer, but
the image color is written into the texture. To do this step
correctly the position of the footprint of each image pixel
is needed. This is done by calculating the texture coor-
dinates for every corner of the image pixel. To calculate
the texture coordinates a ray is cast through the corner of
a pixel and the intersection point of this ray with a trian-
gle is calculated. Now the barycentric coordinates bi of
the intersection point are calculated. By multiplying the

and Texel Intersection
Bounding Box of Footprint

subtexel sampling point

texel footprint

Figure 5: Placing of the subtexels during the subtexel fil-
tering.

barycentric bi coordinates of the intersection point with
the texture coordinates of the vertices that are incident to
the triangle the texture coordinates ti of the triangle are
gained.

bi = |(vi−1−intersect)×(vi+1−intersect)|
|(vi+1−vi)×(vi−1−vi)|



ti = texture coordinate of vertex i

texCoord = b1 ∗ t1 + b2 ∗ t2 + b3 ∗ t3

To speed up the process of finding the right triangle to
an image pixel, we render an image in advance. Thereby
a different color is applied to every triangle. This enables
us to find the triangle with the nearest intersection point to
the camera origin directly for every pixel of the image.

Figure 6 shows the effect of two images projected to the
vertical sides of a box like terrain.

Figure 6: Image of a simple box-like terrain with enhanced
textures.

Our rendering engine follows an out-of-core approach
and the terrain model is only available in pieces of cells.
To avoid an unnecessary increase in processing time, the
loading of cells into main memory has to be minimized.
Therefore a strict ordering of the processed cells in front
to back order is required, where it is crucial that a later
processed cell will not be able to occlude parts of a cell
processed before.

6.1 Silhouette Pixel

When the right processing order is used, the cell occlu-
sion will automatically be done corretly. But there are still
some pixels which should not be written to the texture.
This is the case where a pixel of the image covers a silhou-
ette of the terrain model. A silhouette edge is an edge with
an adjacent front-facing and back-facing triangle. If the
pixel was written to the texture, the footprint of the pixel
would be stretched over the texture space of a back-facing
triangle, which leads to artifacts.

To decide if a pixel covers a silhouette edge or not,
we check for each edge of the pixel footprint whether it
crosses a silhouette edge in texture space. This is done by
starting at the triangle of an end-point of a footprint border
line and searching for all triangles that intersect with this

line. If a back-facing triangle is found that intersects with
a line, the pixel is treated as a silhouette pixel and is not
drawn. To implement this we use an OpenMesh[1] data
structure which allows us to access adjacent triangles of
the mesh without searching.

In most cases this test can be avoided, because all four
corners of a pixel correspond to the same triangle.

6.2 Footprint Reconstruction

In some cases the texture coordinates cannot be computed
for all corners of a pixel. This is especially the case at cell
boundaries, when the texture coordinates for some corners
of the footprint lie in one cell and the others already in the
next cell. Because every cell has its own texture and tex-
ture parameterization those cannot be used together. Not
drawing those pixels would lead to a systematic error at
the cell boundaries, therefore we decided to reconstruct the
missing texture coordinates. If only one texture coordinate
tij is missing, it can be computed from the remaining 3 by
reconstructing a parallelogram.

t22 = t21 + t12 − t11

When more texture coordinates are missing, they mostly
can be estimated by using texture coordinates of the cor-
ners of adjacent footprints. In these cases it is important
to check if a silhouette edge is crossed, because this could
lead to extremely oversize footprints. We call this heuristic
to calculate the missing texture coordinates of a footprint
”reconstruction scheme”.

In most cases the reconstructed footprint will be too
large, because only a part of the pixel is projected onto the
geometry. So the pixels will be written into parts of the
texture where they should not be. But because the foot-
print reconstruction will mostly take place at the border of
the cell, the oversize footprint will only cover the parts of
the texture that were empty before. These empty parts are
not mapped to any triangle. So writing to them cannot be
considered an error.

On silhouette pixels no footprint reconstruction is per-
formed, although the problem there is similar. But ap-
plying the footprint reconstruction scheme unchanged to
the silhouette pixel would lead to falsely overdrawing used
parts of the texture. This could be avoided by just drawing
to the part of the texture that corresponds to a front-facing
triangle, but this would just further increase the complex-
ity of the process. Still it would be necessary to apply
further images to fill the gap on the back facing triangles.
It is likely that by applying those images, the gap that was
left by the silhouette pixels will be filled. Thus we ab-
stain from applying any reconstruction scheme on silhou-
ette pixels.

In figure 7 and 8 the effect of the reconstruction scheme
is shown. To increase noticeability we projected the im-
age from a greater distance, though increasing the foot-
print size. In real application the effect should be smaller



but still noticeable.

Figure 7: Picture of a box-like terrain with an image pro-
jected onto it. (without footprint reconstruction)

Figure 8: Picture of a box-like terrain with an image pro-
jected onto it. (with footprint reconstruction)

6.3 Filtering

The filtering in the image projection process is similar to
the filtering described in the resampling process. This al-
lows us to avoid aliasing artefacts, even when the resolu-
tion of the projected image exceeds the texture resolution
by far.

7 Results

Figure 9 shows the performance of the modified terrain en-
gine and the unmodified terrain engine using a high speed
low altitude over-flight of the Puget Sound data set. As ex-
pected, the unmodified terrain engine outperforms the ter-
rain engine with reparameterized textures. The difference

in the reparameterized and unmodified 128 texel texture
set results from the texture coordinates that additionally
have to be transfered to the GPU. The unmodified terrain
engine computes the texture coordinates within the GPU
from the vertex coordinates.

The reparameterized 128-256 texel data set uses a tex-
ture resolution of 256 for all cells that have an average
texel stretch of more than 1.1 . This is the case for 35% of
all cells. The performance is only slightly lower than the
performance of the reparameterized 128 texel terrain data
set. The performance of the 256 texel data set is nearly
identical to the mixed 128-256 texel data set. Thus the
only benefit of the mixed resolution mode remains the size
reduction of the terrain model by 45 %.

Figure 10 shows the performance of the unmodified ter-
rain engine compared to the modified terrain engine once
using double texture coordinates and once float texture co-
ordinates. Noticeable is the extremely huge performance
difference of the three different texture coordinate repre-
sentation. The double texture coordinates are again 20 fps
slower than the terrain engine with reparameterization and
float texture coordinates.

The modified terrain engine is capable of rendering a
terrain with reparameterized textures and only slight per-
formance decrease, keeping the frame rate above a level
of 30 fps most of the time, though keeping the frame rate
above a real-time requirement of 25 fps.

Figure 6 shows a small box-like terrain, with two im-
ages projected onto the vertical walls. This would not be
possible without a changed parameterization. We clearly
achieve our goal of improving the texture quality in steep
parts of the terrain model.

8 Future Work

It is still possible to enhance the performance of the terrain
engine by implementing a mixed mode of orthographic
and area preserving parameterization, thus minimizing the
need to transfer the texture coordinates to the GPU.

Although we find that our proceeding is capable of in-
creasing the texture information of terrain models in steep
areas, usually a larger number of images will be required
to achieve a satisfying result. The integration of larger
numbers of images requires an automated process to ac-
quire the camera position, direction and field of view. A
manual estimation, which has been used until now, is not
practical for more than very few images. Also a blending
process that combines images projected from multiple po-
sitions and angles onto the terrain model, which considers
the confidence of the projected image, will also be nec-
essary to achieve a satisfying result. Thus we must state
that more work is necessary to achieve a set of tools that
enables us to enhance the texture of real terrains in steep
places.



 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120

FP
S

Time

texture size 128
texture size 128 reparameterized

texture size 128-256 reparameterized
texture size 256 reparameterized

Figure 9: Performance comparison of different texturing methods and texture resolutions.

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120

FP
S

Time

no texture coordinates - orthographic
float texture coordinates reparameterized

double texture coordinates reparameterized

Figure 10: Performance comparison of different texture coordinate representations.



References

[1] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt.
Openmesh – a generic and efficient polygon mesh data
structure, 2002.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, and
F. Ponchio. Bdam - batched dynamic adaptive meshes
for high performance terrain visualization, September
2003.

[3] Tom Davis and Mason Woo. OpenGL Programming
Guide. Addison Wesley, 1999.

[4] Patrick Degener. Computing Parameterizations of Tri-
angulated Surfaces with minimal metric Deformation.
Diplomarbeit, Institute of Computer Science II, Com-
puter Graphics Group, University of Bonn/Germany,
November 2003.

[5] Jörgen Döllner, Konstantin Baumann, and Klaus Hin-
richs. Texturing techniques for terrain visualization.
In IEEE Visualization, pages 227–234, 2000.

[6] Peter Lindstrom and Valerio Pascucci. Terrain sim-
plification simplified: A general framework for view-
dependent out-of-core visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
8(3):239–254, July–September 2002.

[7] R. Pajarola, M. Antonijuan, and R. Lario. Quadtin:
Quadtree based triangulated irregular networks. In
IEEE Visualization 2002, pages 395–402, 2002.

[8] Roland Wahl. Scalable Compression and Rendering
of Textured Terrain Data. Diplomarbeit, Institute of
Computer Science II, Computer Graphics Group, Uni-
versity of Bonn/Germany, December 2003.

[9] Roland Wahl, Manuel Massing, Patrick Degener,
Michael Guthe, and Reinhard Klein. Scalable com-
pression and rendering of textured terrain data. Jour-
nal of WSCG, 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


